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Abstract

Human and mouse dorsal root ganglia (hDRG and mDRG) neurons are important tools in understanding
the molecular and electrophysiological mechanisms that underlie nociception and drive pain behaviors.
One of the simplest differences in firing phenotypes is that neurons are single-firing (exhibit only one
action potential) or multi-firing (exhibit 2 or more action potentials). To determine if single- and multi-
firing hDRG neurons exhibit differences in intrinsic properties, firing phenotypes, and AP waveform
properties, and if these properties could be used to predict multi-firing, we measured 22 electrophys-
iological properties by whole-cell patch-clamp electrophysiology of 94 hDRG neurons from six male
and four female donors. We then analyzed the data using several machine learning models to deter-
mine if these properties could be used to predict multi-firing. We used 1,000 iterations of Monte Carlo
cross-validation to split the data into different train and test sets and tested the logistic regression,
k-nearest neighbors, random forest, support vector classifier, and XGBoost machine learning models.
All models tested had a >80% accuracy on average, with support vector classifier, and XGBoost
performing the best. We found that several properties correlated with multi-firing hDRG neurons
and together could be used to predict multi-firing neurons in hDRG including a long decay time, a
low rheobase, and long first spike latency. We also found that the hDRG models were able to predict
multi-firing with 90% accuracy in mDRG neurons. Understanding these properties could be beneficial
in the elucidation of targets on peripheral sensory neurons related to pain.
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Significance Statement

This study will improve the understanding of the electrophysiological mechanisms of DRG neurons. Our
machine learning algorithms show few species differences between mouse and human DRG neuron
electrophysiology under baseline conditions. These are important findings for the study of neuronal
excitability in the context of pain therapeutic development.

Introduction
Neuronal hyperexcitability is a hallmark of chronic pain and understanding the electro-

physiological mechanisms that lead to neuronal excitability is crucial for the development
of pain treatments (Berta et al., 2017; Alles and Smith, 2018). Sensory neurons isolatedContinued on next page.
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from human and mouse dorsal ganglia (hDRG-N and mDRG-N) are important tools in the
study of neuronal excitability, chronic pain, and nociception (Davidson et al., 2014; Zhang
et al., 2017; Emery and Ernfors, 2018; North et al., 2019; Zheng et al., 2019; Zurek et al.,
2024). While the transcriptomes of hDRG and mDRG have been compared (Ray et al.,
2018), few studies have compared the electrophysiological features of these tools.
Single-firing DRG-N that fire only one action potential (AP) are less excitable than multi-
firing DRG-N that fire two or more APs. Using patch-clamp electrophysiology, we mea-
sured neuronal excitability of hDRG-N and mDRG-N in current-clamp mode. We then
compared electrophysiological properties that determine multi- or single-firing in
DRG-N using sophisticated computational approaches. The rationale for this methodol-
ogy is to build upon understanding of electrophysiological properties of sensory neurons
with machine learning tools.
Machine learning is becoming a popular tool in data analysis, tool refinement, and pre-

diction in understanding molecular, electrophysiological, and physiological mechanisms
in pain research (North et al., 2019; Gonzalez et al., 2021; Koos et al., 2021; Ingram
et al., 2023; Nagaraja et al., 2023). In this study, we aimed to understand if there are elec-
trophysiological differences between single- and multi-firing hDRG-N and mDRG-N and if
these differences are predictive of neuronal excitability. Factors governing excitability
might thereby be targets for modulation with therapies. Additionally, these improved tools
can lead to automated, and therefore more efficient, ways to evaluate future electrophys-
iological data. The benefits of automating data analysis are better data transparency and
reproducibility, while minimizing the need for obtaining additional live tissue.
In this study, we compared the electrophysiological features of multi- and single-firing

hDRG-N and mDRG-N and applied several machine learning algorithms to elucidate
which combinations of features were most predictive of multi-firing neurons. Because
we have collected a relatively high number of hDRG-N recordings from a diverse demo-
graphic of donors (Zurek et al., 2024), we aimed to see if machine learning algorithms
can predict whether an hDRG-N will be single- or multi-firing based on other intrinsic, phe-
notypic, and AP waveform electrophysiological features. While many machine learning
studies use a single model to make predictions, we used several different models. We
used Monte Carlo cross-validation (MCCV) simulations to iterate the train and test data
split to obtain average model accuracies (Shan, 2022) and extract the most important
electrophysiological features. Finally, we aimed to see if the machine learning models
that we generatedwere also able to predict multi-firingmDRG-N so as to compare species
differences. While we found several electrophysiology features were correlated with multi-
firing cells, the machine learning models converged on just a few of those features as
being the most predictive.
This study will improve understanding of the electrophysiological mechanisms of DRG

neurons. Our machine learning algorithms paradoxically show few species differences
between mouse and human DRG neuron electrophysiology under baseline conditions.
The FDAModernization Act 2.0 removes the requirement for use of animal models in ther-
apeutic safety and effectiveness testing in favor of cell-based assays and computational
modeling (Zushin et al., 2023). Our study is a first step into understanding the electrophys-
iological mechanisms governing neuronal excitability in both hDRG-N andmDRG-N using
computational modeling. Understanding neuronal excitability in peripheral neurons such
as the DRG is an important area of study to generate therapeutics that target peripheral
mechanisms as opposed to mechanisms that target the CNS (Raja et al., 2020). We
hope that this study and the computational algorithms used will apply to therapeutic dis-
covery efforts for pain and other sensory disorders.

Materials and Methods
hDRG-N culture. hDRG-N culture was performed as previously described (Valtcheva

et al., 2016; Zurek et al., 2024). hDRG were obtained from consenting recently deceased
organ donors at University of New Mexico Hospital in coordination with New Mexico
Donor Services. Study activities were approved by the Human Research Review
Committee at the University of New Mexico Health Sciences Center; approval numbers
#21-412 or #23-205. Cultures of hDRG-N were prepared as described previously and cul-
tured for up to 11 d in vitro (DIV) (Zurek et al., 2024) and electrophysiological recordings
took place between DIV 3 and 11. We used high-quality recordings where all 22
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electrophysiological properties could be extracted from 94 untreated hDRG-N. The data from 8 of 10 donors was previ-
ously published in Zurek et al. (2024). Donor demographics are described in Table 1.

Mouse DRG cultures. All animal procedures were compliant with the NIH Guide for the Care and Use of Laboratory
Animals and followed ARRIVE guidelines. Studies are approved by the Institutional Care and Use Committee of the
University of New Mexico Health Sciences Center (IACUC #23-201364-HSC, 5-13-2024). Mouse DRG cultures were per-
formed as previously described with somemodifications (Kunamneni et al., 2023). Briefly, lumbar DRGwere collected and
put into an enzymatic solution containing sterile, magnesium/calcium-free HBSS (Invitrogen), papain (Worthington), dis-
pase (Sigma), and collagenase (Worthington). Enzymatic digestion was carried out at 37°C, 5% CO2 for 40 min with trit-
uration every 20 min. Complete DMEM-based media (2 ml DMEM supplemented with 10% fetal bovine serum, and 1%
antibacterial/antimycotic with 100 units/ml of penicillin, 100 µg/ml of streptomycin, 25 µg/ml of amphotericin B) was
added to the enzymatic digestion. The solution was then strained through a 100 µm cell strainer and rinsed several times
with an additional 6 ml of complete media. The digested DRG cell suspension was rinsed by gentle centrifugation at 300 ×
g for 5 min and resuspended in 1 ml of complete media. A total of 125 µl of the mouse DRG cell suspension was added to
each 12 mm coverslip precoated with poly-D-lysine (Neuvitro) and coated with additional 50 µg/ml laminin, allowed to
attach for 30–60 min before gently flooding the wells with enough media to fill each well, 1–2 ml for a 12-well plate.
Electrophysiological recordings were done 18–24 h after mDRG culture completion.

Whole-cell patch-clamp electrophysiology. Whole-cell patch-clamp electrophysiology was performed as previously
described (Zurek et al., 2024). Recordings were done at room temperature, with the recording chamber perfused with arti-
ficial cerebrospinal fluid (aCSF) containing the following (in mM): 113 NaCl, 3 KCl, 25 NaHCO3, 1 NaH2PO4, 2 CaCl2,
2MgCl2, and 11 dextrose bubbledwith 95%O2/5%CO2 (Zurek et al., 2024). Neurons were identifiedwith differential inter-
ference contrast optics connected to an IR-2000 digital camera (Dage MTI) or an Olympus digital camera. Cell diameter
was measured using Dage MTI camera software or ImageJ (NIH). Current-clamp recordings were performed using a
MultiClamp 700B (Molecular Devices). Signals were acquired as previously described using a Digidata 1550B converter
(Molecular Devices) and recorded using Clampex 11 software (Molecular Devices). Patch pipettes with electrode resis-
tance of 3–7 MΩ were made fresh with a Zeitz puller (Werner Zeitz) from borosilicate thick glass (GC150F, Sutter
Instrument). Intracellular patch pipette solution contained the following (in mM): 120 K-gluconate, 11 KCl, 1 CaCl2,
2 MgCl2, 10 HEPES, 11 EGTA, 4 Mg-ATP (Zurek et al., 2024). Cells that did not fire APs or had an RMP of greater than
−35 mV were excluded from further analysis. Bridge balance was applied for all recordings. Analysis was performed in
Easy Electrophysiology v.2.5.1, Clampfit 11.2 (Molecular Devices), and the Python v3.12 package pyABF (Harden,
2022). All statistical analysis was performed using GraphPad Prism v10.0.2. Error bars denote mean ± standard error of
the mean (SEM) unless otherwise specified.

Electrophysiology intrinsic properties analysis methods. Electrophysiological analysis was done as previously
described and used recordings from eight human donors published in Zurek et al. (2024) and data from two additional
donors not previously published. Current-clamp recordings started with 25 ms of the cell at rest, followed by 500 ms
current pulse increasing in 10 pA increments from −100 pA in increments until they reached inactivation up to 4 nA,
and finally 500 ms recovery between each current-clamp step. Current-clamp recordings were analyzed using Easy
Electrophysiology Software and pyABF (Harden, 2022; Zurek et al., 2024). RMP was calculated from the first
current-clamp recording after establishing a whole-cell configuration. The hyperpolarizing −100 pA step was used to
determine input resistance (Rin) and sag ratio. Rebound firing was defined as the neuron firing an AP during the 500 ms
recovery in any of the hyperpolarizing current injection steps. Rheobase was defined as the first depolarizing current injec-
tion in which a neuron fired an AP; therefore, the lowest possible value for rheobase is 10 pA. The first spike latency (FSL)

Table 1. Donor demographics

hDRG Donors Sex Age (Years) BMI Race Number of recordings

1 F 22 22 White 1
2 F 51 30 White 13
3 M 23 26 Hispanic 14
4 M 67 34 Native 7
5 M 55 19 White 2
6 M 27 24 Hispanic 2
7 M 21 22 White 13
8 F 37 18 Hispanic 18
9 M 51 27 Unknown 3
10 F 23 27 Hispanic 21
94 Total recordings from 10 donors

Human DRG tissue was obtained from ethically consented, recently deceased donors. This analysis used tissues from 4 female and 6male donors aged 21–67 years.
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was determined by measuring the time of that the rheobase spike fired after the start of current injection. Cell capacitance
was calculated using the whole-cell capacitance compensation circuit in MultiClamp 700B (Molecular Devices).
Normalized rheobase was calculated by dividing rheobase by capacitance. Delayed firing was classified as a neuron
that had an FSL> 100 ms. The presence of visible sag was identified by visual inspection. hDRG-N that fired more than
one AP during any current injection step were labeled asmulti-firing (65/94 for hDRG-N, 14/20 for mDRG-N) while neurons
that fired only one AP were labeled single-firing (29/94 for hDRG-N, 6/20 for mDRG-N) in our classification system.
Spontaneous activity was assessed in current-clamp mode with either no current injection or injecting enough current
injection to hold the membrane voltage at −45 mV during a 30 s recording. If the neuron had at least one AP during the
30 s, it was recorded as having spontaneous activity. AP waveform properties were calculated using Easy
Electrophysiology as previously described (Zurek et al., 2024). Only DRG-N which we were able to accurately measure
all the properties were considered for further analysis. The same analysis techniques were used both hDRG-N and
mDRG-N. We did not correct for liquid junction potential in our analyses.
Statistics comparing all electrophysiological properties between single- and multi-firing hDRG-N were performed in

GraphPad Prism v10.0.2 using a Mann–Whitney test or Fisher’s exact test.

Pearson’s correlation matrices. Pearson’s correlation matrices for both hDRG-N and mDRG-N were generated in
Python v3.12 using the Seaborn package for all electrophysiological properties described (Waskom, 2021). Jupyter
Notebook was used to write and share code and PANDAS was used for data processing (McKinney, 2010; Kluyver
et al., 2016).

Machine learning methods. All machine learning methods were performed in Python v3.12 using scikit-learn
(Pedregosa et al., 2011), an open-source machine learning package. Jupyter Notebook was used as a framework for writ-
ing, editing, and sharing code across unscaled, scaled, and feature-selected datasets (Kluyver et al., 2016). The open-
source package, PANDAS (McKinney, 2010), was used for data processing, scaling, normalization, and analysis.
Matplotlib and Seaborn data visualization libraries were used to produce figures (Hunter, 2007; Waskom, 2021). The data-
set preprocessing included standardizing the dataset using the standard scaler in scikit-learn, converting categorical var-
iables to binary variables, and feature selection. The unprocessed and preprocessed dataset was then used to tune the
hyperparameters of the four models we used: logistic regression (LR), k-nearest neighbors (KNN), random forest (RF), sup-
port vector classifier (SVC), and eXtreme Gradient Boost (XGBoost). The tuning was accomplished using GridSearchCV
with a five-fold split, a scikit-learn method that performs an exhaustive search over the given hyperparameters to deter-
mine which combination of hyperparameters generates the highest accuracy for a given dataset and model. The optimal
hyperparameters were then used during the MCCV. Afterward, the dataset was inputted into MCCV for each of the hyper-
parameterized models. The MCCV split the original dataset into a training and testing dataset without replacement where
the training dataset contains 80% of the samples and the testing dataset consists of 20% of the samples. Then, the train-
ing dataset was used to train the model, which was then applied to the testing dataset.
The predictions that the trained model creates based on the testing dataset are compared with the presence of multi-

firing for those cells to produce an accuracy value. The creation of the subsets, training, and testing is repeated 1,000
times, allowing us to extract various metrics and attributes of the model across the iterations, resulting in comprehensive
measures of the model that account for variations in the training and testing dataset induced by the random selection of
the datasets. Utilizing theMCCV, we were able to visualize the distribution of the accuracy, precision, recall, and F1 values
for each of the models and obtain the corresponding median, mean, standard error of the mean, and range. Additionally,
by storing the coefficient or feature importance values for each of the MCCV iterations, we derived the mean weight given
to each feature coefficient throughout the iterations. We also used Shapley Additive Explanations (Lundberg and Lee,
2017) to extract feature importance across all models on the 80%/20% split using MCCV. The SHAP values were plotted
on beeswarm plots and then bar plots showing the absolute average SHAP values. All the code is available at https://
github.com/PainLabUNM/Zurek_et_al_eNeuro_2024.

Principal component analysis. As an alternate approach to understanding feature importance, we used the selected
features of hDRG-N to perform a principal component analysis (PCA) in Python v3.12 using scikit-learn (Pedregosa
et al., 2011). Jupyter Notebook was used to write and share code, and PANDAS was used for data processing and nor-
malization (McKinney, 2010; Kluyver et al., 2016). We first normalized the data using the “normalize” function and then
applied three-component analysis. We extracted the explained variance and feature importance using scikit-learn and
plotted the data using matplot-lib (Hunter, 2007).

Results
Intrinsic properties in multi- versus single-firing hDRG-N
Using patch-clamp electrophysiology in current-clamp mode, we compared a variety of intrinsic and phenotypic

properties of single- and multi-firing hDRG-N (Fig. 1, example traces ). Single-firing hDRG-N made up 30.8% (29/94) of
our dataset. Cell diameter measured during clamp recording with an IR-2000 Dage MTI camera (Fig. 2A) showed that
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multi-firing hDRG-N are smaller than single-firing hDRG-N (45.03 ± 0.95 µm and 49.69± 2.15 µm, respectively,
p = 0.0377). Cell capacitance was also significantly different, single-firing cells had an average capacitance 132.3 ±
13.34 pF, and multi-firing cells had an average capacitance of 84.58 ±6.26 pF, p=0.0008 (Fig. 2B). There was no signifi-
cant difference in RMP between single and multi-firing cells (Fig. 2C). Single-firing cells had a significantly lower input
resistance (Rin), 89.23 ±13.55 MΩ, compared with 311.2 ± 40.25 MΩ for multi-firing cells, p<0.0001 (Fig. 2D).
Rheobase for single firing cells (927.2 ± 103.8 pA) was significantly higher than rheobase for multi-firing cells (340.6 ±
58.86 pA), p<0.0001 (Fig. 2E), though when rheobase was normalized to cell capacitance, there was no significant differ-
ence in normalized rheobase (Fig. 2F). FSL was sooner in single-firing cells than multi-firing cells (40.64± 18.63 ms and
141.50±20.26 ms, respectively, p<0.0001; Figs. 1C, 2G). We defined cells with delayed firing as cells with an
FSL > 100 ms andmulti-firing cells (37%) were much more likely to exhibit delayed firing than single-firing cells (7%) consis-
tent with the FSL data, p < 0.0001 (Fig. 2H). There was no significant difference in sag percentage (Fig. 2I); however, multi-
firing cells were more likely, 66%, to show visible sag than single-firing cells, 34%, p<0.0001 (Figs. 1B, 2J) on visual inspec-
tion. There was no significant difference in rebound firing (Figs. 1B, 2K). We also looked at spontaneous activity of the cells
both at rest and when applying enough current to hold the cell at −45 mV membrane potential. At rest, only multi-firing cells
exhibited any spontaneous activity, 12%, compared with 0% for single firing cells (Fig. 2L). Multi-firing cells also had more
spontaneous activity when held at −45 mV, 55% of multi-firing cells compared with only 7% of single-firing cells (Fig. 2M).

AP waveform properties in multi- versus single-firing hDRG-N
AP amplitude
Single- and multi-firing hDRG-N AP waveform properties were analyzed using whole-cell patch-clamp electrophysiol-

ogy in current-clamp mode of the rheobase spike (Fig. 1C, example traces ). There were no significant differences found
in AP amplitude or AP threshold (Fig. 2O,P). However, there was a significant difference in AP peak. Single-firing hDRG-N
had a smaller AP peak of 48.95±2.93 mV andmulti-firing hDRG-N had an AP peak of 54.95± 1.46 mV, p=0.0068 (Fig. 2N).
There was also a difference in AP after hyperpolarization (AHP). Single-firing cells had an AHP of −27.77±1.00 mV and
multi-firing cells had and AHP of −31.79±0.90 mV, p=0.0219 (Fig. 2Q).

AP duration
AP duration of the rheobase in hDRG-N was analyzed and multi-firing cells had a longer AP duration in all measure-

ments, AP rise time, AP decay time, and AP half-width (HW). AP rise time for single-firing hDRG-N was 1.045 ±
0.116 ms and 1.265± 0.63 ms for multi-firing hDRG-N, p=0.0143 (Fig. 2R). AP decay time was also significantly longer

Figure 1. Example traces of a single-firing and multi-firing hDRG-N. A, Example traces of a single-firing hDRG-N at −100 pA, rheobase, and 400 pA over
rheobase. B, Example traces of a multi-firing hDRG-N at −100 pA, rheobase, and at 100 pA over rheobase. Scale bar, 100 ms, 20 mV. C, Zoom in of rheo-
base trace of cells in A andB showing the short AP duration and short FSL of the single-firing hDRG-N (black) and the long AP duration and long FSL of the
multi-firing hDRG-N (red).
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in multi-firing hDRG-N at 10.64 ±1.02 ms and shorter in single-firing hDRG-N 4.934 ±0.984 ms, p<0.0001 (Fig. 2S). AP
HWwas also longer in multi-firing hDRG-N at 4.483 ± 0.322 ms and 2.545± 0.308 ms, p<0.0001 (Fig. 2T). We also looked
at the maximum rise and decay slope. While there was no significant difference in max rise slope (Fig. 2S), the max decay
slope was significantly larger in multi-firing hDRG-N (−25.64 ±1.61 dmV/dms) compared with single-firing hDRG-N
(−43.14± 4.69 dmV/dms), p=0.0011 (Fig. 2T).

Correlations of electrophysiological properties in single- versus multi-firing hDRG-N
Pearson’s correlation matrix was used to determine correlations of the electrophysiological properties measured in

single- andmulti-firing hDRG-N (Fig. 3). Several properties were positively correlated with multi-firing cells including spon-
taneous activity when the cell was held at −45 mV (SA_45), Rin, FSL, visible sag, long AP duration (specifically decay time
and HW), and a larger decay slope. Some properties were negatively correlated with multi-firing hDRG-N including cell
capacitance and rheobase. We also found some interesting correlations throughout. For example, rheobase in
hDRG-N was negatively correlated with AP rise, AP decay, and AP HW, suggesting that cells that have a long AP duration
tend to fire a lower current input. AP rise time was negatively correlated with AP amplitude and AP peak showing that the
length of the depolarization phase of an AP affects the amplitude of the AP. Capacitance was positively correlated with cell
size which has been previously reported (Zheng et al., 2019). Taken together, these data help elucidate not only the elec-
trophysiological properties of hDRG-N that are correlated with single and multi-firing cells but also how these properties
are correlated with other properties in hDRG-N.

Figure 2. Intrinsic properties and firing phenotypes of hDRG-N neurons in single versus multi-firing cells. Intrinsic properties and firing phenotypes were
compared between single and multi-firing cells. A, Cell diameter, B, capacitance, C, resting membrane potential (RMP), D, input resistance (Rin), E, rheo-
base, F, normalized rheobase, G, first-spike latency (FSL), H, percent delayed firing, FSL> 100 ms, I, sag percentage at −100 pA current input (Sag_R),
J, percentage of cells with visible sag, K, percentage of cells that have rebound firing. L, Percentage of cells with spontaneous activity (SA) at rest,
M, percentage of cells with spontaneous activity when held at −45 mV. N, AP peak. O, AP amplitude. P, AP threshold. Q, AP After hyper-polarization
(AHP). R, AP rise time, S, AP decay time, T, AP half-width. U, Max AP rise slope. V, Max AP decay slope. *p<0.05, **p<0.01, ***p<0.001,
****p < 0.0001 by Mann–Whitney for A–G, I, N–V. By Fisher’s exact test for H, J–M.
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Comparison of model accuracies in predicting single- and multi-firing hDRG-N
To test if machine learning was able to predict multi- versus single-firing cells based on electrophysiological features, we

recorded 94 hDRG-N from 10 donors. Since this is a relatively low number for machine learning models, we used a MCCV
method that split the sample in an 80/20% train/test split across 1,000 iterations. Then we ran all the splits through five
different models, generated model performance scores, and extracted feature coefficients and importances from each
model (Fig. 4). We tested five machine learning models, logistic regression (LR), k-nearest neighbors (KNN), random forest
classifier (RF), support vector classifier (SVC), and eXtreme Gradient Boost (XGBoost) with (Fig. 5) and without feature
selection (Figs. 6, 7). Machine learning models such as LR and SVC have a hard time handling highly correlated features;
therefore we ran the models with all features (Figs. 6, 7) and with feature selection that accounts for highly correlated var-
iables (Fig. 5; Ranganathan et al., 2017). Several features that are highly correlated are the features describing AP duration
and AP amplitude. Since both AP rise and AP decay time affect AP HW and all three were significantly longer in multi-firing
cells (Fig. 2), we excluded AP rise time and AP decay time from the features used to determine model accuracy in our final
models. Also, AP amplitude is highly correlated with AP threshold and AP peak. Since AP amplitude was not significantly
different between single- and multi-firing cells but AP peak was, we decided to exclude AP amplitude and focus the

Figure 3. Pearson’s correlation matrix of hDRG-N features. Features compared included size, capacitance (Cap), presence of rebound firing, spontaneous
activity at rest (SA_rest), spontaneous activity at −45 mV (SA_45), resting membrane potential (RMP), input resistance (Rin), rheobase (Rheo), normalized
rheobase (Norm_rheo), first spike latency (FSL), sag ratio (sag_R), presence of visible sag, AP peak, AP amplitude, AP threshold, AP rise time, AP decay,
AP half-width, afterhyperpolarization (fAHP), rise slope (R_slope), decay slope (D_slope), and multi-firing.
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models on AP peak. Rise slope and decay slope are direct measurements of the relationship of AP amplitude and AP dura-
tion, so those were also dropped from the final model predictions. Because our dataset is relatively small for machine
learning algorithms, we ran 1,000 Monte Carlo simulations that randomized the 80/20 train/test split of the data. Model
accuracies were plotted in a violin plot and model performance was compared (Fig. 5A,B). We found that all models
had accuracies ∼80% on average (Fig. 5B). SVC and XGBoost were the best performing models with an accuracy of
81.90 ±0.29% and 81.88 ± 0.28%, respectively. LR and KNN were the next best performing models with an accuracy
of 80.30± 0.31% and 80.55 ± 0.31%. RF was the worst performing model with an accuracy of 76.91 ±0.32%. RF is a pop-
ular model in biological predictive algorithms, but our data shows that multiple models should be tested to determine the
best model for a dataset.

Electrophysiological features that are predictive of single- and multi-firing hDRG-N
We next extracted feature coefficients for the LR and SVC models and feature importance for the RF model (Fig. 4). The

KNN model is not able to compute to feature coefficients; therefore, it was not used to compute features predictive of
multi-firing hDRG-N. Feature importance and coefficients are automatically calculated by the machine learning algorithms
and can be extracted after model fitting. After runningMCCV and generating ourmodels, we extracted the resulting feature
coefficients from the models to determine which features were most important in predicting single or multi-firing in
hDRG-N. The LR, RF, and SVCmodel all predicted that a long FSLwas themost important feature in predictingmulti-firing
cells while XGBoost predicted it as the third most important feature (Fig. 8). XGBoost predicted a long AP duration (mea-
sured by HW) was the most important feature while LR and SVC predicted it as the second most important feature for
predicting multi-firing hDRG-N, while the RF model predicted it as the third most important feature. Other features that
had relatively high coefficients/importance in predicting multi-firing included rheobase, SA_45, AHP, and Rin. We also
used Shapley Additive Explanations to extract feature importance for all the models, and while the relative importance
of each feature changed slightly, the same features, a long FSL, a long HW, SA_45, and a low rheobase, all were scored
highly in predictingmulti-firing hDRG-N (Figs. 9, 10). Taken together, these data show that a long FSL and long HWare two
of the most important features in predicting multi-firing hDRG-N.

PCA extracts features important for multi-firing cells
We performed 3D PCA on our 94 hDRG-N using the features selected for the machine learning models. We found that

there was a cluster of multi-firing cells that was distinct from the single-firing neurons (Fig. 11A, orange dots), but some
multi-firing cells did cluster with the single-firing cells (Fig. 11A, blue dots). We found that 67.4% of the variance was
explained by principal component 1 (PC1), 23.8% of the variance was explained by PC2, and that 5.1% of the variance

Figure 4. Machine learning model flow chart. Analysis was performed on 94 hDRG recordings, split using Monte Carlo cross-validation (MCCV), five dif-
ferent models run, and features extracted. Finally, we ran this analysis again using recordings of mouse DRG (mDRG).
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was explained by PC3 (Fig. 11B). The feature importance contribution to each PC can be explained by the PC loadings.
The loadings for PC1 were 0.73 for rheobase, 0.65 for Rin, and 0.21 for FSL (Fig. 11C). The feature loadings for PC2 were
0.88 for FSL, 0.43 forRin, and 0.12 for Rheo (Fig. 11D). Since PC1 and PC2 explain 95%of the variance, themost important
features for explaining the variance are rheobase, FSL, and Rin.

Machine learning models predictive of multi-firing in hDRG-N are able to predict multi-firing in mDRG-N
We found that similar to hDRG-N, ∼30% (6/20) of mDRG-N were single-firing in our dataset. To test if the models and

features that are important in single- versus multi-firing hDRG-N are also important in mDRG-N, we first compared the
electrophysiological feature differences in single- and multi-firing cells in mDRG-N (Fig. 12). We found several properties
were significantly different in multi-firing mDRG-N such as a longer FSL, a lower rheobase, and a longer AP HW, similar to
the properties that were different in hDRG-N. Pearson’s correlation matrix shows that these features were strongly cor-
related with multi-firing cells (Fig. 13). We found that the properties that were negatively correlated with multi-firing
hDRG-N, such as rheobase, were also negatively correlated with mDRG-N and that properties positively correlated
with multi-firing hDRG-N, such as FSL and HW were, also positively correlated in mDRG-N.
Models generated using all 94 hDRG-N are able to predict single- and multi-firing in mDRG-N with >90% accuracy

(Fig. 14F). We found that the RF hDRG-N generated model performed the best when applied to the mDRG-N dataset

Figure 5. Performance of chosen models across randomized train–test splits. A, Accuracies of logistic regression, k-nearest neighbors, random forest,
linear support vector machine, and eXtreme Gradient Boost on Monte Carlo simulation (1,000 randomly created 80-20 train–test splits) were compared
with violin plots of model accuracy when trained and tested on standardized hDRG-N data. Plot represents the range of accuracies, and interior box
and whisker plot shows quartiles and median. B, Table showing performance metrics of all models.
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with 100% accuracy, precision, recall, and F1 scores (Fig. 14C, confusion matrix) while the SVCmodel performed second
best with 95% accuracy, 93% precision, 100% recall, and 97% F1 score (Fig. 14D, confusion matrix). LR, KNN, and
XGBoost all performed similarly with 90% accuracy (Fig. 14A,B,F). These data show that the same electrophysiological
features that predict multi-firing in hDRG-N are predictive of multi-firing in mDRG-N as well.

Discussion
Both hDRG-N and mDRG-N are used to understand the electrophysiological properties associated with pain.

Multi-firing DRG-N are more excitable than single-firing DRG-N; therefore, we examined the electrophysiological proper-
ties that are predictive of multi-firing using machine learning. We found that a similar percentage of neurons were multi-
firing in both hDRG-N and mDRG-N, ∼70%. We found that in both hDRG-N and mDRG-N, a long FSL and a long AP HW
are the properties that are most predictive of multi-firing DRG-N. While many other features were significantly different in
single- versus multi-firing cells, such as capacitance and AP peak, machine learning shows that these specific features
were not the most predictive of multi-firing. Machine learning helps us identify which features are likely to be important
in regulating multi-firing in a way that standard statistical methods cannot. We developed our machine learning models
using our hDRG-N dataset which came from a diverse demographic of 10 donors. We found that several properties
were negatively or positively correlated with multi-firing cells. For example, a long FSL, a long AP HW, and a low rheobase
were correlated with multi-firing cells. We also used a smaller dataset of naive untreated BALB/c mice and found those
same properties were correlated with multi-firing mDRG-N, though the correlations were much stronger. We hypothesize
that since BALB/c share the same genetics and our sample looked only at naivemice killed the sameway, the properties of
mDRG-N are more consistent when compared with our diverse set of hDRG-N with a variety of genetics, disease states,
cause of death, and in vivo treatments. While there may be some differences in the molecular mechanisms governing

Figure 6.Performance of chosenmodels across randomized train–test splits. Performances of logistic regression, k-nearest neighbors, random forest, and
linear support vector machine on Monte Carlo simulation (1,000 randomly created 80-20 train–test splits) were compared with violin plots of model accu-
racy when trained and tested on standardized/unstandardized dataset, hue represents model, plot is cut to represent the range of accuracies, and interior
box and whisker plot show quartiles and median. A, Unstandardized dataset. B, Standardized dataset. C, Table showing performance metrics of both
groups of models.
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multi- and single-firing in hDRG-N and mDRG-N, our data shows that the same electrophysiological properties are pre-
dictive of multi-firing across both species. In fact, the machine learning models we generated for the hDRG-N had higher
accuracy scores when the mDRG-N dataset was tested.
There are at least eight neuronal subtypes in the DRG that can be defined by genetic labeling, nonpeptidergic nocicep-

tors, peptidergic nociceptors, proprioceptors, and five classes of low threshold mechanoreceptors (LTMR), each with dis-
tinct firing patterns (Zheng et al., 2019). Several of these are multi-firing, such as nociceptors, C-LTMR, and
proprioceptors, while some are single-firing, such as Aβ SA1-LTMR and Aβ Field-LTMR. The nociceptors and C-LTMR
have very similar firing patterns, long AP HW and a long FSL, while the Aβ SA1-LTMR and Aβ Field-LTMR have a short
AP HW and short FSL. Peptidergic DRG neurons that have a higher capacitance have a smaller AP HW and are less likely

Figure 7. Feature importance metrics across logistic regression, random forest, and support vector classifier for standardized and unstandardized data.
Mean coefficient weights or feature importance, when applicable, were extracted from the iterations in the Monte Carlo simulation. Graphs on the left rep-
resent models with unstandardized data while right use standardized. A, B, Logistic regression. C, D, Random forest. E, F, Support vector classifier.
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Figure 8. Feature importance metrics across logistic regression, random forest, and support vector classifier for standardized data. Mean coefficient
weights or feature importance, when applicable, were extracted from the iterations in the Monte Carlo simulation and ordered. Absolute value of coeffi-
cients is displayed for logistic regression and support vector classifier. A, Logistic regression. B, Random forest. C, Support vector classifier.D, XGBoost.

Figure 9. Monte Carlo Shapely Additive Explanations (SHAP) Beeswarm plots. Beeswarm plots for A logistic regression. B, k-nearest neighbors.
C, Random forest. D, Support vector classifier. E, XGBoost.
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to be multi-firing (Zheng et al., 2019). While we only looked at single-firing versus multi-firing neurons, future work could
focus on using machine learning to detect different neuronal subtypes based on firing patterns.
It has been reported by others that multi-firing hDRG-N have a longer FSL and longer AP HW (Yi et al., 2022). Molecular

experiments in neurons have attributed changes in AP HW to a variety of voltage-gated sodium channels (NaV), voltage-
gated potassium channels (Kv), and voltage-gated calcium channels (VGCC) and that these ion channels are important in
neuronal excitability and pain perception (Alles and Smith, 2018; Goodwin and McMahon, 2021). Several NaV channels
have been implicated in pain in humans and animal models, including NaV1.7 and NaV1.8 (Alles and Smith, 2021;
Goodwin and McMahon, 2021). NaV1.7 (HWTX-IV) and NaV1.8 (A-803467, PF-01247324) antagonists decrease neuronal
excitability of sensory neurons (Payne et al., 2015; Ye et al., 2015; Atmaramani et al., 2020; Mulpuri et al., 2022), while acti-
vation of NaV1.8 increases neuronal excitability (Ye et al., 2015). Sensory neurons with increased NaV1.8 expression had
longer APHW (Djouhri et al., 2003; Thériault and Chahine, 2014; Zheng et al., 2019;Mulpuri et al., 2022). Knockdown of the

Figure 10.Monte Carlo Shapely Additive Explanations (SHAP) values. A, Logistic regression.B, k-nearest neighbors.C, Random forest.D, Support vector
classifier. E, XGBoost.

Figure 11. PCA with data normalization. A, PCA plot. B, Explained variance for each PC. C, Feature importance for PC1. D, Feature importance for PC2.
E, Feature importance for PC3.
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β4 subunit of NaV1.8 decreased AP HW and decreased neuronal excitability in mDRG-N (Xiao et al., 2019). Single-cell
RNA-seq has found that increased NaV1.8 and NaV1.9 expression and decreased NaV1.7 expression are correlated
with an increase in AP HW (Thériault and Chahine, 2014). Expression of NaV1.8 and NaV1.9 is high in multi-firing nocicep-
tors and C-LTMR and low in single-firing Aβ-LTMR (Zheng et al., 2019). Taken together these data suggest that NaV1.8
and possibly NaV1.9 increase AP HW and neuronal excitability, and that targeting NaV1.8 pharmacologically decreases
AP HW and excitability. Our machine learning models show that increased AP HW is predictive of multi-firing cells and
the literature suggests NaV1.8 may be a molecular mechanism that regulates both AP HW and neuronal excitability.
Several Kv channels are also implicated in regulating AP HW, FSL, and neuronal excitability. Blocking Kv3 and Kv1 chan-

nels with TEA andDTX increased the APHW in hippocampal neurons (Hoppa et al., 2014). Experiments in rat DRG neurons
show that dominant-negative mutation in Kv3.4 effectively broadens AP HW showing that Kv3.4 governs AP repolarization
(Alexander et al., 2022). Rat DRG-N treated with calcineurin which attenuates (decreases) Kv3.4 action increases AP HW
(Zemel et al., 2017). Data shows that multi-firing nociceptors and C-LTMR have a long APHWand a long FSL (Zheng et al.,
2019). These neuronal subtypes showed decreased levels of Kv1.1, Kv1.2, Kv2.1, Kv3.1, Kv3.3, Kv7.2, Kv7.3, Kv9.1, and
Kv11.1 and increased levels of Kv4.1, Kv6.2, and Kv6.3 when compared with single firing Aβ-LTMR (Zheng et al., 2019).
Using a variety of Kv inhibitors, the main contribution to potassium currents in nonpeptidergic nociceptors were Kv1,
Kv2, and Kv4, while in C-LTMR the main contributor was Kv4 (Zheng et al., 2019). In single-firing Aβ-LTMR the main con-
tributor to potassium currents was Kv3 followed by Kv1 (Zheng et al., 2019). Computational modeling showed that
C-LTMR neurons without Kv4 would have a short FSL. Blocking Kv4.3 with AmmTx3 or Kv4.3 KO mice had a decreased

Figure 12. Intrinsic properties and firing phenotypes of mDRG-N neurons in single- versus multi-firing cells. Intrinsic properties and firing phenotypes were
compared between single- and multi-firing cells. A, Cell diameter, B, capacitance,C, resting membrane potential (RMP), D, input resistance (Rin), E, rheo-
base, F, normalized rheobase, G, first-spike latency (FSL), H, percent delayed firing, FSL> 100 ms, I, sag percentage at −100 pA current input (Sag_R),
J, percentage of cells with visible sag, K, percentage of cells that have rebound firing. L, Percentage of cells with spontaneous activity (SA) at rest,
M, percentage of cells with spontaneous activity when held at −45 mV. N, AP peak. O, AP amplitude. P, AP threshold. Q, AP after hyper-polarization
(AHP). R, AP rise time, S, AP decay time, T, AP half-width. U, Max AP rise slope. V, Max AP decay slope. *p<0.05, **p<0.01, ***p<0.001,
****p < 0.0001 by Mann–Whitney for A–G, I, N–V. By Fisher’s exact test for H, J–M.
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FSL in C-LTMR,while blocking Kv1with DTx had no effect on firing properties in C-LTMR (Zheng et al., 2019). Blocking Kv1
current with DTx in single-firing Aβ-LTMR turned them into multi-firing neurons (Zheng et al., 2019).
Calcium channels may also be involved in regulating FSL, AP HW, and neuronal excitability. The voltage-gated calcium

channel alpha-2-delta-1 subunit (α2δ-1) has been implicated in chronic pain and neuronal excitability (Newton et al., 2001;
Alles and Smith, 2018; Dolphin, 2018; Cui et al., 2021). Experiments in mDRG-N show that DRG cultured from α2δ-1 knock
out mice have a shorter FSL and AP HW and that these neurons are less excitable, i.e., firing fewer APs (Margas et al.,
2016). CaV2.2 and α2δ-1 expression is also increased in multi-firing nociceptors and C-LTMR with long AP HW and
long FSL, while it is absent in single Aβ-LTMR with short AP HW and short FSL (Zheng et al., 2019). Gabapentinoids
are used as first-line treatment for neuropathic pain and act on α2δ-1 (Alles and Smith, 2018). Many publications show
treatment with gabapentinoids decrease evoked calcium currents and neuronal excitability (Bannister et al., 2011;
Biggs et al., 2014, 2015). The calcitonin gene-related peptide (CGRP) was also increased in multi-firing nociceptors
and C-LTMR (Zheng et al., 2019).
Several other ion channels are implicated in nociception and chronic pain including HCN2, T-type Ca2+ channels, and

Ca2+-sensitive K+ channels (Emery et al., 2012; Alles and Smith, 2021). Importantly, HCN2 channels modulate sag ratio

Figure 13. Pearson’s correlation for mDRG properties. Features compared included size, capacitance (Cap), presence of rebound firing, spontaneous
activity at rest (SA_rest), spontaneous activity at −45 mV (SA_45), resting membrane potential (RMP), input resistance (Rin), rheobase (Rheo), normalized
rheobase (Norm_rheo), first spike latency (FSL), sag ratio (sag_R), presence of visible sag, AP peak, AP amplitude, AP threshold, AP rise time, AP decay, AP
half-width, afterhyperpolarization (fAHP), rise slope (R_slope), decay slope (D_slope), and multi-firing.
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and rebound firing, which we found were correlated with multi-firing cells by Pearson’s correlation analysis (Emery et al.,
2011). Increased expression of T-type Ca2+ channel CaV3.2 is associated with increased spontaneous activity which we
also found was present almost exclusively in multi-firing cells (Li et al., 2017). Many other channels are implicated in neu-
ronal excitability and warrant future studies in how these affect electrophysiological properties.
There are extensive data demonstrating that a variety of ion channels affect AP HW and FSL. Our machine learning sug-

gests that these are the most predictive features of single- versus multi-firing in DRG-N. Much of the work to elucidate
which ion channels are important for these features has been done in rodents and not hDRG-N. Given the machine learn-
ingmodels for hDRG-N are also able to predict multi-firing in mDRG-N and that the same electrophysiological features are
correlated with multi-firing cells in both species, we predict the same ion channels would be important in hDRG-N. To test
this hypothesis, single-cell patch-RNA-seq and/or post hoc labeling could be used to determine which ion channels are
up- or downregulated in multi-firing hDRG-N. Additionally, it has been shown that there are at least eight neuronal sub-
types in DRG-N, with a variety of firing patterns that can be differentiated by genetic markers (Zheng et al., 2019;
Qi et al., 2024). Our current dataset and machine learning tools cannot differentiate these neuronal subtypes presently.
However, we hope to continue expanding our capabilities in future studies.
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