Skip to main content
. 2024 Sep 20;10(19):e38225. doi: 10.1016/j.heliyon.2024.e38225

Table 5.

Regression results for the relationship between life insurance market size and bank stability in low and high bank-stability countries.

Sub-sample
Low bank stability countries
High bank stability countries
Dependent variables
Z-score
1/NPL
Z-score
1/NPL

(1)
(2)
(3)
(4)
Co.eff t.stat Co.eff t.stat Co.eff t.stat Co.eff t.stat
LIMS 0.023∗∗ 2.02 0.112∗∗∗ 2.43 0.031 1.54 0.197∗∗∗ 2.96
HHI 1.413 1.11 0.099 1.07 1.812∗ 1.73 0.132 1.57
BCON 0.012 0.92 0.003 1.21 0.002 0.71 0.001 0.98
GDP 0.232∗ 1.71 0.132∗∗∗ 2.45 0.501 1.38 0.146∗∗ 2.15
PPG 0.281∗ 1.77 −0.005 −0.91 0.357∗∗ 1.94 −0.012 −1.32
CISH 0.091∗∗∗ 2.34 −0.003 −1.41 0.068∗ 1.82 −0.001 −1.29
LER 0.061 1.34 −0.001∗ −1.71 0.051 1.26 −0.002 −1.48
WGI 1.335∗∗∗ 3.21 0.144∗∗∗ 2.41 2.329∗∗ 2.12 0.115∗∗ 2.18
NII −0.033∗∗∗ −2.44 −0.024∗∗∗ −3.10 −0.026∗ −1.78 −0.003∗∗∗ −3.17
Cons 6.614 1.36 −0.619∗∗∗ −2.55 7.656∗∗∗ 2.76 −0.215∗∗∗ −2.57
Year fixed-effect Yes Yes Yes Yes
Observation 257 265 314 149
F-test (p.value) 0.00 0.00 0.00 0.00

Note: This table reports the fixed-effect estimation results for Equation (1) using the Z-score and 1/NPL as dependent variables. Regressions 1–2 and 3–4 show low and high bank-stability countries, respectively. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively. All variables are defined in Appendix A.