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Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier
bringing unprecedented influences in the realm of translational oncology. This
has triggered systemic experimental design, analytical scope, and depth along-
side with thorough bioinformatics approaches being constantly developed in the
last few years. However, harnessing the power of spatial biology and streamlin-
ing an array of ST tools to achieve designated research goals are fundamental
and require real-world experiences. We present a systemic review by updating
the technical scope of ST across different principal basis in a timeline manner
hinting on the generally adopted ST techniques used within the community.
We also review the current progress of bioinformatic tools and propose in a
pipelined workflowwith a toolbox available for ST data exploration. With partic-
ular interests in tumor microenvironment where ST is being broadly utilized, we
summarize the up-to-date progress made via ST-based technologies by narrating
studies categorized into either mechanistic elucidation or biomarker profiling
(translational oncology) acrossmultiple cancer types and their ways of deploying
the research through ST. This updated review offers as a guidance with forward-
looking viewpoints endorsed by many high-resolution ST tools being utilized
to disentangle biological questions that may lead to clinical significance in the
future.
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1 INTRODUCTION

Influenced by the wide-spread application of single-cell
transcriptomics (mainly via single-cell RNA sequence,
scRNA-seq), understanding the cellular dynamics within
the complex tissue microenvironment is not limited to
decipher each cell’s identity via its “omics” profiles but
goes further to put them under a histological context.
In various research settings—including organ develop-
ment, embryonic morphogenesis, cognitive science (such
as brain theory and neuroscience), and pathologies
(including infection-related pathogenesis, neurodegener-
ative diseases, and oncogenesis)—the three-dimensional
(3D) interplay of cells dictates biological functions.
In tissues, multiple cellular niches play significant

roles such as intercellular modulation via direct con-
tact or short-ranged paracrine that reprograms biological
processes or chemical/molecular dispersion under organ-
specific conditions in a patterned manner. As a result, the
spatially compiled multiparameter data with high resolu-
tion become useful resources to open up a new field in
many biology settings and same as the case in tumor biol-
ogy. Since the application of ST grew exponentially in the
past 3 years and true single-cell STmethodswere gradually
becoming available, to update their progress, adaptation
of bioinformatics tools in real practice and application
frontiers in tumor biology, we provide this systemic review.
Here, we propose the rationale of applying spatial tran-

scriptomics (ST), the building blocks of spatial biology
for hypothesis-free discovery and summarize the histori-
cal development path of various ST technologies on their
relevant ground basis. With particular interests in tissue
biology including cancer, we review the major bioinfor-
matics tools being adopted in the past few years and
present an analytical schema compatible with different
ST approaches. We also highlight major ST works con-
tributing toward tumor biology and translational oncol-
ogy wherein spatial single-cell resolved ST is specifically
emphasized. These altogether shed light on future direc-
tion and application of ST on a multilayered perspective.

2 THE APPLICATION RATIONALE OF
ST IN TUMOR BIOLOGY

Tissues, composed of millions of cells and other cellu-
lar functional units, are indispensable resources to gain

biological insights under various pathophysiological set-
tings. In tumor biology, pathological evaluation offers
as a gold-standard approach throughout decades and
therefore becomes the “central dogma” for clinical deci-
sion making.1 In-depth characterization of tissues essen-
tially by compiling multilayers of molecular information
now goesmuch beyond conventional genetics/epigenetics,
transcriptomics, proteomics, and metabolomics treating
tissues as a whole but rather can be conducted in a
decomposed manner at subhistological or individual cell
dimensions. Through this magnifying lens, multiomics
profiling can be revisited and potentially redefine our
comprehension toward disease conditions making novel
breakthroughs in translational oncology. Prior to this,
scRNA-seq together with other single-cell omics (includ-
ing multiplex single-cell proteomics and single-cell anal-
ysis of accessible chromatin) has already pioneered in
this field but rapid development and maturation of ST
further enables in situ profiling of dynamic changes at
the transcriptome-wide scale highlighting the prerequisite
of adding locational information in exploring histological
specimens.2 In the following section, we give a holistic
overview of various ST technologies categorized by their
base principles and technical strength with a particular
emphasis on those that are already available in general
research communities. The original technical papers and
review summaries are referable in related publications and
will not be elaborated here.2–9 (Figure 1)

3 THE ONCOMING ERA OF
TECHNICAL AND ANALYTICAL
DEVELOPMENT IN ST

3.1 Upstream technology development
and current progress

The development paths of various ST can generally be
traced back according to their detection principles, which
either reply upon conventional next-generation sequenc-
ing (NGS), or in situ hybridization (ISH)/in situ sequenc-
ing (ISS), the latter of which share similar principle in
signal readouts but differ in their intermediate procedures.
From the application aspect, since a subset of tech-
nologies requires laser-captured microdissection (LCM)
such as geographical position sequencing (Geo-seq) and
ProximID10,11 or photocleavable linkers to extract part
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F IGURE 1 The development roadmap of spatial transcriptomics (ST). Individual ST technologies are presented in a timeline graph
between 1998 and 2024 (current). Colors annotate different categories based on their analytical principles including imaging-based in situ
ISH/ISS (red) and planar substrates supported spatial-barcoded sequencing (blue). From application perspective, other regions-of-interest
(ROI) based technologies (light-guided and image-free) are grouped in green color. Spatial resolutions are presented in different shapes
(triangle: small bulk, circle: single-cell, diamond: subcellular). Black circles indicate technologies that are commercially available. Dashed
rectangles indicate application scenario (live tissues). Horizontal axis shows the multiplexity of technologies. Note: data summarized may not
include all relevant technologies and target plexity is a rough estimate based on references.

of tissue materials/information to generate NGS-based
transcriptomic profiles (transcriptome in vivo analysis:
TIVA, NICHE-seq, Light-seq, and GeoMx digital spatial
profiler whole transcriptome analysis: DSP-WTA)12–15 or
rather employs image-free spatial information reconstruc-
tion approaches (tomo-seq and STRP-seq) that are often
used under specific settings, we group these technolo-
gies in a category termed region-of-interests (ROI)-based
spatial approach.6,16,17
Though a common feature of those technologies is their

limited resolution at a subhistological level that often
requires at least a fewhundred of cells for downstreampro-
filing, due to their high-plex potential capable of covering
the entire transcriptome, some (such as commercialized
GeoMx DSP, nanoString, WA) have already been widely
adopted and will be discussed in the below section.

3.1.1 A history of imaging-based ST
technologies

Historically, imaging-based ST has long track histories
and can date back when single RNA molecules could

be detected and visualized using conventional fluores-
cent in situ hybridization (FISH) or single-molecule
FISH (smFISH) at single-cell resolution and was more
recently developed by Nilsson’s laboratory using pad-
lock probe-mediated transcript hybridization followed by
rolling-circle amplification (RCA) for signal amplifica-
tion and visualization.18–20 This was subsequently com-
bined with cyclic fluorescence and imaging, a process
called in situ serial decoding to allow multiplex target
detection.20 To facilitate unbiased RNA characterization,
Church’s laboratory applied di-nucleotide-specific fluores-
cent oligonucleotides to generate a codebook that directly
ligateswith adapter primers targeting the paired anchoring
sequences predesigned within the RCA product complex
(ISS-based).21,22 This technique, referred to as fluorescence
in situ sequencing (FISSEQ), was initially designed to
detect RNA molecules in an un-targeted way and later,
this RCA process was more frequently used as an efficient
strategy for in situ signal amplification with or without
introducing target-specific padlock oligonucleotide struc-
tures to detect localized RNA transcripts in a targeted
manner. Owing to the superior signal-to-noise ratio, the
RCA-mediated in situ amplification technologies have
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vastly revolutionized in the past decade with similar
methods being developed such as HybISS/ISS, STARmap,
BaristaSeq, Ex-Seq, and BOLORAMIS with multiplexity
ranging from 30 to over 10,000.21,23–26 Recently, the techni-
cal advancement alsomade the commercial formavailable,
which is now being used to address biological questions
under various settings including cancer (Xenium in situ;
10X Genomics, CA).27–29
An alternatively imaging approach to increase detec-

tion sensitivitywas also introduced following the invention
of a novel RNA ISH method: RNA Scope that utilizes
paired target RNA-specific oligonucleotide probes (18-
base each to form a double Z structure) as the docking
point to allow overhanging preamplifer oligonucleotides
to bind and the free-floating overhangs contain multi-
ple fluorescence-oligo hybridization sites allowing signal
amplification for visualization.30 Similarly, to resolve high-
plex gene profiling, cyclic hybridization is also necessary
for producing fluorescence-based sequential codes. Using
this concept, higher plexity can be reached with different
analytical scopes and those are exemplified by low target
throughput (less than 100) techniques such as smHCR,
osmFISH, median throughput methods (100–1,000) such
as sequential FISH (seqFISH), and high-throughput tech-
niques (over 10,000) such as seqFISH+ (an upgrade
version of seqFISH) and multiplexed error-robust FISH
(MERFISH).6,8,31–35 Theoretically, by applying multiple
target-specific fluorescence-conjugated DNA probes in
each hybridization round, signals can be successfully
detected and quantitatively resolved using specific decod-
ing strategies. In brief, the latest high-throughput versions
such as seqFISH+ andMERFISHuse target-specific saddle
probe sets as landing points to capture fluorescence-
labeled readout probes generating exquisitely designed
coding schemas via binary 69-bit harming distance 4 or
combinatory pseudocolor readout sequences.8,34,36 With
super-resolved imaging systems, tens of thousands of tran-
scripts can be successfully discerned and quantified and
these prototypes are now invented commercially as MER-
SCOPE (Vizgen, MA) and seqFISH (Spatial Genomics,
CA), respectively. Other successful counterparts with
various detection capacities such as spatial molecular
imager (SMI CosMX, nanoString, WA), Molecular Cartog-
raphy (Resolve Biosciences, GmbH), Rebus Esper (Rebus
Biosystems, CA), and SEERNA ISS (Dynamic Biosys-
tems, Suzhou) also started to appear at the application
frontier.2,37–39 A very important application advantage
shared across these imaging-based ST platforms is their
capability typically reaching at single cell or even sub-
cellular resolution with analytes (tissues or cells) being
unaffected, an approach amenable for parallel pathology
examination and downstream multiplex staining.

3.1.2 Spatial barcode-based ST technologies

Due to the broader application of NGS, recently, spatial
barcoding-based technologies also open a new avenue in
the spatial biology field and in particular this was pre-
dominantly boosted by the development and application
of ST developed by Lundeberg’s laboratory, a technology
later transformed into its commercial version as Visium
ST (10X Genomics).40 Essentially, the earlier versions of
ST and many other successors label planarly indexed x–
y units or use single-cell label indentation (spot arrays
or microbeads, DNA nanoballs, microfluidic chambers,
or other microscale molecules) with predefined oligo
sequences per x–y/analytical unit to create spatial oligo
barcodes allowing transcript profiles to project into des-
ignated space.3,41–47 In fact, many of these STs employ
oligo (dT) primers aligned with unique molecular iden-
tifier together with spatial barcode oligos and use the
classic polyA capturing method for gene identification
and quantification at per spatial coordinate. Since these
ST techniques require polyA capture, fresh frozen (FF)
samples are primarily used. More recently, to extend the
analytical scope and sample compatibility, probe-based
STs were developed such as the upgraded versions of
Visium ST including Visium V2 and Visium HD (10X
Genomics). Apart from their downstream workflow being
nearly identical, the major technical difference lies in
its upstream design of genes-specific DNA oligos that
hybridize to complementary RNA in situ and flanking
ployA sequence for probe capture followed by library
construction and sequencing. Having such an advantage,
designing transcriptome-wide probe sets are becoming
feasible.
For ST, despite the analytical resolution spanning from

0.5 to 100 µm per spatial unit, the major challenge
remains as to leverage the spatial resolution and transcripts
being detected. The major advantage of those technolo-
gies is that they do not require extra instrumentation
and can be standardized in a typical bench-side work-
flow. Therefore, many have been commercialized and
wide-spread across research areas such as neuroscience,
development biology and disease pathogenesis including
cancer.48–51 Some technologies translating into commer-
cial products include Visium/Visium HD based on ST
and HDST (10X Genomics),40 Curio Seeker based on
Slide-seq (Curio Bioscience, CA),42,52 STOmics based on
Stereo-seq (BGI, Shenzhen),47 DBiT-seq based on DBiT
(AtlasXomics, CT),46 Dynaspatial based on Decoder-seq
(Dynamic Biosystems),53 and BMKMANU S1000 (BMK-
gene, Qingdao).54 Technology-wise, since most of these
technologies are based on direct sequencing of reverse-
transcribed (RT) oligo products, they are compatible for
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exploratory studies in an unbiasedmanner and as for reso-
lution, a bunch of them have already reached near single-
cell or subcellular level with multiplexity roughly from
few hundred to over 10,000.2,6,41,55 More recently, head-to-
head comparison was conducted aligning 11 sequencing-
based ST methods to assess their transcript capture effi-
ciency, feature gene detection sensitivity and molecular
diffusion.56 Within those, considering the resolution as
the major deterministic factor, Stereo-seq, Slide-seq V2,
Visium V2, and DynaSpatial outperformed others with
regard to their capturing efficiency.56

3.1.3 ROI-based ST technologies

ROI-based ST often requires NGS sequencing as data out-
put and was primarily introduced when specific tissue
regions could be collected using LCM in low plex man-
ner (few targets detected via polymerase chain reaction
PCR).57 Comprehensive coverage of transcriptome was
later achieved and some were compatible with single-cell
resolution such as LCM-seq, Geo-seq, and ProximID.10,11,58
Instead of sectioning tissues, the alternative approach
to detect transcripts with in predefined regions was to
employ light-assisted methods to select ROI. Such include
NICHE-seq that uses photoactivatable fluorescent pro-
teins to allow visual inspection and selection of tissue
regions13 and others such as Light-seq, which utilizes
light-directed spatial barcode indentation through photo-
crosslinking at target tissue regions being analyzed via ex
situ NGS.15 Recently, digital spatial profiling (DSP) was
developed and broadly propagated within the commu-
nity and this technique employs photocleavable linkers
and micrometer-sized digital mirror device for ROI selec-
tion coupled with downstream NGS profiling. Due to its
probe-based detection theory via ISH, it is widely adapt-
able in formalin fixed paraffin-embedded (FFPE) samples
and more advantageously compatible with RNA–protein
coprofiling.14 Though limited by their spatial resolution
typically ranging from 10 to hundreds of cells to start
with, these STs are mainly pathologically informed, an
important preanalytical factor to be considered.

3.2 Application consideration using
different ST approaches

Overall, these ROI-based ST together with aforementioned
ISS/ISH and spatial-barcoded ST have been gradually
reshaping our understanding toward tissuemolecular biol-
ogy. In real practice, as for spatial-barcoded ST, since
they are kit-based and often do not rely on heavy instru-

mentation, a few of them have been rapidly propagated
and used across research fields (Figure 1). Also noted
is that although ST technologies developed through dif-
ferent routes are versatile, imaging-based ST having the
longest track-history, remains as a generally adopted ST
approach and even in the high-plex ST application field,
some are already proven to be robust and becoming
technically feasible (Figure 1). Another key advantage of
image ST is within its wide compatibility for clinically
archived FFPE samples, an analytical hinderance for FF
samples. Nowadays, even some of spatial barcoded ST
are emerging to be FFPE-compatible (Visium probe-based
and Visium HD)59 image ST is still the mainstay for
FFPE-based application. However, recent commercializa-
tion of spatial-barcoded ST (probe-based)may accelerate in
short time. Of note, despite their spatial resolution, most
probe-based ST (mainly include image-based and some
ROI-based ST) are suited for human and mouse exclu-
sively, a species-limiting factor to be taken into account,
especially the ISS/ISH-based methods that often employ
probe-based detection. For these single-cell or even subcel-
lularly resolved ST, comparative analysis was already con-
ducted. These include head-to-head comparison between
Xenium in situ, Merscope and SMI on FFPE samples and
additional Molecular Cartography and HiPlex RNA Scope
on a set of FF samples.60,61 Despite data being preliminary,
considering detection sensitivity (readout detectability),
false discovery dates (noise control) and cell type impu-
tation being the key analytical parameters, Merscope and
Xenium in situ under many tested scenarios may have
more potentials for broader application and have been
gradually manifested by others.62
Since median gene detection capability at per spatial

unit is a major concern in ST, this has been the battlefield
for many benchmarking studies. In real-world practice,
one technical challenge is to retain gene features to be
detected when increasing analytical resolution (from few
hundred micrometers down to 0.5–10 µm in size). Based
on the whole transcriptome analysis covering over 18,000
genes, median gene features per spatially indexed unit can
typically vary from 8,000 to 10,000 genes per analytical
units for ROI-based ST (in case of DSP with ROI diameters
of 50–500 µm), 1000–3000 genes for spatial-barcoded ST (in
case of Visium polyA-based with spot size of 55 µm) and 10
to a few hundred for spatial-barcoded ST (in case of Stereo-
seq and Visium HD with 0.5–2 µm per bin) in resolution.
Technically, a word of warning is that at near single-cell
resolution, challenges still remain as to characterize over
1000 genes per analytical unit, a consensus quality control
(QC) measure widely adopted in scRNA-seq nowadays. To
fill these gaps, a body of computational tools have been
developed and will be discussed in below sections.
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4 HARNESSING THE EVOLVING
BIOINFORMATIC TOOLBOX GROWNOUT
FROM ST

4.1 A brief walkthrough of analysis in
ST

The multifaceted technical progress in ST makes bioinfor-
matic tools demanding and is being actively developed.
Generally, for ST technologies that usually incorporate
thousands of indexed spatial units (primarily led spatial-
barcoded ST such as Visium polyA and Stereo-seq), a
typical spatial data analysis procedure may involve raw
data processing/QC, sample integration andnormalization
across genes/samples, dimension reduction/clustering,
and cell annotation. On this basis, exploratory work
can be carried out including spatial variable gene (SVG)
identification, data deconvolution/mapping, gene expres-
sion imputation, cell–cell/gene–gene interaction, dynamic
analysis (trajectory/RNA velocity), and other complex
spatial analysis such as highly ordered cellular neigh-
borhoods (CN), spatial context profiling, or spatial copy
number inferring (applicable mainly on ST with single-
cell resolution).2,4,63–68 Since the data format derived
from ROI-based ST contain sufficient reads per gene in
individual ROIs that mimics large-scale expression data,
they apply another route following conventional high-
throughput analysis used in RNA-seq incorporating meth-
ods such as dimension reduction/clustering, variable gene
identification, and pathway enrichment (usually based on
Limma or DEseq2, GO and KEGG), unbiased expression
module identification (GSEA/GSVA, weighted correlation
network analysis WGCNA or other machine learning
approaches). Another commonly used approach in ROI-
based ST is spatial deconvolution and many methods have
beenused such as conventional ssGSEAdeveloped for bulk
RNA-seq analysis.

4.2 The toolbox and application of
bioinformatics in ST

Regardless of diversified data formats, gene detection effi-
ciencies and spatial resolution derived from various ST
platforms, in particular those from discrete ROI-based
ST technologies, the preprocessing for image registration
and alignment, data binning needed for microarray-ST
as well as the cell segmentation used in ISH/ISS-based
ST, the mainstay of downstream analysis still shares a
few in common and thus is summarized in a compre-
hensive but nonexhaustive list presented in Figure 2. The
detailed methods and underlying algorithm principles can

be referred elsewhere without detailed discussion in this
section.64,65,69
Basically,microarray-ST and ISH/ISS differ slightly from

common scRNA-seq data in that they contain extra spa-
tial indices for individual data points generated across
tissue-covered regions being analyzed. Therefore, by tak-
ing advantages from computational methods developed
for scRNA-seq data analysis, many existing methods
can be intuitively transferred and implemented such
as Seurat V3 (integrated toolbox), SCTransform, Scran,
and harmony for data integration/normalization70–74;
Squidpy (Scanpy), monocle 3, and scvi-tools for cluster-
ing and annotation75,76; Trendsceek and HRG for SVG
identification77,78; CellPhoneDB and CellChat for cellular
crosstalk profiling79,80; and Slingshot, scVelo, and RNA
velocity for transcriptional dynamics measures and cell
state tracking (trajectory/RNA velocity).81–83 Simultane-
ously, inspired by efflux of available datasets within the
community, by incorporating ST and histological infor-
mation, researchers adopted various machine learning,
topology-based approaches and deep learning algorithms
to continuously develop tools for ST analysis.63–65 Analysis
frameworks including stLearn, Squidpy, Giotto, SPATA2,
Tangram, STUtility, CytoMAP, Spacemake and others suit-
able for multitasking in ST data analysis.84–91 Besides,
many other bioinformatic tools are also established for fit-
for-purpose analysis tools including LIGER, BayesSpace,
SpatialDE, RCTD, cell2location, spatialDWLS, SpaGE,
gimVI, SpaOTsc, SIRV, and many more summarized in
Figure 2.92–100

4.3 Comparison of computational tools
used across ST

Given the robust performance of data integration, normal-
ization, and cluster identification using these ST-adaptable
tools,101,102 many have been focusing on data enhance-
ment, spatial clustering, spatial resolution enhancement,
and cell type annotation/deconvolution as ample amount
of ST data are realistically not down to single-cell res-
olution (such like 55 µm in diameter in case of Visium
polyA). A recent work systemically summarized 13 com-
putational methods (conventional nonspatial methods:
Louvain, Leiden and spatially designed: spaGCN, BayesS-
pace, stLearn, and many others) used for clustering of
ST data.103 On leveraging their performance on cluster-
ing accuracy, spatial continuity, marker gene detection,
scalability and robustness, the major determinant relies
significantly on the spatial resolution of technologies per
se. Taking clustering accuracy as the key parameter, at
55 µm (Visium), GraphST, SCAN-IT, and BASS stand as
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F IGURE 2 The spatial transcriptome data analysis toolbox. Graphical demonstration of typical ST data analysis pipeline based on three
mainstream technical or strategical grounds (ISH/ISS-ST, planar array-ST, and ROI-ST). Workflows start with preprocessed expression matrix
and three different colored lines (light blue, pale green and orange) depict data analysis normally involved for three ST outputs respectively.
The workflow directions are based on stepwise analysis approaches and each box represents a domain of spatial profiling methodology. Notes:
The analysis toolbox is summarized based on literature searches and may not include all available methods. ISH, in-site hybridization; ISS, in
situ sequencing; ROI, region-of-interest.

the preferred methods; however, at single-cell resolution
(MERFISH), the best performingmethods switch to CCST,
SpaceFlow, and SCAN-IT.103 Other side-by-side compar-
isons for spatial clustering have concluded that Seurat-
LVM, SpaGCN, and Seurat-LVhad overll themost accurate
performance.102 Previously as the most extensive used STs
were Visium polyA (spatial-barcoded AT) and DSP (ROI-
based ST) both of which have limited spatial resolution
for data interpretability to define cell types, manymethods
have been developed accordingly. Systematic comparisons
were also conducted between methods giving the con-
clusion that some scRNA-seq reference-based methods
(cell2location, CARD, RCTD, Tangram, and EnDecon)
may outperform others.101,104 Other approaches including
also exist such like STdeconvolve, SMART and CARDfree
that are scRNA-seq reference-free.105–107 With increasing
resolution, including those with cellular or subcellular res-
olution (most ISH/ISS-based), methods employing label

transfer from scRNA-seq, such as Spatial-ID and JSTA
are being applied.108–110 In addition, for imaging-based
ST reaching over single-cell resolution, known genes are
often predesigned into analytical panels and thus cell types
are directly definable based on this.27,59,111 In real prac-
tice, it is also worth noting that for spatial-barcoded ST
with near single-cell resolution, typical analytical points
often require data binning to incorporate enough reads
for profiling. However, the major challenge lies in that
cells are irregular shaped disallowing precise transcripts
allocation into designated cells. Under such scenario, spa-
tial deconvolution remains as a standard tool for cell
type inference but herein the concept is to take the cell
type with the highest fraction for the cell bin being ana-
lyzed. Finding localized gene expression pattern (SVG)
is another typical work implemented in spatial analysis
whereinmany have been developed and testified including
regression-based SpatialDE, Trendscreek, and SPARK-X,
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multiple machine learning-based spaGCN, sepal, GLISS,
and many others.63,77,95,112–115 A recent benchmarking
work was carried out evaluating eight SVG identifica-
tion methods (SpatialDE, SPARK-X, Giotto, MERINGUE,
and others). Under multiparameterized comparison, they
found acceptable proportion of genes were detected across
SVG methods but with relatively low overlapping, how-
ever relative coexpression of those SVG across methods
are generally matched.116 Under adjusted false discov-
ery rate, SpatialDE, nnSVG, and MERINGUE are the top
performers though certain issues still exist such as repro-
ducibility (SpatialDE) and SVD prediction accuracy that
exists almost across all methods except SPARK-X and
SOMDE.116 To boost the number of genes characterized via
ST, another popular direction in ST method development
is gene inference and bymodel construction using scRNA-
seq and high-plex ST data, methods such as Tangram,
spaGE, gimVI, iSpatial, and iStar are proven method-
ologies for this type of analysis.89,97,101,117,118 A recent
work characterized 12 leading methods for gene expres-
sion imputation with ST datasets covering Visium polyA,
Stereo-seq, and Slide-seq.119 Overall, methods incorporat-
ing spatial information generally have higher prediction
accuracy and the newly developed graph neural network-
based method Impeller outpaced other competitors for
gene imputation regardless of the ST platforms being
used.119 Another added advantage of ST is to identify true
interactors (cell–cell/gene–gene) under predefined spa-
tial setting, a major advantage to apply in spatial biology
since it gives histologically visible information that is com-
pletely lost in scRNA-seq data. Those particularly involve
tissue-informed characterization of the signaling crosstalk
(such as ligand-receptor pairs) within direct or short-
ranged physical distance under cellular contexts. In theory,
spatial cellular cross-talk can be treated as interacting
cell clusters often delineated via pathological annotation
or within molecular-informed cellular niches. Therefore,
once a spatial count matrix is derived from particular
histological regions (a subhistological cell clusters such
as tumor epithelium-enriched regions, tumor–immune
interfaces, or tertiary lymphoid structures [TLS]), many
existing approaches can be deployed. Thesemainly include
conventional methods such as popular cell surface pro-
tein permutation-based CellPhone DB and CellChat with
proven performance in some benchmark studies.79,80,111,120
intracellular gene–gene interaction-based methods: Nich-
eNet and CytoTalk121,122 and more recently developed
COMMOT using collective optimal transport.123 Besides,
cell–cell communication analysis can also be conducted
using probabilistic-based and machine learning-based
tools: SVCA, GCNG, and MISTy.124–126 Similarly, most of
spatial cellular fate dynamic tracking (trajectory-based
analysis) also employs well-utilized scRNA-seq tools such

as stLearn, RNA velocity, scVelo, Monocle, Slingshot,
PAGA,81–83,86,127 many of which are extensively cross-
compared128 and meanwhile others (SIRV) integrating
ST with single-cell also emerged.100 A note to take in
is that for existing targeted spatial single-cell technolo-
gies, trajectory analysis is often employed to explore
specific cell or cell network alteration across various sta-
tus (such as cross-group comparison between normal and
disease settings or drug responder versus nonresponder).
Given the ST-defined individual cells in local space (sim-
ilar to those achieved via spatial phenotyping techniques
such as high-plex immunohistochemistry IHC and Imag-
ing mass cytometry IMC), high-ordered cellular archi-
tectures such as CNs, colocalization patterns, and local
enrichment profiles can also be achieved.66,129 Though
systematically sparse and relying on individual computa-
tional efforts, some methods have been developed such
as CytoMAP toolbox and recently developed CytoCommu-
nity and GraphSage.130,131 Moreover, we already see those
applications being applied under a few research settings.111
Last, from our extensive experience, it is equally import
to state that for most of ROI-based ST such as widely
used GeoMx DSP (pipelined in GeoMx tools),84,132 though
many analytical approaches can be potentially adopted
such as ROI-level clustering, SVGs, cellular decomposi-
tion, and trajectory analysis,133–135 the data exploration is
rather context-dependent and normally follows methods
being used in bulk RNA-seq analysis and explained in
the above section. However, the in-depth data covered by
entire transcriptomics in ROI-based ST such as DSP facili-
tate biological exploration using sophisticated tools such as
WGCNA that relies on network topology to untangle gene
regulatory modules associated phenotypes.136,137

4.4 A conclusive remark toward
bioinformatics tools in ST

From a user’s perspective, our survey of spatial bioinfor-
matics is yet not explicit and depending on the ST tech-
nologies or various computational tools, user experience-
based data benchmarking will still be in demand consid-
ering data formats as input in conjunction with thorough
understanding of pathology and explainable biological
phenomenon under investigation. We summarized the lat-
est update of those bioinformatic tools that are available
for open publics and their application in representative
publications in Table 1. Though currently there are no
generalizable standards as to what methods to be applied
under a given condition, certain computational methods
may emerge as the mainstream along with cumulating
ST data publicly available. Powered by the ever-increasing
resolution down to single-cell or even subcellular level,
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TABLE 1 Representative bioinformatic tools frequently used for spatial transcriptomics.

Analysis Method
Year
developed Main ST application

Application
examples in ST

Data integration and normalization Squidpy (Scanpy) 2022 Spatial-barcoded ST, ISS/ISH-ST 138

Seurat V3 2019 Spatial-barcoded ST, ISS/ISH-ST 71

LIGER 2023 Spatial-barcoded ST 139

Tangram 2021 Spatial-barcoded ST, ISS/ISH-ST 89

cell2location 2022 Spatial-barcoded ST 93

SpaCell 2020 Spatial-barcoded ST 140

Xfuse 2021 Spatial-barcoded ST 141

stLearn 2020 Spatial-barcoded ST 142

Ascend
SCTransform 2019 Spatial-barcoded ST, ISS/ISH-ST 143

Harmony 2019 Spatial-barcoded ST, 73

GeoMx tools ROI-ST
Cell annotation and clustering spaGCN 2020 Spatial-barcoded ST, ISS/ISH-ST 114

BayesSpace 2021 Spatial-barcoded ST, ISS/ISH-ST 94

stLearn 2020 Spatial-barcoded ST, ISS/ISH-ST 142

BANKSY 2022 Spatial-barcoded ST, ISS/ISH-ST 144

BASS 2022 Spatial-barcoded ST, ISS/ISH-ST 145

SCAN-IT 2021 Spatial-barcoded ST, ISS/ISH-ST 146

STAGATE 2022 Spatial-barcoded ST, ISS/ISH-ST 147

GraphST 2023 Spatial-barcoded ST, ISS/ISH-ST 148

SEDR 2021 Spatial-barcoded ST, ISS/ISH-ST 149

Deconvolution and mapping cell2location 2022 Spatial-barcoded ST,
ROI-ST

93

RCTD 2021 Spatial-barcoded ST,
ROI-ST

96

SPOTlight 2021 Spatial-barcoded ST,
ROI-ST

150

Tangram 2021 Spatial-barcoded ST, ISS/ISH-ST, ROI-ST 89

SpatialDWLS 2021 Spatial-barcoded ST,
ROI-ST

92

STdevonvolve 2022 Spatial-barcoded ST,
ROI-ST

106

CellTrek 2022 Spatial-barcoded ST,
ROI-ST

151

CARD 2022 Spatial-barcoded ST,
ROI-ST

105

JSTA 2021 ISS/ISH-ST 110

Bulk2space 2022 Spatial-barcoded ST,
ISS/ISH-ST

152

Spatial variable gene (SVG))
identification

SpatialDE 2018 Spatial-barcoded ST, ISS/ISH-ST 95

SPARK 2020 Spatial-barcoded ST, ISS/ISH-ST 112

Trendsceek 2018 Spatial-barcoded ST, ISS/ISH-ST 77

spaGCN 2021 Spatial-barcoded ST, ISS/ISH-ST 114

sepal 2021 Spatial-barcoded ST 113

GLISS 2020 Spatial-barcoded ST 153

STAGATE 2022 Spatial-barcoded ST, ISS/ISH-ST 147

(Continues)
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TABLE 1 (Continued)

Analysis Method
Year
developed Main ST application

Application
examples in ST

Spatial gene expression prediction gimVI 2019 ISS/ISH-ST 154

iStar 2024 118

Tangram 2021 Spatial-barcoded ST, ISS/ISH-ST 89

SpaGE 2020 ISS/ISH-ST 97

COVET 2024 ISS/ISH-ST 155

Cell–cell communication CellPhoneDB v3 2020 Spatial-barcoded ST, ISS/ISH-ST, ROI-ST 79

COMMOT 2023 Spatial-barcoded ST, ISS/ISH-ST 123

spaOTsc 2020 Spatial-barcoded ST, ISS/ISH-ST 99

MISTy 2022 Spatial-barcoded ST 126

GCNG 2020 ISS/ISH-ST 125

stLearn 2020 Spatial-barcoded ST 142

DeepTalk 2024 Spatial-barcoded ST, ISS/ISH-ST 156

CellChat 2021 Spatial-barcoded ST, ISS/ISH-ST, ROI-ST 80

SpaTalk 2022 Spatial-barcoded ST 157

Trajectory and RNA velocity stLearn 2020 Spatial-barcoded ST 142

Monocle 2017 Spatial-barcoded ST 158

PSTS 2023 Spatial-barcoded ST 142

SIRV 2021 ISS/ISH-ST 159

PAGA 2019 Spatial-barcoded ST,
ISS/ISH-ST

127

scVelo 2020 Spatial-barcoded ST,
ISS/ISH-ST

81

Neighborhoods analysis CytoMAP 2020 Histo-cytometry 85

CytoCommunity 2024 ISS/ISH-ST 130

COVET 2024 ISS/ISH-ST 155

spatial deconvolution may be surpassed and under these
resolutions, highermolecular capture efficiencymay allow
thousands of genes to be detected and quantified within
a particular cell. Upon such, benchmarking on current
and future computational methods may be reinstigated
redefining our analytical paradigm for ST data.

5 ST-DRIVEN RESEARCH IN
TRANSLATIONAL ONCOLOGY

5.1 A foresight on ST in cancer research

The way to study tissue oncogenesis has already tweaked
the research paradigm, in which much is influenced by
ST. This is simply because tumors on the whole reside in
a changing ecosystem often referred as tumor microen-
vironment (TME), a complex milieu that opens to ques-
tions such as inter/intratumor heterogeneity (ITH), spatial
cellular context-dependent mechanisms and predictive,
prognostic, or therapeutic biomarker identification based

on high-plex spatial molecular information. Some have
already been deciphered using dissociation-based tech-
niques (single-cell multiomics) bearing potentials to trans-
late into clinics,160 but many more are yet to be unveiled.
We foresee promises being accelerated by integrating
high-plex spatial omics with conventionally pathological
techniques and thereby overview the current progress in
this field. Our discussion is much toward the available
technologies utilized throughout research and commercial
institutions and summarized under such basis (Figure 3).
Those mainly include but not restricted to Visium-ST,
Stereo-seq, GeoMx DSP, and ISH/ISS-based techniques
(MERSCOPE, Xenium in situ, and SMI) and largely a surge
is witnessed in the past few years.49,161,162 Another point
to add is that we purposely focus on research adopting
ST as the major exploratory tool throughout their stud-
ies, highlighting the added benefit from this technical
point of view. Since low-resolution ST are already widely
used, we presented oncology-related application using ST
with near/true single-cell resolution and summarized in
Table 2.
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F IGURE 3 Overview of growth pattern of spatial transcriptome application in cancer research. Data are summarized in stacked bar
charts and collected between 2018 and 2024 (current) with mainstream platforms commercially available (DSP, Visium, MERSCOPE, CosMx,
Xenium, Stereo-seq). Major cancer types are color-annotated and reviews are separately categorized. ISS/ISH-based ST (MERSCOPE, CosMx,
and Xenium) are compiled together in one group and others are listed separately. Notes: Analysis is based on manual searches and may not
include all related publications. Development of bioinformatic tools and abstracts are purposely excluded.

5.1.1 Mechanistic elucidation in
heterogenous cancer tissues

One favorable advantage of ST is its compatibility for
both archived FFPE and FF tissues and in many circum-
stances only small handful of tissue is required as analyt-
ical inputs granting flexible fit-for-purpose experimental
designs. In breast cancer, an active application field of ST,
Andersson et al.184 used ST to find infiltration niche of
CXCL10+ M2-like macrophages with IFIT1+ T cells with
HER2-positive breast tumors yielding tertiary lymphoid-
like structures as a universal indicator across tissue types.
Using ST combined with single-cell T cell receptor-seq,
Mao et al.185 elucidated spatial-driven M1/M2 character-
istics associated with breast tumor that orchestrate with
cancer-associated fibroblasts (CAFs) to form immuno-
suppressive microenvironment. The spatially informed
breast cancer transcriptome obtained via ST also reveals
an imbalance in oxygen distribution within claudin-low
tumor, with hypoxia in the tumor center and normoxia in
the periphery.186 Another advantage of ST is to investigate
pathogen-host responses where regions of infection can be
precisely spotted.187 Galeano Nino et al.188 combined mul-

tiple spatial techniques with scRNA-seq tomap the spatial,
cellular, and molecular interactions of host cells within
the TME, revealing the presence and dynamics of intratu-
moral microbial communities and their potential impact
on tumor heterogeneity. Similar works were also car-
ried out using ROI-ST (GeoMx-DSP) to uncover bacteria
burdens associated with lung cancer epithelium wherein
Wnt/β-catenin, HIF1A and VEGFA-related signaling were
mechanistically identified.189 In immunotherapy-favored
cancers, using ROI-ST, a study involving 152 non-small cell
lung cancer (NSCLC) patients revealed that the spatially
enriched 163+ tumor-associated macrophages (TAM) in
the TME are associated with immunotherapy resistance,
driven by the upregulation of CD27, ITGAM, and CCL5
expression within the tumor cavity.190 Using joint scRNA-
seq and ST to delineate oncogenic transcriptional pro-
grams, Zhu et al.191 found thatUBE2C+ cancer cells during
the lung adenocarcinoma (LUAD) invasion, as a progres-
sion hallmark companied by multiple localized immune
cell alteration and activated TGF-β signaling. By dissect-
ing TME into tumor and immune-enriched areas, Zhang
et al.133 established a ST landscape of NSCLC with brain
metastasis, wherein reduced antigen presentation, B/T
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TABLE 2 Application of near single-cell spatial transcriptomics in oncology.

ST technology Cancer type Year Multiplexity References
MERFISH BC 2023 500 163

Stereo-seq CRC 2024 Transcriptome-wide 164

SMI, Xenium MERFISH OV 2023 SMI: 960
Xenium: 280
MERFISH:140

165

MERFISH HCC 2023 50 166

MERFISH LC 2024 479 167

MERFISH GBM 2021 135 168

Stereo-seq
SMI

HCC 2024 Transcriptome-wide
SMI: 960

169

Stereo-seq LC 2023 Transcriptome-wide 170

Stereo-seq CRC 2023 Transcriptome-wide 171

Stereo-seq HCC/ICC 2023 Transcriptome-wide 172

Stereo-seq CSCC 2022 Transcriptome-wide 173

Stereo-seq
Molecular Cartography

Melanoma 2022 Stereo-seq:
Transcriptome-wide
Molecular
Cartography:

174

Stereo-seq CRC 2023 Transcriptome-wide 175

SMI OV 2024 960 176

SMI
Xenium

HGG 2023 SMI: 960
Xenium: 339

177

SMI HNC 2023 SMI: 960 178

Xenium GBM 2024 358 179

Xenium LC 2023 302 29

Xenium BC 2024 280 111

Xenium
Visium HD

CRC 2024 422
Transcriptome-wide

59

Xenium BC 2023 280 180

Xenium GBM 2023 298 181

Slide-seq V2 NBM 2024 Transcriptome-wide 182

Slide-seq V2 PC 2023 Transcriptome-wide 183

Notes: References only incorporate real experiments using ST technologies excluding bioinformatics tool development, ST technology validation, reviews, or
publications using public ST data.
Abbreviation: BC, breast cancer; CRC, colorectal cancer; OV, ovarian cancer; HCC, hepatocellular carcinoma; GBM, glioblastoma; LC, lung cancer; ICC, intra-
hepatic cholangiocarcinoma; CSCC, cervical squamous cell carcinoma; HGG, high grade glioma; HNC, head and neck cancer; NBM, neuroblastoma; PC, prostate
cancer.

cell function and reprogrammed neutrophils and M2-like
macrophages, immature microglia, and reactive astrocytes
were observed. Recently, Wang et al.192 elucidated spa-
tial transcriptome scale molecular features during LUAD
tumor progression and the establishment on holistic
tissue architecture captured major events in hypoxia-
induced macrophages and other molecular characteristics
in certain subtypes. In melanoma, comprehensive spa-
tial exploration established mechanistic hallmarks within
tumor precursor regions and tumor-stomal boundary
that involve gradient cytokines to stimulate immune cell
recruitment.193 In tumors bearing less mutational burdens

with complex TME with immune checkpoint inhibitors
(ICIs) often being ineffective, Liu et al.194 combined ST
with scRNA-seq andmultiplex immunofluorescence stain-
ing, revealing the existence of a tumor–immune barrier
structure in hepatocellular carcinoma (HCC): a spatial
niche composed of SPP1+ macrophages and CAFs near
the tumor border. Mechanistic deciphering of this spatial
niche revealed that a hypoxic microenvironment promotes
SPP1+ macrophages as an advert regulator for effective
check point blockade.194 More recently, Sun et al.195 estab-
lished a comprehensive HCC primary andmetastatic land-
scape wherein they used ROI-ST to analyze Wnt-mutation
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(Wnt-mut) associated spatial transcriptome and found
upregulated exhausted T cells associated with mutant
phenotypes and wide-type Wnt (Wnt-wt) had enriched
iCAF population. The same group also applied subcellular
resolved ST (Stereo-seq) to identify key regulatory events
at the tumor–immune interface that involve trafficking
of amloid A1 and A2 and activation of tumor-stemming
JAK–STAT3 via CXCL6.172 Zooming into the tumor and
invasive margins, they found increasing patterns of angio-
genetic signal, extracellular matrix remodeling and TP53
activity in Wnt-wt tumors.195 In pancreatic ductal ade-
nocarcinoma (PDAC), single-cell transcriptomics com-
bined with ROI-ST covering the whole transcriptome
delineated neoadjuvant chemotherapy and radiotherapy
(RT)-associated spatiotemporal dynamics of treatment-
refractory patients, a mechanism mediated by three mul-
ticellular communities, that are each reprogrammed.196
Another study incorporated ST to investigate treatment-
associated spatiotemporal changes in different therapeu-
tic arms under neoadjuvant settings.197 They discovered
tumor-intrinsic and transitional cellular programs medi-
ated via TIGHT+ exhausted and regulatory T cells and
NECTIN-regulatory in tumor-proximal niches highlight-
ing TIGHT–NECTIN axis as potential targets.197 A recent
study incorporated multiparameterized spatial single-cell
proteomics and ROI-ST to elucidate mechanistic linkage
in PDAC patients stratified by homologues recombinant
deficiency (HRD).198 They discovered tumor-infiltrating
macrophages that are elevated in response to oncogenic
transformation and HRD status highlighting a poten-
tial therapeutic target CD52 in treating PDAC patients
in combination with PARP inhibitors (PARPi).198 In gas-
trointestinal cancer, using ROI-ST on FFPE samples, an
early work demonstrated the utility of the technology
to profile biomarkers in anti-PD-1 antibody driven TME
alteration in colorectal cancer (CRC).199 Qi et al.200 used
scRNA-seq and ST to identify and orthogonally vali-
date a tumor-associated FAP1+ fibroblasts and SPP1+
macrophages in CRC, a mechanism involving chemerin,
TGF-β and IL-1 to form immune-resistant cellular niches
with impaired T cell functioning. In gastric cancer (GC),
Kumar et al.201 used ROI-ST to cross-validate INHBA+
CAF and tumor-expressing KLF2 in the diffused subtype
complimenting their finding from scRNA-seq. In gyne-
cological cancer, Yeh et al.202 recently applied ISH-ST to
uncover spatial alterations in high-grade serous ovarian
cancer (HGSC), wherein distinct infiltrated T/nature killer
cellular states were spotted in subset of treatment sensi-
tive tumor epithelium collaborating with transcriptional
change in PTPN1 and ACTR8. In another application sce-
nario, Liu et al.203 tracked spatiotemporal dynamics of
esophageal squamous cell carcinoma from precancerous
lesions to low-grade/high-grade intraepithelial neopla-

sia using ROI-ST on transcriptome-wide scale capturing
major events at tumor sites mediated through inversely
correlated TAGLN2 and CRNN as progressive hallmarks.
In urological cancers, a recent work incorporating ST and
scRNA-seq identified PDGFRα+/ITGA11+ fibroblasts that
mediate lymphovascular invasion and lymphatic metas-
tasis via ITGA11–SELE ligand-receptor crosstalk in early
stage bladder cancer.204 In brain cancers, Vo et al.205
used Sonic hedgehog medulloblastoma derived organoid
(SHH-DPOX) to resolve cellular heterogeneity within the
TME in response to Palbociclib treatment (a CDK4/6
inhibitor). Using Visium ST they spotted species lin-
eage associated coexpression at the immune-infiltration
regions and Palbociclib-treated models induced regres-
sion of clonogenicity of MB tumor together with activated
neurodifferentiation in the tumor center but not at the
tumor–immune boundary.205 More importantly, in the
drug-treated group, a spatially niche was also identified
coordinated expression of astrocytes and tumor-associated
microglia together with tumor-infiltrating macrophages
(TMA) suggesting a functional interplay between them.205
Likewise, many other works used ROI-ST to target specific
regions within different cancer tissues (TLSs or perirenal
fat enriched regions) to elucidate transcriptional mecha-
nisms linkingwith disease prognosis.134,206 Manymore can
be referred in recent reviews.4,161,207
Toward this end, however it is still well-worth to men-

tion that with ST technologies being constantly developed
and improved, the real-world application scenarios are
much beyond early prototyping studies where model sys-
temswere often used for proof-of-concept studies and from
extensive experience including ours. On top of this, due to
the heavy investment upfront to generate large scale data
across patient cohorts and intensive computational efforts
for data integration (especially single-cell spatial data that
easily generate tens of millions of cells), more systemic
works will still be needed. This is particularly indispens-
able when researching under such heterogenous tumor
molecular mechanistic contexts. Those include some pre-
liminary works being carried out by us and others using
cutting-edge technologies such as Xenium in situ, CosMx,
and MERSCOPE as in their commercial forms and with
propagate in short time.27,28,166,169

5.1.2 Empowering biomarker profiling
using advanced ST in translational oncology

Of more clinical relevance, under many experimen-
tal contexts, the ultimate goal following mechanistic
elucidation biomarker discovery that enables ultimate
clinical implementation. This is significantly inspired
by evolving tumor biology and the rapid progress in



14 of 24 WANG et al.

cancer drug development and their associated resis-
tance mechanisms not only through tumor-centric tar-
geting approaches (modulation of cancer cell plasticity)
but also versatile strategies involving microenvironment
modulation.208,209 Nowadays, the widespread application
of machine learning/deep-learning assisted by digital
pathology in fusion with ST has emerged as a novel tool
toward this direction. Themultidimensional layer of omics
embedded in situ brings unforeseen analytical poten-
tials to catalyze novel biomarker translation. Leveraging
ST profiling across whole-slide histopathological images,
deep learning algorithms can further developmeticulously
trained models capable of capturing tumor biomarkers of
clinical significance.210,211 As said before, at this stage,most
of ST-based technologies are yet expensive to scale up in
sample number to allow systemic profiling, but some espe-
cially those supporting FFPE or tissue microarray (TMA)
application are in play since for those, clinicalmetadata are
often at hand.
On this ground, we and others have already started to

attempt in this field. TLSs, an indicator within the TME
often associates with favored prognosis but in-depth stud-
ies are lacking. Gan et al.212 applied ST to unveil TLS asso-
ciated expression signatures in combined hepatocellular–
cholangiocarcinoma (cHCC–CCA) patients and generated
a scoring system considering spatial distribution of TLSs
where intratumor TLSs (iTLS) stands as a predictive indi-
cator for prognosis. Under another setting, using ROI-ST,
Kiuru et al.213 profiled melanoma TME and identified
S100A8 expressed on keratinocytes as an early oncogenic
biomarker and validated the finding in larger cohorts.
Another systemic work using Visium ST profiled the het-
erogenous stroma TME in a set of HGSC.214 Their findings,
arising from the complex TME identified a subset of CAF
at the tumor-stroma interface with significant intercel-
lular crosstalk of APOE–LPR5 as a predictive biomarker
for short-term survival.214 Similarly, a recent work focus-
ing on cHCC–CCA also employed Visium ST to discover
TLS-associated gene expression pattern that predict dis-
ease prognosis.212 Based on the ST-derived data, they
developed a TLS score by leveraging the contribution
of either intratumor or extratumor regions (iTLS and
eTLS) wherein the iTLS had better prognostic values that
were not observed in eTLS counting, again stressing the
needs of taking spatial parameters for prediction model
generation.212 Monkman et al.215 applied ROI-ST to dis-
cover T cells and macrophage-dominated immune traffics
that potentially relate to ICI responses in NSCLC. They
built spatially chartered proteogenomic biomarker panels
using sPLS-DA model to discriminate ICI response and
overall survival.215 These phenomena are also reflected
on some preliminary spatial biomarker profiling works
being carried out in ICI-related studies in other thoracic

and GCs.216,217 Notably, works from above studies acquired
extensive resources from archived FFPE samples in which
many were conducted in a TMA format suggesting a
trend in practice of those ST technologies. Likewise, in
our hands, using ROI-ST, Guo et al.136 explored 45 mis-
match repair-deficient endometrial cancer (MMRd-EC)
finding a 14-gene biomarker signature associated with
tumor cells that defines three EC subtypes with varying
CD8 T cells infiltration status. In the more deadly lung
cancer subtype (small cell lung cancer, SCLC), ST was
applied to define TME-based molecular subtypes. In a ret-
rospective study, Yang et al.218 used ROI-ST to discover
two immune microenvironment-defined molecular sub-
types (ID: immune-deficient and IE: immune-enriched)
in primary SCLC (TMA cohort of 29 patients) using
transcriptome-wide spatial profiling and found the clin-
ical utility of this TME-based subtyping in predicting
patient survival outcomes and response to immunother-
apy. Using the same ST technique, they used multiple
ROI selection strategy to evaluate ITH of 25 SCLC patients
usingDEPTHalgorism and identified three transcriptional
subtypes featured by distinct molecular mechanisms.219
More importantly, this classification correlated with CD8
T cell infiltration status and by grouping patients based on
spatially defined ITH scores, they found high-plex (HC)
and low complex (LC) defined patients that differentiate
between clinical outcomes.219
Interestingly, we witnessed a gradual growing tendency

of spatial multiomics being incorporated into clinical
trial-based studies undertaken by research communi-
ties and ourselves (data not to disclose), though most
are retrospectively designed. For the sake of functional
interpretation, these are mainly informed via spatial pro-
teomics tools.131,220 However, exploratory works in novel
drug development (netrin-1),160,221 investigator initialed
trials, as well as real-world studies incorporating ST are
gradually emerging and some studies have already become
low-hanging fruit. The forward-looking assumption is
made since the true spatial single-cell ST performed using
clinically archived samples is tangible. This may be grad-
ually incorporated into careful designed clinical project
pipelines wherein 10−100 proteins can be characterized
under single-cell spatial resolution, but beyond that, have
extended analytical scope since the transcriptional state
of over 10,000 genes at spatial single-cell resolution is
now in reach. The preliminary works on breast cancer
have already shown promises as the growing prosperity
of neoadjuvant therapies in breast cancer allows trial
designs and biopsy sampling longitudinally. For example,
in a phase I/II single-arm study assessing pembrolizumab
+ sequential RT under neoadjuvant settings in triple-
negative breast cancer (TNBC), using multiplex IHC
(mIHC), researchers examined 40 proteins to define
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cellular lineages within the TME and mapped all high-
ordered cellular niches (defined as districts) in space find-
ing key regulatory mechanisms predisposed or induced
in response to therapies.131 In a multicentric randomized
study (NeoTRIP clinical trial, NCT02620280), researchers
explored the effect of atezolizumab + chemotherapy
versus chemotherapy alone in early TNBC using a lon-
gitudinal approach.220 They identified major events
triggered via TCF1+ CD8 T cells and MHCII+ cancer cells
as drug sensitive predictors and other immune-dictated
coregulatory multicellular modules involving B cells and
granzyme B+ cytotoxic T cells underscoring their values
in personalized clinical decision making.220 These recent
works, although being exploratory, may be a weathercock
in the coming future under clinical settings. Neverthe-
less, it is equally important to stress that, the success
path for cancer biomarker identification is wrapped in a
coordinated delivery package querying into omics-based
profiling from upstream and corroborating in independent
cohorts and relevant functional assays downstream.

5.2 Streamlining translational oncology
via ST from bench to clinics

The plethora of new ST constantly drives the growth of
translational oncology gradually redefining our under-
standing into this field. However, we still see the progress
made in current era as being a puberty that is yet to
flourish in the future. Similar to the development curve
witnessed in dissociation-based single-cell omics whereby
application is moving into clinical settings evidenced
by some novel-conceptualized clinical trials. For exam-
ple, EXALT-1/2, which are hematological malignancies-
oriented interventional study, incorporated scRNA-seq
and AI-driven drug screening to guide clinical decision-
making.160,222 A single-arm proof-of-concept phase II trial
combining tumor-targeting B-RAF inhibitor and MEK1/2
inhibitor with PD-1 inhibitor (PDR001) also launched in
metastatic CRC utilizing scRNA-seq to analyze pretreat-
ment and on-treatment biopsy samples.160 These and a
few more prospective studies point at a promising poten-
tial of integrating novel omics into clinical settings. One
key advantage of spatial multiomics is their tight coher-
ence with standard pathology, a major benefit for data
exploration and interpretation perspective under con-
trolled settings. This is somewhat impractical using con-
ventional dissociation based single-cell techniques since
most are relying upon fresh tissues, which are difficult
to manipulate. More importantly, since spatial organiza-
tion of cells are more important to decipher biological
questions, the spatially coordinated cells bear eminent
potentials for translational medicine, similar to what

was observed in ICI modulation wherein spatial PD-L1
distribution and abundance are key determinants for ther-
apeutic responses in multiple cancers.223 Other successful
biomarkers such as “immunoscore” derived from quan-
titative measurement of tumor-infiltrated CD3+/CD8+
T cells has already placed into the application front-
line in clinics in CRC and potentially many others.224 In
addition, the development of novel checkpoints or drug
combinations require investigation of TME in a depth of
field to underpin deterministic biological mechanisms.225
These are already evidenced at phenotypical level. Such
as oncolytic virus (OV) being tested in clinics. Linking
OV with immune-activation in recurrent glioblastoma has
been observed with novel CAN-3110, an oncolytic herpes
virus (oHSV).226 Other supporting evidence also revealed
altered neutrophil-to-lymphocyte ratio during OV (H101
an oncolytic adenovirus) pretreatment as good prognos-
tic indicator in advanced refractory HCC.227 Moreover,
the recent success of antibody–drug conjugates (ADC)
in many late-stage solid tumors have also ushered the
needs of patient stratification biomarkers228 A few good
examples include the success application of T-DXd (a
HER2–ADC) that is being approved for metastatic HER2+
breast cancer and sacituzumab govitecan (SG), a tro-
phoblast cell-surface antigen 2 (TROP2)-targeting ADC.228
Interestingly, ample amount of clinical evidence suggest
that the bystander effect induced by those ADC often
reprograms TME and such include T-DXd being effective
in HER2-low patients and SG nondiscriminatively tar-
gets tumors with low-TROP2 expression.228 Since many
of these ADCs are being explored with combinatorial
regimes with other drugs such as Atezolizumab (anti-PD-
L1 antibody) in metastatic BC (mBC, NCT04740918) and
late-stage/locally advanced urothelial cancer (la/mUC)
with combination of enfortumab vedotin (a Nectin-4
ADC) with pembrolizumab (anti-PD-1 antibody), both of
which demonstrated promising clinical benefits, adding
high-plex spatial data would be beneficial to address TME-
related mechanisms.229 This would ultimately deliver
extra clinical benefit via balancing immunogenicity by
removing undesirable adverse effects while inflaming or
reverting immune excluded tumor stands as the main bat-
tlefield in oncoimmunology.230 Beyond those facts, the
multiparametrized data obtained with spatial dimension
certainly have added values for patient stratification and
may direct novel biomarker identification in a single or
multimarker collaborated manner.231
The developed ST techniques in current era are already

reaching into the single-cell level with ultrahigh-plexity
conducted in many prototype studies allowing true single-
cell spatial phenotype identification with simultaneously
thousands of transcriptomic information aligned. While
determining pivotal cell subtypes such as tumor-reactive
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F IGURE 4 Proposed biomarker development pipeline using spatial transcriptome. Schematic illustration of biomarker profiling
workflow based on ST. Cancer types are listed on the left for demonstrative purposes (see abbreviations). Sampling strategies are divided into
full tissue sections and tissue microarrays (TMA) depending on ST technologies as exploratory tools (ISS/ISH-ST, array-based ST, and
ROI-ST). bioinformatic explorations (listed in boxes) are grouped accordingly to different ST technologies being applied. Downstream
validation is for demonstration but involves increasing number of samples and decreasing number of targets. BRCA, breast carcinoma;
COAD, colon adenocarcinoma; ESSC, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell
carcinoma; KIRC, kidney renal cancer; LUAD, lung adenocarcinoma; PDAC, pancreatic ductal carcinoma; DLBC, lymphoid diffuse large
B-cell lymphoma; HCC, hepatocellular carcinoma.

proimmune cells, rare malignant cell clones with pluripo-
tency and plasticity and other key regulatory cells within
the TME is becoming possible, careful design of exper-
iments or orthogonal validation across ST platforms for
fit-for-purpose analysis lay ahead of the biological ques-
tions. Herein, we propose a systemic workflow based on
our user’s experience to research communities (Figure 4).
Practically, a balance between the cost efficiency and layers
of data dimension (spatial resolution and target num-
bers) to be acquired need to be compromised. It may
not be a huge burden to query into mechanism-related
issues since not many samples are required, but more
for translational purposes. In addition, considering the
timeline for research output, possibility of sample pro-
curement, preexperimental QC measures, using clinical
archived samples may be a wider future direction and
many ST are now compatible with this type of samples.
Therefore, a schema can start with a rather small sample
set within which each assigned phenotypic group con-
tains 3−6 samples for single-cell ST technologies (planar
array-ST and ISS/ISH-based) and these samples sometimes
can be pooled into one glass-slide to save costs or con-

ducted using TMA in some circumstances. This pan-tissue
exploratory method allows limit-free analysis for cell–
cell association, biomarker-specific cell type identification
and orchestrated cell community identification based on
manually defined cell types within contexts. Selected can-
didates can then be cross-compared against RNAscope,
mIHC, cyclic IF, and IMC for high-plex profiling and resul-
tant conclusions can be extrapolated and cross-validated
using clinically benchmarking technologies such as IHC
and FISH. Meanwhile, deeper mechanistic analysis can
be done via ROI-ST targeting cells at specific ROI. The
alternative strategy to deploy involves thorough evalua-
tion of on-study samples by experienced pathologists and
for biomarker profiling, patients in each assigned meta-
data group often start with at least 10 samples and are
made into TMA formats. Under such a background, using
ROI-ST, particular ROIs can be analyzed across patients
within a well-controlled environment under pathologi-
cal assistance (tumor-centric, tumor–immune interface
or a particular cell type with TME). This often supports
transcriptome-wide discovery and parallel mechanistic
elucidation and one can use well-defined deconvolution
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methods to deducemajor cell type alteration in abundance.
Orthogonal validation using RNAscope, mIHC, cyclic IF,
and IMC will subsequently be required in follow-up anal-
ysis and cross-validation using IHC or FISH on expanded
cohorts can follow. However, in both circumstances, full
pathological engagement is paramount throughout a study
to lead to successful interpretation.

6 CONCLUSIVE REMARKS AND
FUTURE DIRECTION

Finally, our conclusive remarks are drawn in view of
the current progress made on technical development
as well as translational oncology being conducted. We
anticipate a further improvement of existing technolo-
gies with joint multidimensional omics in real practice
and these include high-plex spatial proteogenomics, epi-
genetics assayed via transposase-accessible chromatin,
spatial T/B cell receptors (Spatial V(D)J recombination),
and metabolomics obtained at bona-fide single-cell or
even subcellular resolution.232 Alongside with these layers
of spatial information, reconstruction of tissue architec-
ture in three-dimensional using ST is also underway.233
Moreover, the growing needs of researching into intra-
tumoral microbiota open a new avenue to explore since
many microorganisms are found in solid tumors that
play either cancer-initiating or inhibitory roles.234 How-
ever, their exactmechanisms cannot be elucidatedwithout
application of ST and tracking the colocalization pat-
tern of diversely distributed microbes within host tissues
holds promises to address those questions. Some of those
technologies are being developed such as spatial-host-
microbiome sequencing (SHM-seq) or many other ISS-
based methods.235,236 More importantly, alongside with
broader affordability and data accessibility, benchmarking
on technologies or bioinformatics are always needed as
references for preexperimental consideration. Aggregating
the multilayered spatial omics can ultimately become the
analytical keystone undoubtfully in cancer research, a gap
to be filled just around the corner.
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