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Abstract
This study investigated alterations in functional connectivity (FC) within
cortico–basal ganglia–thalamo–cortical (CBTC) circuits and identified criti-
cal connections influencing poststroke motor recovery, offering insights into
optimizing brain modulation strategies to address the limitations of tradi-
tional single-target stimulation. We delineated individual-specific parallel loops
of CBTC through probabilistic tracking and voxel connectivity profiles-based
segmentation and calculated FC values in poststroke patients and healthy
controls, comparing with conventional atlas-based FC calculation. Support vec-
tor machine (SVM) analysis distinguished poststroke patients from controls.
Connectome-based predictive modeling (CPM) used FC values within CBTC
circuits to predict upper limb motor function. Poststroke patients exhibited
decreased ipsilesional connectivity within the individual-specific CBTC circuits.
SVM analysis achieved 82.8% accuracy, 76.6% sensitivity, and 89.1% specificity
using individual-specific parallel loops. Additionally, CPM featuring positive
connections/all connections significantly predicted Fugl-Meyer assessment of
upper extremity scores. There were no significant differences in the group com-
parisons of conventional atlas-based FC values, and the FC values resulted in
SVM accuracy of 75.0%, sensitivity of 67.2%, and specificity of 82.8%, with no
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significant CPM capability. Individual-specific parallel loops show superior pre-
dictive power for assessing upper limb motor function in poststroke patients.
Precise mapping of the disease-related circuits is essential for understanding
poststroke brain reorganization.
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1 INTRODUCTION

Motor impairment, a common complication poststroke,
significantly diminishes quality of life.1,2 While numer-
ous interventions have been developed for motor recov-
ery, their clinical benefits remain limited. Noninvasive
brain stimulation, like transcranial magnetic stimulation
(TMS), holds promise. The conventional TMS protocol
involves low-frequency rTMS on the unaffected hemi-
sphere’s primary motor cortex (M1) and high-frequency
rTMS on the affected M1 cortex, guided by the inter-
hemispheric inhibition model.3 However, this approach
does not benefit a substantial portion of patients. Recent
research has shifted focus from isolated brain regions
to distributed networks, emphasizing connectome reor-
ganization in poststroke motor rehabilitation.4 Cortico–
cortical paired associative stimulation (ccPAS) is a protocol
in which repetitive low-frequency paired stimulation can
induce changes in excitability by a spike-timing depen-
dent plasticity-like mechanism.5 By strategically selecting
stimulation sites and optimizing timing intervals, ccPAS
promotes the potentiation of interconnected neural path-
ways crucial for motor function.6 Therefore, identifying
critical connections influencing functional prognosis has
become a top priority.
Cortico–basal ganglia–thalamo–cortical (CBTC) circuits

are widely recognized as central to motor control and feed-
back processes.7 Noninvasive imaging techniques, have
provided valuable tools for mapping motor-related circuits
in the living human brain.8,9 Functional MRI studies have
highlighted the role of the motor cortex, basal ganglia, and
thalamus in facilitating motor control.10,11
To map neural circuits noninvasively in the human

brain, techniques include fiber tracking based on dif-
fusion tensor imaging and functional connectivity (FC)
analysis, quantifying temporal coherence through corre-
lation analysis of different brain regions using the blood
oxygen level-dependent (BOLD) signal. Standard human
brain atlases have been instrumental in these researches.
Brain regions parceled according to standard atlases were
considered homogeneous structures. However, the sub-
cortical nuclei within the CBTC circuit exhibit complex
topographical divisions defined by cortical and subcortical

connectivity patterns.12 Multimodal MRI, combining dif-
fusion and functional data, offers the potential to bridge
brain tract structure with functional networks. Notably,
probabilistic diffusion tractography has been used to par-
cellate subcortical regions, enabling accurate mapping of
CBTC circuits at the individual level based on segre-
gated and integrative connectivity patterns in subcortical
nuclei.12–14
In this study, we aimed to investigate FC alterations in

CBTC circuits in poststroke patients and identify critical
connections impacting functional prognosis. We initially
mapped the CBTC circuits using two methods: (1) atlas-
based FC calculation in the standard MNI space, treating
each subcortical structure as an unified entity; (2)mapping
parallel CBTC circuits in the native space by probabilistic
tracking and voxel connectivity profiles (VCPs)-based seg-
mentation, then calculating FC within predefined CBTC
loops. We first compared FC values within CBTC cir-
cuits between poststroke patients and healthy controls.
To enhance our analysis, we then employed machine
learning to identify connections that distinguish healthy
controls from poststroke patients and predict clinical
motor function. We hypothesized that (1) FC alterations
in CBTC circuits significantly differ between poststroke
patients and healthy controls, contributing to variedmotor
dysfunction outcomes; (2) precise mapping of individual-
specific neural circuits is essential for studying diseased-
related brain reorganization, facilitating the development
of personalized treatments. By identifying key connections
influencing rehabilitation outcomes and optimizing tar-
get planning for brain modulation in the connectomics
era, we aim to achieve significant clinical benefits through
therapeutic brain stimulation.

2 RESULTS

2.1 Demographic information

A total of 128 participants were enrolled as the discov-
ery dataset, including 64 stroke patients (35 male and 29
female, age: 59 (18.2) years) and 64 healthy controls (36
male and 28 female, age: 54 (19.5) years). Age was analyzed
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TABLE 1 Demographic and clinical characteristics of enrolled participants.

Characteristic Stroke patients (n = 64) Healthy controls (n = 64) z/χ2 p Value
Age (yr)* 59 (18.2) 54 (19.5) −1.004 0.316
Gender (male/female)† 35/29 36/28 0.032 0.859
Diabetes mellitus, n (%)† 32 (50) – –
Hypertension, n (%)† 46 (71.9) – –
Stroke type (ischemic/hemorrhagic)† 48/16 – –
Disease course (month)* 7.5 (7.0) – –
UE-FMA* 15.5 (26.5) – –

Data are expressed as the median (interquartile range, IQR) (*), number (†), or percentage.
Abbreviation: UE-FMA, The Upper Extremity Fugl-Meyer Assessment.

F IGURE 1 Distribution of stroke lesions in the entire sample of patients. The color scale represents number of participants with
lesioned voxel as evaluated by T1 images.

using the Mann–Whitney U test as the distribution was
not normal, and gender was analyzed by Chi-square test.
All participants characteristics are shown in Table 1, and
the distribution of lesions is shown in Figure 1. Addition-
ally, the detailed information for all patients is presented
in Table S1. The results showed no significant differences
between groups in age (z = −1.004, p = 0.316) and gender
(χ2 = 0.032, p = 0.859).

2.2 Poststroke patients exhibited
decreased ipsilesional connectivity within
the individual-specific CBTC circuits

For conventional atlas-based FC analysis, there is no
significant differences between poststroke patients and
healthy controls. Figure S1 presents the conventional atlas-
based FC for individual participants within each group,
encompassing 26 connections in each hemisphere.
For FC analysis after subcortical connectivity-based

segmentation, poststroke patients showed decreased FC

TABLE 2 Group differences in functional connectivity in
CBTC circuits based on probabilistic tracking and voxel connectivity
profiles-based segmentation.

HemisphereROI1 ROI2 p-FDR value
Patients < healthy controls
“Long” loopAffected thalamusDLPFCDLPFC 0.026
“Short” loopAffected caudateM1 M1 <0.001
“Short” loopAffected putamenDLPFC DLPFC 0.033

Subcortical area with subscript referred to the specific subdivision of the sub-
cortical area connected with the subscript cortical area as determined through
diffusion white matter fiber tractography.
Abbreviations: DLPFC, dorsolateral prefrontal cortex. M1, primary motor
cortex.

between the thalamusDLPFC and dorsolateral prefrontal
cortex (DLPFC) (p-false discovery rate [FDR] = 0.026) in
the specific “long” loop, between the caudateM1 andM1 (p-
FDR < 0.001) and between the putamenDLPFC and DLPFC
(p-FDR = 0.033) in the specific “short” loop within the
affected hemisphere (Table 2). Subcortical area with sub-
script referred to the subdivision of the subcortical area
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F IGURE 2 Classification performance of SVM using connections derived from the two CBTC circuits mapping methods. Accuracy as a
function of the number of connections used in the classification process for the individual mapping CBTC circuits based on VCP-based
segmentation (A) and for the conventional atlas-based CBTC circuits (B). The connections were ranked according to F scores in descending
order. ROC curve of the classifier for the individual mapping CBTC circuits (C) and for the conventional atlas-based CBTC circuits (D).

connected with the subscript cortical area. The 40 FC
values of each participant are displayed in Figure S2.

2.3 Subject-specific CBTC circuits
outperformed conventional atlas-based
CBTC connections in distinguishing stroke
patients from healthy controls

The results showed that support vector machine (SVM)
classifier using connections derived from individual map-
ping CBTC circuits within predefined loops after VCPs-
based segmentation performed better than the conven-
tional atlas-based method. Figure 2A shows that the linear
SVM classifier achieved the highest accuracy of 82.8%
(p < 0.001) with a sensitivity of 76.6%, and a specificity
of 89.1% when using the connections of individual map-

ping CBTC circuits based on VCPs-based segmentation. As
shown in Figure 2C, the ROC curve analysis acquired an
area under the curve (AUC) of 0.860, indicating a good
classification power.15 For the conventional atlas-based FC
analysis, the SVM model correctly classified 75.0% of the
participants at most (p < 0.001) (Figure 2B), which had an
AUC of 0.803 with a sensitivity of 67.2% and a specificity of
82.8% (Figure 2D).

2.4 Individual-specific parallel loops
show superior predictive power for
assessing upper limb motor function in
poststroke patients

The correlation between the observed Fugl-Meyer Assess-
ment for Upper Extremity (UE-FMA) scores and predicted
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UE-FMA scores represents the predictive efficacy of the
connectome-based predictive modeling (CPM). Results
indicated that the proposed individual mapping approach
based on VCPs-based segmentation was better than the
conventional atlas-based methodology in term of predict-
ing motor function. In the individual mapping CBTC
circuits, the positive connections (r= 0.349, p= 0.008) and
combined connections (r = 0.353, p = 0.019) significantly
predicted individual difference inUE-FMA,while negative
did not significantly predict individual motor performance
(negative connections: r = 0.052, p = 0.268) (Figure 3).
Table 3 show the connections that were most well rep-
resented in the positive connections and the combined
connections. Specifically, the well-represented positive
connections include the connections between caudateM1
and M1 in the “short” loop, putamenM1 and M1 in the
“short” loop of the affected hemisphere and putamenDLPFC
and DLPFC in the “short” loop of the unaffected hemi-
sphere. The well-represented combined connections build
upon these by including the negative connection between
the ipsilateral caudateMPFC and medial prefrontal cor-
tex (MPFC) in the “short” loop, which also significantly
contributes to the predictive accuracy. The conventional
atlas-based FC values in the CBTC circuits had no signif-
icant predictive effect on motor behavioral scores in the
CPM model (positive connections: r = −0.064, p = 0.270;
combined connections: r = −0.221, p = 0.587), and there
was no significant negatively correlated connection.

2.5 The external cohort validation
corroborated the findings observed in the
discovery dataset

We next evaluated the classification and predictive effi-
cacy using the same methodology in an independent
external validation sample of 62 participants, including 31
stroke patients and 31 age- and gender-matched healthy
controls (details in Tables S2 and S3; lesion distribu-
tion in Figure S3). Poststroke patients showed decreased
FC between the caudateM1 and M1 (p-FDR = 0.036)
and between the putamenM1 and M1 (p-FDR = 0.004)
in the “long” loop, and between the putamenDLPFC and
DLPFC (p-FDR = 0.036) and between the putamenM1
and M1 (p-FDR = 0.036) in the “short” loop within the
affected hemisphere, via subcortical connectivity-based
segmentation (Table S4). These differences were not sta-
tistically significant for conventional atlas-based FC. FC
values from both methods are shown in Figures S4 and
S5. For classification, the linear SVM classifier achieved
95.2% accuracy (p < 0.001) with 96.8% sensitivity and
93.6% specificity using the connections from VCPs-based
segmentation (AUC = 0.939). While the conventional

atlas-based FC analysis correctly classified 71.0% of partic-
ipants (p = 0.040) with an AUC of 0.739 (61.3% sensitivity
and 80.7% specificity) (Figure S6). Regarding prediction
performance, positive connections in individual map-
ping CBTC circuits significantly predicted UE-FMA scores
(r = 0.298, p = 0.013), whereas negative and combined
connections did not (negative connections: r = −0.697,
p = 0.874; combined connections: r = 0.174, p = 0.204)
(Figure S7). Conventional atlas-based FC values did not
significantly predict motor performance (positive con-
nections: r = −0.279, p = 0.390; negative connections:
r = −0.609, p = 0.689; combined connections: r = 0.105,
p = 0.265).

2.6 The subgroup analysis for ischemic
stroke produced results consistent with the
initial findings

We then focused on ischemic stroke patients for a reanal-
ysis (discovery dataset, details in Table S1). This sam-
ple included 96 participants, with 48 ischemic stroke
patients and 48 age- and gender-matched healthy con-
trols. Poststroke patients showed decreased FC between
the caudateM1 and M1 (p-FDR < 0.001) in the “long” loop
and between the caudateM1 and M1 (p-FDR = 0.009) in
the “short” loop within the affected hemisphere, via sub-
cortical connectivity-based segmentation (Table S5). These
differences were not statistically significant for conven-
tional atlas-based FC. FC values from both methods are
shown in Figures S8 and S9. For classification, the lin-
ear SVM classifier achieved 82.3% accuracy (p = 0.005)
with 75.0% sensitivity and 89.6% specificity using the con-
nections from VCPs-based segmentation (AUC = 0.868).
While the conventional atlas-based FC analysis correctly
classified 78.1% of participants (p = 0.002) with an AUC of
0.826 (77.1% sensitivity and 79.1% specificity) (Figure S10).
Regarding prediction performance, positive connections in
individual mapping CBTC circuits significantly predicted
UE-FMA scores (r = 0.180, p = 0.045), whereas negative
and combined connections did not (negative connections:
r = −0.856, p = 0.998; combined connections: r = 0.179,
p= 0.118) (Figure S11). Conventional atlas-based FC values
did not significantly predict motor performance (positive
connections: r = 0.025, p = 0.141; negative connections:
r = −0.503, p = 0.876; combined connections: r = −0.273,
p = 0.785).

3 DISCUSSION

Building upon well-established methods to map CBTC
circuits based on probabilistic tracking and VCPs-based
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F IGURE 3 Prediction performance of CPM using connections derived from the individual-mapping CBTC circuits based on VCP-based
segmentation. (A) Correlation between observed and predicted UE-FMA scores in positive (red), negative (blue), and combined (green)
connections. (B) The distribution of correlation coefficients by a permutation test of 5000 times. *p < 0.05.
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TABLE 3 Connections significantly contributing to motor function prediction.

Categories of connections Hemisphere Region1 Connected with Region 2
Positive Affected “Short” loop CaudateM1 M1
Positive Affected “Short” loop PutamenM1 M1
Positive Unaffected “Short” loop PutamenDLPFC DLPFC
Negative Unaffected “Short” loop CaudateMPFC MPFC

Subcortical areawith subscript referred to the specific subdivision of the subcortical area connectedwith the subscript cortical area as determined through diffusion
white matter fiber tractography.

segmentation,12 our study provided a comprehensive anal-
ysis of the FC patterns related to poststroke upper motor
impairments. To our knowledge, this is the first time that
this approach has been used for poststroke patients. The
FC values obtained through both methods revealed signif-
icant distinctions between stroke patients and the healthy
controls, with both methods effectively discriminating
stroke patients from the control group. Notably, the FC
data derived from subject-specific CBTC circuit mapping
based on probabilistic tracking and VCPs-based segmen-
tation demonstrated superior accuracy. In our prediction
analysis, the connections of subject-specific CBTC circuits
also outperformed the conventional atlas-based approach
in predicting poststroke upper motor function. Moreover,
we demonstrate the generalizability of the findings on the
ischemic stroke samples and an external dataset.
The journal “Science” featured a series of four con-

secutive cover articles in 2022, all conveying a unified
message: brain functions are not solely confined to isolated
brain regions, but rather emerge from the intricate con-
nections and communication between different areas.16–19
This challenges the traditional modular brain concept,
which falls short in accounting for interindividual variabil-
ity. Connectivity-based approaches enable researchers to
model brain specificity in individuals, explore the diversity
of brains, and enhance the development of more effective
clinical treatments.20,21
In past neuroscience research, the intricate connec-

tions and circuits existing between the cerebral cortex and
basal ganglia have constituted a notably focal area, given
their pivotal significance in the regulation of motor func-
tions. FC is an effective index to evaluate motor function
recovery and brain plasticity after stroke.22,23 It has been
established that the abnormal FC patterns exist in the
brain networks in stroke patients and are associated with
function impairments following stroke.24,25 Previous stud-
ies predominantly employed atlas-based methodologies to
delineate these connections, including the utilization of
anatomical atlases and standardized spatial templates for
analysis. Nevertheless, this approach exhibits limitations
in elucidating individual differences and structural varia-
tions. In linewith our results, comparingwith healthy con-
trols, the reduced FC was mainly located in the damaged

hemisphere. These results indicated that hypofunction of
CBTC circuits was associated with motor dysfunction in
stroke.
When comparing FC differences between patients and

healthy participants, using an approach that calculates
FC based on individual CBTC circuits in native space
showed significant reductions in connectivity within
motor-related brain regions. In contrast, conventional
atlas-based methods did not reveal pronounced FC differ-
ences. This suggests that individual CBTC circuit analysis
in native space is more sensitive to detecting connec-
tivity changes in motor-related areas associated with
poststroke motor impairment compared with traditional
atlas-based approaches. Additionally, our results indi-
cated that within classification and prediction models, it
showcased enhanced discriminatory ability with healthy
subjects and superior performance in predicting behav-
ioral outcomes. Resting-state fMRI (rs-fMRI) data have
been shown viable in classification and prediction.26–30 A
reliable neuroimaging-based classifier can be successfully
applied to FC patterns in CBTC circuits using rs-fMRI data
with appropriate feature selection and parameter tuning.31
However, in previous classification and prediction stud-
ies, the prevalent input features were rooted in atlas-based
whole-brain FC, with various attempts during the feature
selection stage to enhance model accuracy.32,33
Diverging from previous data-driven investigations, this

study is oriented toward motor functional rehabilitation
and, drawing upon cerebral functional and anatomical
underpinnings, it selects neurocircuit connections closely
associated with motor functionality as features for classi-
fication and prediction, leading to a substantial reduction
in redundant features. Furthermore, we employ struc-
tural connections to segment brain regions, calculating
FC for regions with established structural connections
in the native space individually. This strategy serves to
further curtail superfluous information, fostering height-
ened accuracy and sensitivity. In a comparable context,
previous studies have found that connections between sub-
region of subcortical nuclei and cortical brain area, derived
from structural mapping and segmentation, exhibited
greater efficacy in predicting the corresponding function
at the individual level. Chen et al.34found that the FC
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of the subregion thalamus (specifically the mediodorsal
nucleus)with the prefrontal cortex predicted the treatment
improvement, whereas the FC of other thalamic nuclei
with cerebral cortex did not predict the treatment effi-
cacy, indicating that subregions within nucleus based on
neuronal connections would benefit to the precision of
therapeutic interventions.
As anticipated, our findings revealed that subject-

specific CBTC circuits outperformed conventional atlas-
based CBTC connections when using an SVM classifier
to distinguish stroke patients from healthy controls. Addi-
tionally, we confirmed that positive/combined connec-
tions within individualized CBTC circuits mapping signif-
icantly predicted variations in UE-FMA scores, whereas
conventional atlas-based FC values within CBTC circuits
had no significant predictive impact on motor behavioral
scores in the CPM model. It is also important to note
that in our study, negative (inhibition) connections did
not independently predict UE-FMA scores, which may be
related to the fact that very few of the patients we included
were in the acute phase of stroke. In the early poststroke
period, particularly reduced inhibition has been linked
to increased neuronal plasticity and functional recovery.
In contrast, during the recovery and chronic phases, the
activation of the ipsilesional (affected side) brain is more
strongly associated with better outcomes.35,36 Importantly,
the CPM model pinpointed essential connections within
brain circuits, offering valuable intervention targets for
poststroke upper limb motor recovery.
Numerous studies had demonstrated that poststroke

patients undergo structural and functional reorganiza-
tions, closely linked to motor recovery.37–40 Technically,
neuroimaging has become crucial for tracking and corre-
lating these changes with behavioral improvements. The
main challenge in rehabilitation is identifying specific
neural circuits for functions and optimizing their engage-
ment and modification.41 Through CPM, we pinpointed
CBTC connections correlated with upper limbmotor func-
tion, suggesting targeted rehabilitation to enhance motor
recovery. Capitalizing on individual-specific CBTC con-
nections, we can customize individualized rehabilitation
plans aimed at selectively stimulating and enhancing
connections relevant to upper limbmotor function. Specif-
ically, we can choose highly correlated connections for
ccPAS to further optimize motor recovery.5,42 Besides,
these findings inspire pharmaceutical strategies targeting
specific CBTC connections to supplement motor recov-
ery. This introduces a fresh avenue within rehabilitation
medicine, enabling more precise localization and facil-
itation of neural plasticity to promote motor function
rehabilitation.
Previous studies supported the effectiveness of targeting

specific brain areas in stroke patients, like the M143 and

DLPFC.44 However, it is important to acknowledge that
functional performance relies on the intricate interplay
of multiple brain regions. Hence, single-target stimula-
tion has certain limitations and may not fully harness the
potential of neural plasticity from the perspective of neural
circuits.
The connection patterns within the CBTC circuits based

on individual-level VCPs-based segmentation present
promising targets for neuromodulation, which could
potentially provide more precise and effective approaches
for stroke patient rehabilitation. Selectively stimulating
compromised connections within CBTC circuits can bol-
ster adaptive neuroplasticity and promote motor func-
tion recovery. For instance, utilizing the connection
contributing to motor function prediction as potential
targets for brain modulation, with the aim of enhanc-
ing its connectivity, might hold the potential to result
in more favorable clinical rehabilitation outcomes when
compared with conventional single-target stimulation
approaches. To modulate the critical connection, paired
TMS intervention can be employed to boost brain con-
nectivity by capitalizing on Hebbian plasticity mecha-
nisms. This method involves precise targeting of cortical
mapping points associated with subcortical nuclei, thus
enabling the selective enhancement of cortical–subcortical
connections.45
Additionally, these neuromodulation strategies can be

individualized based on an individual’s specific CBTC cir-
cuits connection patterns, thereby achieving more precise
modulation effects. Our study underscores the inher-
ent interindividual disparities and diversity within the
CBTC circuits, aligning with the contemporary emphasis
on personalized treatment within the field of rehabilita-
tion medicine. The insights derived from our study offer
valuable guidance for the evolution of future neural mod-
ulation strategies. By amalgamating individualized CBTC
circuits connection insights, we can develop more pre-
cise and effective treatment methodologies for poststroke
motor rehabilitation, thereby opening new avenues for the
future of neural rehabilitation research.

3.1 Limitation

Several limitations warrant consideration. First, due to
our interest in predicting poststroke motor function, we
defined a set of a priori regions of interest (ROIs) of
CBTC circuits using the standard atlas. Future studies
could examine a different parcellation, such as whole-
brain parcellations, given the importance of other brain
functional components (e.g., cognitive demands) formotor
rehabilitation.46 A second limitation was that we only
studied intrahemispherical connectivity in CBTC circuits,
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while future work could investigate whether interhemi-
spherical connectivity could be jointly studied to better
characterize brain functional connections. Third, we did
not differentiate stroke types, stages, or the severity of
motor function impairment in detail. Thus, testing these
results on a larger and longitudinal dataset will be needed
in future studies to improve their generalizability. Finally,
this study focused on upper limb motor function and
utilized a UE-FMA measure for evaluating motor perfor-
mance of the affected upper limb in stroke patients. Future
studies could focus on lower limb, hand, and other prefer-
ence dimensions of motor function. Different behavioral
measures may identify distinct patterns of discriminative
and predictive performance.

4 CONCLUSION

In summary, this study has undertaken the integration of
structural and functional brain imaging data to mapping
the predefined parallel loops of CBTC circuits at an indi-
vidual level, including the “long” cortico–striato–pallido–
thalamo–cortical circuit and the “short” cortico–striato–
thalamo–cortical circuit, for studying altered connectivity
patterns in the context of poststroke upper motor dysfunc-
tion. Employing FC values derived from the individual
mapping CBTC circuits based on VCPs-based segmenta-
tion, we have demonstrated the effective differentiation
of poststroke patients from the healthy controls. Further-
more, our findings have shown the significant predictive
capacity of those FC values in relation to the motor func-
tion of poststroke patients, bearing considerable clinical
relevance. Specifically, targeting highly correlated con-
nections using noninvasive neuromodulation techniques
can further optimize motor recovery. These findings offer
valuable insights with the potential to make substantial
contributions to poststroke motor rehabilitation and the
development of innovative neuromodulation strategies in
the future.

5 MATERIALS ANDMETHODS

5.1 Participants

For the discovery dataset, a total of 128 participants,
including 64 stroke patients and 64 healthy controls,
were recruited from the Yueyang Hospital of Integrated
Traditional Chinese andWesternMedicine, Shanghai Uni-
versity of Traditional Chinese Medicine. For the external
validation, we collected data from 31 stroke patients and 31
age- and gender-matched healthy controls at the Shanghai
Panoramic Medical Imaging Diagnostic Center. Inclusion

criteria were as follows: (1) the patient had a diagnosis of
hemorrhagic or ischemic stroke, (2) age between 30 and
80 years, (3) onset within 1 year, (4) presence of unilateral
upper limb motor deficit, specifically classified as mod-
erate to serve. Exclusion criteria were: (1) bi-hemispheric
hemorrhagic or ischemic strokes; (2) concurrent cognitive
impairments or aphasia; (3) any contraindication to MRI
(e.g., pacemaker). The age- and gender-matched healthy
participants without contraindication to MRI were served
as a comparison group.
All participants gave informed written consent before

entering the study. The study protocol had been approved
by the local ethics committee at the Yueyang Hospital
of Integrated Traditional Chinese and Western Medicine,
Shanghai University of Traditional Chinese Medicine, and
which was carried out under the Declaration of Helsinki.

5.2 Motor performance measurement

The UE-FMA was used for evaluating motor performance
of the affected upper limb in the included poststroke
patients, consisting of 33 terms. Scores on the UE-FMA
range from 0 to 66, with higher scores denoting better
motor function.47

5.3 MRI data processing and lesion
identification

All DICOM images were converted to NIFTI using
dcm2niix (https://github.com/rordenlab/dcm2niix). In
order to pool right and left lesion patient together to
improve statistical power, imaging data from 15 patients
with lesions on left hemisphere were flipped along the
mid sagittal line. So that, for all patients, we defined left
side as the contra-lesioned hemisphere, and right side as
the ipsilesioned hemisphere.40 We used the automated
lesion identification toolkit within Statistical Parametric
Mapping software (SPM12: Wellcome Trust Centre for
Neuroimaging, https://www.fil.ion.ucl.ac.uk/spm/) to
derive lesion images. Image acquisition parameters and
all the specific data preprocessing steps were provided in
Supporting Information.

5.4 Preparation for ROIs in CBTC
circuits

In this study, we focused on the CBTC circuits which
played central roles in motor control and feedback. First,
the ROIs in the standardMNI space was obtained from the
standard atlas. For the cortical ROIs, we identified MPFC,

https://github.com/rordenlab/dcm2niix
https://www.fil.ion.ucl.ac.uk/spm/
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F IGURE 4 The cortical (A) and subcortical (B) atlas-defined regions of interest.

DLPFC,M1, premotor cortex, and orbitofrontal cortexwith
reference to the brainnetome atlas with 246 subdivisions
(BN246)12,48 (Table S6). For the subcortical ROIs of the
CBTC circuits, we employed the automated anatomical
labeling template to define caudate, putamen, pallidum,
and thalamus (Figure 4).

5.5 Mapping the individual parallel
loops of CBTC circuits and FC calculation
in the native space

5.5.1 Probabilistic tracking and VCPs-based
segmentation

Probabilistic diffusion tractography and VCPs-based seg-
mentation was performed in native diffusion space using
the previously described probabilistic index of connec-
tivity (PICo) algorithm implemented in the freely avail-
able Camino software package (http://www.cs.ucl.ac.uk/
research/medic/camino/).12,49 Definition of seeds and tar-
gets and the process of generating PICo maps were
provided in the Supporting Information. Finally, two
cortico–basal ganglia loops consisting of five distinct cor-
tical areas projecting to the subcortical structures were
mapped in each hemisphere: the “long” cortico–striato–
pallido–thalamo–cortical loop and the “short” cortico–
striato–thalamo–cortical loop. Detailed information of the
specific “short” loop (consisting of 19 connections each
hemisphere) (Figure S12) and “long” loop (consisting of 21
connections each hemisphere) (Figure S13) can be found
in Supporting Information (Table S7).

5.5.2 FC calculation of CBTC circuits
connections

Before calculating FC, the cortical regions and the subre-
gions of the subcortical structures acquired from the above
segmentation were warped from the diffusion space to the

native BOLD space using FLIRT. In addition, the BOLD
data were preprocessed the same as those above, with the
exception of normalization to the standard MNI space.
Subsequently, FC values were calculated between pairwise
ROIs of each connection within the two predefined CBTC
loops in the native BOLD space, then converted to z values
using Fisher’s r-to-z transformation to improve normality
for further analysis. Finally, 40 FC values within CBTC
circuits were obtained in each hemisphere (Table S7 and
Figures S12 and S13).

5.5.3 Conventional atlas-based FC
calculation without subcortical segmentation

As a comparison, we conducted conventional atlas-based
FC analysis of resting-state fMRI data in the standardMNI
space treating every subcortical structure as an undivided
whole. Using a ROI approach, FC calculation was per-
formed between ROIs via Pearson correlation analysis in
MNI space (correlations between ROI time series) and
converted to z values using Fisher’s r-to-z transformation
to improve normality for further analysis. In this study,
we focused on the cortico–subcortical projective connec-
tions and the connections between subcortical areas in
CBTC circuits. Finally, 26 FC values were obtained in each
hemisphere, involving 20 connections between five corti-
cal ROIs and four subcortical ROIs and six connections
between each pair of four subcortical ROIs.

5.6 Classification by SVM

Machine learning classification algorithms have been
shown to be reliable and valid with FC data.50,51 Among
these algorithms, SVM stands out as an efficient method
for classification, finding broad applications in disease
diagnosis or medical assistance. It excels when dealing
withmachine learning datasets that involve a limited num-
ber of samples but a substantial number of features.31 In

http://www.cs.ucl.ac.uk/research/medic/camino/
http://www.cs.ucl.ac.uk/research/medic/camino/


XUE et al. 11 of 14

F IGURE 5 The architecture of the whole pipeline.

this study, we used the Libsvm tools (https://www.csie.ntu.
edu.tw/∼cjlin/libsvm/) to conduct the SVM classification,
discriminating poststroke patients fromhealthy controls.34
The classification normally consists of two phases: train-
ing and testing. In the training phase, the SVM identifies
a decision boundary called “hyperplane” in the input fea-
ture space that separates the data. In the testing phase,
the trained function is used to predict the class label of a
new, previously unseen, test sample data. A binary label
with 1 for stroke patients and −1 for healthy controls was
used here. Leave-one-out-cross-validation (LOOCV) was
used to evaluate the performance of the SVM classifier.32
Two classifiers were established by featuring FC values

of connections within the CBTC circuits generated by the
twomethods. Sensitivity (SEN), specificity (SPE), accuracy
(ACC), andAUCwere used to evaluate the classifier perfor-
mance based on the LOOCV results. Detailed information
regarding SVM parameter settings and modeling steps is
provided in the Supporting Information.

5.7 Connectome-based predictive
modeling

CPM, a recently developed method introduced by Shen
et al.,52 has been extended to develop predictive models for

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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brain-behavior relationships on functional connections. It
enables the estimation of individual differences in con-
nectivity strength to predict a given behavioral measure
and employs the strength of those connections to predict
behavior in novel individuals. Notably, the connections
were separated into positive connections (FC values were
positively correlated with behavioral scores) and nega-
tive connections (FC values were negatively correlated
with behavioral scores). Detailed steps for establishing
the CPM model can be found in the Supporting Informa-
tion. To predict the UE-FMA scores, we developed three
distinct linear regression models: one for positive connec-
tions, another for negative connections, and a combined
model that encompassed all connections. We utilized
a LOOCV approach, where each participant’s predicted
value, that is, the “left-out” participant, was generated
iteratively using data from all other participants as the
training dataset, until all participants had their predicted
values computed. The model’s predictive performance
was evaluated by correlating the predicted values and
observed behavioral scores using the Spearman correlation
(r value).53

5.8 Statistical analysis

SPSS 24.0 software (SPSS, Chicago, IL, USA) was used for
statistical analyses of demographic data and FC data. For
age data that followed a normal distribution, a two-sample
t-test was used. For age data that did not follow a nor-
mal distribution, the Mann–Whitney U test was applied.
Gender differences were assessed using chi-squared tests
(significance level: p < 0.05). To assess group differences
in FC values after z-transformation derived from two dif-
ferent methods, two-sample t-tests were performed. FDR
correction was applied to account for multiple compar-
isons, maintaining the adjusted threshold for significance
at p < 0.05.
To assess the statistical significance of our classification

and prediction models, we employed permutation tests.
For SVM analysis, 5000 random permutations of the class
labels. The classifiers were repeatedly trained and evalu-
ated to generate a null distribution of AUC values. The p
value was calculated as the proportion of sampled permu-
tations that yielded AUC values greater than or equal to
the AUC obtained from the original data. For CPM anal-
ysis, permutation testing was done by preserving patients’
connectivity values, butwhile randomly shuffling patients’
UE-FMA scores 5000 times. The LOOCVprediction proce-
dure was employed to derive empirical null distributions
of the correlation coefficients (r value) by correlating the
predicted values with the observed UE-FMA scores. The
p value was calculated as the proportion of sampled per-

mutations that were greater than or equal to the true
prediction correlation coefficient. The p value of<0.05 was
considered significant.
The architecture of the whole pipeline is showed in

Figure 5.
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