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Abstract 

Background Epidemiological and clinical studies often have missing data, frequently analysed using multiple impu-
tation (MI). In general, MI estimates will be biased if data are missing not at random (MNAR). Bias due to data MNAR 
can be reduced by including other variables (“auxiliary variables”) in imputation models, in addition to those required 
for the substantive analysis. Common advice is to take an inclusive approach to auxiliary variable selection (i.e. 
include all variables thought to be predictive of missingness and/or the missing values). There are no clear guidelines 
about the impact of this strategy when data may be MNAR.

Methods We explore the impact of including an auxiliary variable predictive of missingness but, in truth, unrelated 
to the partially observed variable, when data are MNAR. We quantify, algebraically and by simulation, the magnitude 
of the additional bias of the MI estimator for the exposure coefficient (fitting either a linear or logistic regression 
model), when the (continuous or binary) partially observed variable is either the analysis outcome or the exposure. 
Here, “additional bias” refers to the difference in magnitude of the MI estimator when the imputation model includes 
(i) the auxiliary variable and the other analysis model variables; (ii) just the other analysis model variables, not-
ing that both will be biased due to data MNAR. We illustrate the extent of this additional bias by re-analysing data 
from a birth cohort study.

Results The additional bias can be relatively large when the outcome is partially observed and missingness is caused 
by the outcome itself, and even larger if missingness is caused by both the outcome and the exposure (when 
either the outcome or exposure is partially observed).

Conclusions When using MI, the naïve and commonly used strategy of including all available auxiliary variables 
should be avoided. We recommend including the variables most predictive of the partially observed variable as auxil-
iary variables, where these can be identified through consideration of the plausible casual diagrams and missingness 
mechanisms, as well as data exploration (noting that associations with the partially observed variable in the complete 
records may be distorted due to selection bias).
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Introduction
Epidemiological studies often have missing data, with 
multiple imputation (MI) a commonly-used, flexible, and 
general method for analysing partially observed datasets 
[1]. A sufficient condition for unbiased estimation using 
MI is that data are either missing completely at random 
(MCAR) or missing at random (MAR), conditional on 
the observed data. In addition, imputation models must 
be appropriately specified and compatible with the sub-
stantive analysis model. This means that imputation 
models should contain the same variables and include 
any required non-linear terms or interactions implied 
by the analysis model [2] – with the “substantive model 
compatible” approach used in  situations where it is dif-
ficult to specify a compatible model [3]. In general, MI 
estimates will be biased if data are missing not at ran-
dom (MNAR), unless additional information is available. 
Table 1 provides an intuitive, practical, interpretation of 
these, and other, missing data terms—for a full discus-
sion, with examples, see Chapter 1 of Carpenter et al. [4], 
and the more detailed description of MAR in the Discus-
sion section.

Common MI strategies when data are suspected to be 
MNAR include:

1. Exploring the sensitivity of MI results to departures 
from the MAR assumption using a “pattern mixture” 
approach [6]. In this approach, the observed and 
missing values are allowed to differ by a value, or set 
of values, δ (the “sensitivity parameter”).

2. Applying an MI method that can accommodate data 
MNAR, such as the “not-at-random fully conditional 
specification” procedure [7]. This is an extension of 
the pattern mixture approach.

3. Including a “proxy” for the partially observed variable 
(i.e. a variable that is predictive of the missing values) 
as an auxiliary variable (Table  1) in the imputation 
model [8].

Note in some MNAR settings, complete records analy-
sis (CRA, Table 1) will yield unbiased estimates when MI 
will not e.g. if estimating the exposure coefficient from a 
linear regression when the exposure is MNAR and miss-
ingness is unrelated to the analysis outcome [9].

In this paper, we focus on strategy 3, including auxil-
iary variables in the imputation model. We highlight the 
consequences of using an inclusive strategy for auxiliary 
variable selection (i.e. including all variables thought to 
be predictive of missingness and/or the missing values) 
as has been suggested previously (and, anecdotally, is 
common practice) [10–12]. We demonstrate that when 
data are MNAR and the imputation model includes a 
predictor of missingness that is, in truth, unrelated to 
the partially observed variable, then the bias due to data 
being MNAR may be increased rather than reduced. This 
occurs in a similar way to bias amplification in the pres-
ence of unmeasured confounding when conditioning on 
variables that only influence an exposure [13].

Our motivating example is a longitudinal cohort study 
where we are interested in the association between 

Table 1 Missing data definitions

Term Definition

Complete Records Analysis (CRA) Analysis is restricted to subjects who have complete data for all variables in the analysis model

Missing Completely At Random (MCAR) The probability that data are missing is independent of the observed and missing values of variables 
in the analysis model, and of any related variables. Data can be MCAR if missingness is caused by a variable 
independent of those in the analysis model e.g. if missingness is for administrative reasons

Missing At Random (MAR) Given the observed data, the probability that data are missing is independent of the true values of the par-
tially observed variable. Any systematic differences between the observed and missing values can be 
explained by associations with the observed data

Missing Not At Random (MNAR) If data are not MCAR nor MAR, data are said to be MNAR. The probability that data are missing depends 
on the (unobserved) values of the partially observed variable, even after conditioning on the observed data

Multiple Imputation (MI) MI is a method for handling missing data. It consists of three steps:
1. An imputation model is fitted to the observed data (this is usually some form of regression model). The 
missing values are replaced with draws (“imputed”) from its predictive distribution (after first perturbing 
the model parameters). This imputation stage is carried out multiple (M) times, to give M completed datasets
2. The analysis model is fitted to each of the M completed datasets
3. The M sets of results are combined using Rubin’s rules, [5] to correctly account for the uncertainty 
about the missing values

Predictive Mean Matching (PMM) PMM is an MI approach that uses an alternative method in Step 1 of the MI process: instead of imputing 
missing values directly from the conditional predictive distribution of the missing data given the observed 
data, each missing value is replaced with an observed value randomly chosen from a donor pool anchored 
on the conditional predicted mean

Auxiliary variable A variable that is not in the analysis model but that is included as a predictor in the imputation model
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a partially observed outcome, child’s IQ, and a fully 
observed exposure, duration of breastfeeding. If the 
probability that child’s IQ is missing (its “missingness”) is 
related to neither observed nor missing values of child’s 
IQ, given the observed data for the other analysis model 
variables, and all these variables are included in both 
analysis and imputation models, then both MI and CRA 
estimates of the outcome-exposure association will be 
unbiased [9]. On the other hand, suppose that missing-
ness in child’s IQ is caused by child’s IQ itself, as depicted 
in the causal diagram (or directed acyclic graph, DAG) in 
Fig. 1 (with X, Y, and Rind denoting our exposure (dura-
tion of breastfeeding), outcome (child’s IQ), and missing-
ness indicator for the outcome, respectively). In this case, 
child’s IQ is MNAR, conditional on the fully observed 
exposure. Since child’s IQ is the outcome of the substan-
tive analysis, both CRA and MI estimates of the out-
come-exposure association will be biased [9].

If we apply strategy 3, described above, by including the 
proxy “child’s educational attainment score” in the impu-
tation model for child’s IQ, we may reduce the bias in the 
exposure-outcome association due to child’s IQ being 
MNAR [8, 14]. This is because child’s educational attain-
ment score is highly correlated with child’s IQ. However, 
including a predictor of missingness in the imputation 
model where we believe this is unrelated to child’s IQ 
(denoted by Z in Fig. 1, e.g. whether the mother smoked 
during pregnancy) may increase the bias of the MI esti-
mate. Note (depending on the magnitude and direction 
of the associations), bias due to data MNAR may also 
increase even if auxiliary variables are predictive of both 

the missing values and missingness, particularly if the 
auxiliary variable is a collider [15].

In this paper we quantify the magnitude of the addi-
tional bias of the MI estimator of the exposure coefficient 
(fitting either a linear or logistic regression model) due 
to using an auxiliary variable that predicts missingness, 
but not the values of the partially observed variable itself, 
when data are MNAR. By “additional bias”, we mean the 
difference between the MI estimator when including a 
predictor of missingness in the imputation model (as well 
as the other analysis model variables) and the MI estima-
tor when including just the other analysis model variables 
in the imputation model (noting that both estimators 
will yield biased estimates of the true outcome-exposure 
association when data are MNAR). We consider settings 
in which either the outcome or exposure are MNAR, 
where the partially observed variable is either continu-
ous or binary, and where missingness is caused by the 
partially observed variable itself and/or another related 
variable. We quantify the additional bias using algebraic 
methods and by simulation, and illustrate our results 
using the real data example described above.

Throughout the paper, we assume that MI is performed 
by replacing missing values with draws from a suit-
able regression model (i.e. a linear or logistic regression 
model when the partially observed variable is continuous 
or binary, respectively) using a linear combination of the 
specified predictors. We focus on this approach, rather 
than e.g. predictive mean matching (PMM, Table 1) [16] 
because MI using draws from a correctly specified model 
will generally yield more precise estimates than PMM 
[17]. All analyses were conducted using Stata (17.0, Stata-
Corp LLC, College Station, TX). Stata code to perform 
the simulation studies and real data analysis are included 
in the final sections of the Supplementary Material (Sec-
tions S6 and 7).

Scenario 1. Additional bias of the MI estimator 
from including a predictor only of missingness 
in the imputation model when continuous 
outcome Y is partially observed and missingness 
is caused by Y
Methods
We first consider the setting in Fig.  1, discussed above, 
in more detail. This simplified setting is chosen to give 
insights into the more complex settings that typically 
occur in epidemiological practice. We are interested in 
the relationship between a continuous outcome Y and 
a continuous exposure X, with βYX (the parameter of 
interest) denoting the exposure coefficient from a linear 
regression of Y on X. We assume that X is fully observed 
and Y is partially observed, with variable Rind denoting 
the missingness indicator for Y (Rind = 1 if Y is observed, 

Fig. 1 Directed acyclic graph depicting the relationship 
between outcome Y, exposure X, missingness indicator 
for the outcome Rind, and potential auxiliary variable Z. Lines indicate 
causally related variables, with arrows indicating the direction 
of the causal relationship; absent lines represent variables 
with no direct causal relation
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and 0 otherwise) and π1 denoting the probability that 
Rind = 1, or π1 = P(Rind = 1). Our substantive model is sim-
ply the regression of Y on X; we do not adjust for (fully 
observed) continuous variable Z because it does not con-
found the X–Y relationship. Since Y is MNAR, with miss-
ingness caused by Y itself, the MI estimator will be biased 
(as will CRA), assuming the proportion of missing data is 
greater than zero.

Maximum additional bias of the MI estimator
Here we provide general expressions for the maximum 
additional bias of the MI estimator (when using X and 
Z as predictors in the imputation model for Y compared 
with just X), when continuous outcome Y is MNAR and 
missingness is caused by Y.

We assume that the joint distribution of Y, X, Z, and R 
is multivariate normal (with R denoting the latent normal 
variable for the binary missingness indicator variable 
Rind), with associated univariate normal distributions 
defined as follows: Y = βYXX + εY  where εY  ~ N(0, σ 2

Y
 ); 

X ~ N(µX , σ 2
X

 ); Z ~ N(µZ , σ 2
Z

 ); R = βRYY + βRZZ + εR 
where εR ~ N(0, σ 2

R
 ). R is related to Rind such that π1 = 

P(Rind = 1) = P(R ≤ r) = �
(
r−µR√

VR

)
 , with �(.) denoting the 

cumulative distribution function of the standard normal 
distribution and µR and VR denoting the mean and vari-
ance of R, respectively. We further assume that each of Y 
and R is a linear combination of the variables causing it 
plus an error term (with X and Z having no direct causes), 
with no interactions, all errors uncorrelated, no model 
mis-specification, and no measurement error, and that an 
ordinary least squares (OLS) estimator is used to obtain 
estimates in both analysis and imputation models.

Following the argument of Curnow et al. [18], we first 
provide general expressions for the expected value of 
the MI estimator in this setting, when using either X, 
or X and Z, to impute Y. In general, the expected value 
depends on the set of records with observed values of 
Y, i.e. those for which the missingness indicator, Rind , 
equals 1, or equivalently, those for which its underly-
ing normal variable R ≤ r. For example, when using 
X to impute Y, the expected value of the MI estimator 
equals the expected value of β̂YX |Rind=1 , or β̂YX |R≤r , tak-
ing expectations first over the imputation distribution, 
given the set of observed values of Y, and then over this 
set of values itself. When there are no missing data, the 
expected value of the MI estimator is equal to βYX , i.e. 
unbiased, (and bias will be minimal if data are nearly 
complete). As we detail in Supplementary Material, 
Sect. S1, as the proportion of missing values of Y tends 
to one, we can approximate, with increasing accuracy, 
β̂YX |R≤r by β̂YX |R=r for some r (tending to −∞ ). In this 
limiting case, the expected value of the MI estimator 
will tend to a maximum value of βYX |R=r ≈ βYX |Rind=1 

(denoting the exposure coefficient from a linear regres-
sion of Y on X and R or Rind). Using a similar argument, 
the expected value of the MI estimator will tend to a 
maximum value of βYX |Z=z,R=r ≈ βYX |Z=z,Rind=1 (denot-
ing the exposure coefficient from a linear regression 
of Y on X, Z, and R or Rind) when using both X and Z 
to impute Y. Note that βYX |R=r and βYX |Z=z,R=r do not 
depend on the specific values of r and z, and we use 
the more general forms βYX |R and βYX |Z,R hereafter. 
Hence, the maximum additional bias of the MI estima-
tor (i.e. the difference between the maximum bias of the 
two MI estimators) when using X and Z as predictors 
in the imputation model for Y compared with just X is 
βYX |Z,R − βYX |R . Full derivations of this and other results 
in this section are included in the Supplementary Mate-
rial, Section S1. Equations were verified by simulation 
(Supplementary Material, Section S2).

Maximum additional bias of the MI estimator in terms 
of the direct effect sizes
We next provide a general expression for the maximum 
additional bias of the MI estimator in terms of the direct 
effect sizes and error variances. βYX |R and βYX |Z,R can be 
expressed as follows:

And

where the direct effect sizes are denoted by β.. , e.g.βRY  
denotes the direct effect of Y on R, and the error vari-
ances are denoted by σ 2

.  , e.g.σ 2
Y

 denotes the error variance 
of Y.

Since 0 < β2

RY
σ 2
Y

β2

RY
σ 2
Y
+σ 2

R
+β2

RZ
σ 2

Z

 < β2

RY
σ 2
Y

β2

RY
σ 2
Y
+σ 2

R

  < 1 (assuming all 
parameters are non-zero), βYX |Z,R  < 

∣∣βYX |R
∣∣  < |βYX | , that 

is, the MI estimator of βYX will be biased towards zero. 
The maximum bias will be greater in magnitude when the 
imputation model includes X and Z as predictors than 
when it includes only X.

Then the maximum additional bias of the MI estima-
tor from including Z as a predictor is: 
βYX |Z,R − βYX |R = −βYXβ

2
RY

β2
RZ

σ 2
Y
σ 2
Z(

β2
RY

σ 2
Y
+σ 2

R
+β2

RZ
σ 2
Z

)(
β2
RY

σ 2
Y
+σ 2

R

) (2.3).
Equation (2.3) shows that the magnitude of the max-

imum additional bias will depend on the strength of 
the Y-X, R-Y, and R-Z relationships, as well as on the 
size of the error variances. There will be no additional 
bias if at least one of βYX , βRY  , or βRZ is equal to zero, 
consistent with the underlying DAG (Fig. 1). Note that 

(2.1)βYX |R = βYX ×

{
1−

β2
RY

σ 2
Y

β2
RY

σ 2
Y
+ β2

RZ
σ 2
Z
+ σ 2

R

}

(2.2)βYX |Z,R = βYX ×

{
1−

β2
RY

σ 2
Y

β2
RY

σ 2
Y
+ σ 2

R

}
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we can also express the effect on the MI estimator of 
including Z as a predictor in the imputation model 
in terms of bias amplification (defined as the bias of 
βYX |Z,R divided by the bias of βYX |R ): when Z (as well as 
X) is included in the imputation model for Y, the maxi-
mum bias due to Y being MNAR is amplified by a fac-
tor of:

Note that if instead X was partially observed and Y 
was fully observed, MI would yield unbiased results 
(given a correctly specified imputation model) 
because in this case R would not be related to X after 
conditioning on Y. However, CRA would still be 
invalid because missingness depends on the analysis 
outcome.

(2.4)

{
1+

β2
RZ

σ 2
Z

β2
RY

σ 2
Y
+ σ 2

R

}

Illustration of maximum additional bias of the MI estimator
We illustrate how the magnitude of the maximum 
additional bias, calculated using Eq.  2.3, varies with 
the direct effect sizes. We use a numerical example, 
with moderate values of the direct effect sizes βYX  , 
βRY  , and βRZ relative to the error variances, which 
were all equal to one. Hence, the magnitude of the 
biases in our example can be interpreted as both 
absolute bias and the bias, relative to the error vari-
ances. Direct effect sizes were each set to 0.00, 0.25, 
0.50, 0.75, or 1.00. For βRY  and βRZ , note that these 
values correspond approximately to odds ratios (from 
a logistic regression model for Rind) of 1.00, 1.50, 
2.30, 3.50, or 5.30 (using the general rule for trans-
forming a coefficient from a logistic to a probit model 
[19]). Figure  2 illustrates the impact of the direct 
effect sizes βYX  , βRY  , and βRZ on various measures of 
bias, derived using Eqs.  2.1–2.3. Panel A depicts the 

Fig. 2 Bias of the MI estimator of βYX when continuous outcome Y is missing not at random, with missingness caused by Y itself, 
and the imputation model includes exposure X, or X and a predictor of missingness but not the missing values, Z, varying the direct effect sizes βYX , 
βRY , and βRZ. Panel A depicts the maximum bias when the imputation model includes X. Panels B-D depict the maximum additional bias, maximum 
total bias, and maximum relative additional bias, respectively, when the imputation model includes X and Z. All bias quantities were calculated 
using Eqs. 2.1–2.3. The distribution of each box-plot is due to variation in βRY. Note that maximum total bias depends on βYX and βRY but not βRZ; 
maximum relative additional bias depends on βRZ and βRY but not βYX
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maximum bias of the MI estimator (due to Y being 
MNAR) when the imputation model includes only X 
as a predictor. Panels B-D depict the maximum addi-
tional bias (compared to the maximum bias due to 
Y being MNAR), the maximum total bias (the sum 
of the maximum bias due to Y being MNAR and the 
maximum additional bias), and the maximum relative 
additional bias (maximum additional bias multiplied 
by 100, divided by βYX  ), respectively, when the impu-
tation model includes both X and Z as predictors. 
The distribution of each box-plot is due to variation 
in βRY .

Each measure of bias is equal to zero if βYX  is equal 
to zero (additionally, the maximum additional bias 
is equal to zero if any of the direct effect sizes are 
equal to zero), and negative otherwise. The maximum 
bias due to Y being MNAR increases in magnitude 
with βYX  , but for a given value of βYX  , decreases in 
magnitude as βRZ increases. However, the maximum 
additional bias increases in magnitude with each of 
the direct effect sizes, as do the maximum total bias 
(which depends on βYX  and βRY  but not βRZ ) and the 
maximum relative additional bias (which depends on 
βRZ and βRY  but not βYX  ). Note that all parameters 
have a zero or positive value in this illustration. How-
ever, if, for example, we take the same values as men-
tioned above for βRY  and βRZ , but set βYX  to negative 
values, then the measures of bias would be of the 
same magnitude but positive.

When the relationships are as depicted in Fig. 1, but 
Y is binary, the results described here still approxi-
mately apply (results obtained by simulation, see Sup-
plementary Material, Section S3 and Figure S1). This 
follows by assuming that Y has an underlying normal 
distribution (which is valid provided the probability of 
each value of Y is not close to 0 or 1).

Scenario 2. Additional bias of the MI estimator 
from including a predictor only of missingness 
in the imputation model when continuous 
outcome Y or continuous exposure X are partially 
observed and missingness is related to Y 
via an unmeasured variable
We next consider the setting in which missingness of 
the partially observed variable (either Y or X) is related 
to Y via an unmeasured variable, U, as depicted in 
Fig. 3. We assume that the joint distribution of Y, X, Z, 
U, and R is multivariate normal (with R denoting the 
latent normal variable for the binary missingness indi-
cator variable Rind), with associated univariate normal 
distributions defined as follows: Y = βYXX + βYUU + 
εY  where εY  ~ N(0, σ 2

Y
 ); X ~ N(µX , σ 2

X
 ); Z ~ N(µZ , σ 2

Z
 ); 

U ~ N(µU , σ 2
U

 ); R = βRZZ + βRUU + εR where εR ~ N(0, 
σ 2
R

).
In this setting (given the same assumptions and using 

the same analysis model and MI method as in the pre-
vious scenario), we would expect the CRA estimator 
and the MI estimator to be biased because missingness 
is related to our analysis outcome Y (conditional on X), 
via U. However, in the special case in which partially 
observed variable Y is continuous and the analysis model 
is a linear regression, both the CRA and MI estimators 
(using either X, or X and Z, as predictors in the impu-
tation model for Y) are unbiased. Proof is provided in 
Supplementary Material, Section S4. Note that this is 
not the case if Y is binary, although the bias is generally 
small (results obtained by simulation, see Supplementary 
Material, Section S3 and Figures S2-3).

When X is partially observed, the MI estimator (using 
either Y, or Y and Z, as predictors in the imputation 
model for X) will be biased because missingness is related 
to X, conditional on Y. The theoretical magnitude of the 
maximum additional bias has a more complicated form 

Fig. 3 Directed acyclic graph depicting the relationship between outcome Y, exposure X, missingness indicator for the outcome or exposure Rind, 
potential auxiliary variable Z, and unmeasured variable U. Lines indicate causally related variables, with arrows indicating the direction of the causal 
relationship; absent lines represent variables with no direct causal relation
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when X is partially observed because the imputation and 
analysis models are not the same. Again following the 
argument of Curnow et  al. [18], the MI estimator will 
be unbiased only if unbiased estimates of all the impu-
tation model coefficients can be obtained using records 
with observed values of X. However, taking the imputa-
tion model coefficient for Y as an example, we find that 
this coefficient is biased, taking its maximum value of 
βXY |R (denoting the exposure coefficient from a linear 
regression of X on Y and R) when the imputation model 
includes only Y, and βXY |R,Z (denoting the exposure coef-
ficient from a linear regression of X on Y, Z, and R) when 
the imputation model includes Y and Z, as the proportion 
of missing values tends to one.

In terms of the direct effect sizes and error variances,

and

where the direct effect sizes are denoted by β.. , e.g.βRU 
denotes the direct effect of U on R, and the error vari-
ances are denoted by σ 2

.  , e.g.σ 2
Y

 denotes the error vari-
ance of Y. Since 

∣∣βXY |R,Z
∣∣ > 

∣∣βXY |R
∣∣  > |βXY | , bias of the Y 

(3.1)βXY |R = β
XY

×
1

1−
{
β2
YU

β2
RU

σ 4
U
/

(
β2
YX

σ 2
X
+ β2

YU
σ
2

U
+ σ 2

Y

)
(β2

RZ
σ 2
Z
+ β2

RU
σ 2
U
+ σ 2

R
)

}

(3.2)βXY |R,Z = βXY ×
1

1−
{
β2
YU

β2
RU

σ 4
U
/

(
β2
YX

σ 2
X
+ β2

YU
σ
2

U
+ σ 2

Y

)(
β2
RU

σ 2
U
+ σ 2

R

)}

coefficient will be amplified when Z is also included as a 
predictor in the imputation model for X (see Supplemen-
tary Material, Section S4, for derivation of these results).

Due to its complexity in the setting in which X is par-
tially observed, an expression for the theoretical mag-
nitude of the additional bias of the MI estimator is not 
derived here. However, we illustrate the effect on the MI 
estimate from including auxiliary variable Z in the impu-
tation model by simulation (see Supplementary Material 
Section S3 for further details). Note that we refer to the 
MI or CRA “estimate” when describing simulation study 
results, rather than “estimator” (which we have used 
when describing algebraic results).

Figure  4 illustrates the impact of the direct effect  

sizes on the additional bias of the MI estimate when 
the imputation model includes Z as a predictor and X is 
partially observed (with 50% missing values). As before, 
the additional bias is plotted against βYX and βRZ . The 

Fig. 4 Additional bias of the MI estimate of βYX when continuous exposure X is missing not at random, conditional on outcome Y, 
and the imputation model includes Y and an auxiliary variable Z that predicts missingness but not the missing values, with missingness related to Y 
via an unmeasured variable U. Simulation results shown when 50% of values are missing, varying the direct effect sizes βYX , βYU,βRU , and βRZ . The 
distribution of additional bias in each box-plot is averaged over the values of βYU and βRU
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distribution of the additional bias for each value of βYX 
and βRZ (represented as a box-plot) is due to the variation 
in βYU and βRU . Figure 4 shows that the additional bias 
is small, regardless of the direct effect sizes. Results are 
similar if X is binary (see Supplementary Material, Figure 
S4).

Scenario 3. Additional bias of the MI estimator 
from including a predictor only of missingness 
in the imputation model when continuous 
outcome Y or continuous exposure X are partially 
observed and missingness is caused by both X 
and Y
Finally, we consider the setting in which the CRA and 
MI estimators are biased if either Y or X are partially 
observed: when Y and X directly cause missingness, as 
per Fig.  5. We assume that the joint distribution of Y, 

X, Z, and R is multivariate normal (with R denoting the 
latent normal variable for the binary missingness indica-
tor variable Rind), with associated univariate normal dis-
tributions defined as follows: Y = 
βYXX + εY  where εY  ~ N(0, σ 2

Y
 ); X ~ N(µX , σ 2

X
 ); 

Z ~ N(µZ , σ 2
Z

 ); R = βRYY + βRXX + βRZZ + εR where εR ~ 
N(0, σ 2

R
).

In this setting (given the same assumptions and using 
the same analysis model and MI method as in the pre-
vious scenarios), we can express both the maximum bias 

due to Y being MNAR (when using X as the predictor 
in the imputation model for Y) and the maximum addi-
tional bias (from including Z as well as X in the imputa-
tion model) in terms of the direct effect sizes and error 
variances (see Supplementary Material, Section S5, for 
derivation), as follows:

and

where the direct effect sizes are denoted by β.. , e.g.βRY  
denotes the direct effect of Y on R, and the error vari-
ances are denoted by σ 2

.  , e.g.σ 2
Y

 denotes the error variance 
of Y, as before. Note that in this setting, the maximum 
bias may be towards or away from zero, depending on 
the sign and magnitude of the direct effects, relative to 
the magnitude of the error variances. However, the maxi-
mum additional bias will always be in the same direction 
as the maximum bias, and will amplify the bias by a fac-
tor of

Note that this is identical to the amplification factor 
in Scenario 1 (although the bias due Y being MNAR in 
this setting may be greater or smaller than in Scenario 1, 
depending on the sign and magnitude of βRX

βYX
).

When X is partially observed, the maximum additional 
bias of the Y coefficient in the imputation model for X 
(i.e. in addition to the bias due to X being MNAR) from 
including Z as a predictor in the imputation model is 
equal to:

As in the previous scenario, we explored the effect of 
this additional bias on the MI estimate by simulation, due 
to the complexity of the theoretical expression for the 
maximum additional bias when X is partially observed 
(see Supplementary Material Section S3 for further 
details).

Figures  6 and 7 illustrate, respectively, the impact of 
the direct effect sizes on the maximum additional bias 
when Y is partially observed, calculated using Eq.  4.2, 
and the additional bias when 50% of values of X are 

(4.1)maximum bias = −
βYXβRY σ

2
Y

(
βRY + βRX

βYX

)

β2
RY

σ 2
Y
+ σ 2

R
+ β2

RZ
σ 2
Z

(4.2)

maximum additional bias =
−βYXβRY β

2
RZ

σ 2
Y
σ 2
Z

(
βRY + βRX

βYX

)

(
β2
RY

σ 2
Y
+ σ 2

R
+ β2

RZ
σ 2
Z

)(
β2
RY

σ 2
Y
+ σ 2

R

)

(4.3)

{
1+

β2
RZ

σ 2
Z

β2
RY

σ 2
Y
+ σ 2

R

}

(4.4)βXY βRX

{
βRY σ

2
Y

βYX
+ βRXσ

2

X

(
1−

β2
YX

σ 2
X

β2
YX

σ 2
X
+ σ 2

Y

)}
×

{
1

β2

RX
σ 2
X
+ β2

RZ
σ 2

Z
+ σ 2

R
−

{
β2
YX

β2

RX
σ 4
X
/
(
β2
YX

σ 2
X
+ σ 2

Y

)} −
1

β2

RX
σ 2
X
+ σ 2

R
−

{
β2
YX

β2

RX
σ 4
X
/
(
β2
YX

σ 2
X
+ σ 2

Y

)}
}

Fig. 5 Directed acyclic graph depicting the relationship 
between outcome Y, exposure X, missingness indicator 
for the outcome or exposure Rind, and potential auxiliary variable 
Z. Lines indicate causally related variables, with arrows indicating 
the direction of the causal relationship; absent lines represent 
variables with no direct causal relation
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missing, estimated by simulation, when the imputation 
model includes Z as a predictor. The distribution of each 
box-plot is due to the variation in βRY  and βRX . When 

Y is partially observed, Fig.  6 shows that the maximum 
additional bias is negative and increases in magnitude 
with the direct effect sizes (and is larger than in Scenario 

Fig. 6 Maximum additional bias of the MI estimator of βYX when continuous outcome Y is missing not at random, with missingness caused by Y 
and X, and the imputation model includes exposure X and a predictor of missingness but not the missing values, Z, varying the direct effect 
sizes βYX , βRY , βRX , and βRZ. Maximum additional bias was calculated using Eq. 4.2. The distribution of maximum additional bias in each box-plot 
is averaged over the values of βRY and βRX

Fig. 7 Additional bias of the MI estimate of βYX when continuous exposure X is missing not at random, with missingness caused by Y and X, 
and the imputation model includes exposure Y and a predictor of missingness but not the missing values, Z. Simulation results shown when 50% 
of values are missing, varying the direct effect sizes βYX , βRY , βRX , and βRZ. The distribution of additional bias in each box-plot is averaged 
over the values of βRY and βRX
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1 for the same direct effect sizes). When X is partially 
observed, Fig. 7 shows that the additional bias is negative 
and increases in magnitude with βRZ , as well as with βYX 
when βYX ≤ 0.5. However, the additional bias is smaller in 
magnitude when βYX = 1. Results for partially observed 
Y are similar if Y is binary (see Supplementary Material, 
Figure S5). If X is binary, additional bias when X is par-
tially observed increases with both βYX and βRZ (see Sup-
plementary Material, Figure S6). The difference between 
results when X is continuous or binary may be due to the 
choice of distribution of X in each case: in the continuous 
case, X is normally distributed, with mean equal to 0 and 
variance equal to 1; in the binary case, X takes values of 0 
or 1 with probability 0.5 (equivalent to a mean of 0.5 and 
a variance of 0.25).

Real data example
Methods
We illustrate this situation using data from the Avon 
Longitudinal Study of Parents and Children (ALSPAC). 
ALSPAC is a prospective study which recruited pregnant 
women with expected dates of delivery between 1st April 
1991 and 31st December 1992, in the Bristol area of the 
UK [20, 21]. We use data from the initial recruitment 
phase, in which 14,541 pregnant women enrolled, result-
ing in 14,062 live births (13,988 alive at one year). This 
study uses data from all singletons and twins, where nei-
ther the mother nor child had withdrawn consent at the 
time of analysis (N = 13,923). Children and their moth-
ers have been followed up since birth through question-
naires, clinics, and linkage to routine datasets. ALSPAC 
has a searchable data dictionary: http:// www. brist ol. ac. 
uk/ alspac/ resea rchers/ our- data/, describing all avail-
able data; the (previously-published) questionnaires and 
clinical measures used in our analysis are also described 
(see https:// www. brist ol. ac. uk/ alspac/ resea rchers/ our- 
data/ quest ionna ires/ and https:// www. brist ol. ac. uk/ 
alspac/ resea rchers/ our- data/ clini cal- measu res/). Ethi-
cal approval was obtained from the ALSPAC Ethics and 
Law Committee and local research ethics committees. 
Informed consent for the use of data collected via ques-
tionnaires and clinics was obtained from participants fol-
lowing the recommendations of the ALSPAC Ethics and 
Law Committee at the time.

Here, our substantive model of interest is a linear 
regression of child’s IQ at age 15 years (IQ15) on breast-
feeding duration (bf: categorised as never/ < 3 months 
versus 3 months plus). Guided by previous studies [8, 
14], we adjust for six confounders of the breastfeeding-
IQ relationship, namely child’s sex, mother’s educa-
tional level (whether the child’s mother held a post-16 
years qualification or not), mother’s occupational social 
class (professional, managerial, or non-manual skilled 

occupation vs. manual skilled, semi-skilled, or unskilled 
occupation), mother’s age and parity (number of previous 
births), and housing tenure (whether the family home 
was owned/mortgaged, privately rented, or rented from 
the local council or a housing association).

IQ15 was not reported for 8913 (64%) participants in 
the study. Previous studies [8, 14] used linked educational 
attainment data to explore the missingness mechanism 
for IQ15. They found that IQ15 was more likely to be 
missing for individuals with lower educational attainment 
(highly correlated with IQ15), which suggests IQ15 is 
MNAR. We explore the consequences of performing MI 
when IQ15 is likely to be MNAR, focusing particularly on 
the effect of including an auxiliary variable that is predic-
tive of missingness but not the missing values of IQ15. 
From previous studies [14, 22], we identified an auxil-
iary variable which potentially has these properties. Our 
chosen auxiliary variable is whether the mother smoked 
during the first trimester of pregnancy (matsmok). Note 
that there were also missing values for bf, confounders, 
and matsmok: bf was missing for 1406 (10%) individuals, 
values of one or more confounders were missing for 4394 
(32%) individuals (although child’s sex and maternal age 
were fully observed), and matsmok was missing for 817 
(6%) individuals. For simplicity, and purely for illustrative 
purposes, we assume that bf, confounders, and matsmok 
are MAR, conditional on the observed data.

In Fig. 8, black lines depict our hypothesised relation-
ships between IQ15, bf, confounders (with confound-
ers collectively denoted by C – for simplicity, we do not 
depict the relationships between individual confound-
ers and/or missingness indicators for variables other 
than IQ15), potential auxiliary variable matsmok, and 
missingness indicator RIQ15 (a binary variable indicating 
whether IQ15 is observed). Here, we assume the setting 
is similar to that depicted in our theoretical Scenario 1 
i.e. we assume missingness is caused by IQ15 but not 
by our exposure, bf, or confounders. As in all real data 
studies, we cannot rule out the existence of unmeas-
ured variable(s) (denoted by U in Fig.  8), which may 
be related to the analysis model variables and/or their 
missingness (with these potential relationships denoted 
by grey lines in Fig. 8). Hence, in reality, there may be 
further bias due to unmeasured confounding and/or 
data MNAR beyond that explored here.

We first assessed whether the hypothesised relation-
ships between IQ15, RIQ15, bf, and matsmok were plau-
sible by exploring the relationships in the observed 
data. We then applied our equation (Eq. 2.4) for maxi-
mum bias amplification due to including predictor of 
missingness matsmok in the imputation model for 
IQ15. We assumed (without loss of generality) that R 
had a mean of zero and a variance of one. Therefore, we 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
https://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/
https://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/
https://www.bristol.ac.uk/alspac/researchers/our-data/clinical-measures/
https://www.bristol.ac.uk/alspac/researchers/our-data/clinical-measures/
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used the following version of Eq.  2.4: maximum bias 
amplification = 1+ β2

RZ
σ 2
Z

1−β2
RZ

σ 2
Z
−β2

RY
β2
YX

σ 2
X

where, in our setting, X denotes bf and Z denotes 
matsmok. Coefficient βRZ and the product βRY βYX were 
estimated as 0.6  × the coefficient for matsmok and 
bf, respectively, from a logistic regression of RIQ15 on 
matsmok, bf, and confounders (as before, multiplying 
by 0.6 to transform the coefficients to the equivalent 
coefficients from a probit regression of the underly-
ing normal variable R [19]). We estimated σ 2

X
 = Var(X) 

and σ 2
Z

 = Var(Z) using the normal approximation to the 
binomial because X and Z were binary. We assumed 
that the estimates used in our maximum bias amplifica-
tion equation were unbiased (which may not have been 
the case if there were unmeasured confounders of the 
relationship between matsmok, bf, and RIQ15).

We compared our estimate of the maximum bias 
amplification to both the CRA estimate and MI esti-
mates using no auxiliary variables or using matsmok as 
an auxiliary variable. We used MI by chained equations  
[23] to impute missing values of IQ15, bf, confounders, 
and (where used) matsmok, including all other variables 
as predictors in the imputation model for each partially 
observed variable. We used a linear regression model 
to impute IQ15, logistic regression to impute bf, binary 

confounders, and matsmok, ordered logistic regression 
to impute parity, and multinomial logistic regression 
to impute housing tenure. We used 20 iterations in the 
imputation step and a large number of imputations (100) 
to ensure we obtained stable estimates of the exposure 
coefficient and its SE.

Results
The estimated association between matsmok and IQ15, 
adjusted for bf and confounders, was -0.79 (95% CI: -1.88, 
0.31). The wide CI suggests that matsmok is only weakly 
predictive of IQ15, conditional on bf and confounders. 
We would expect some association between matsmok 
and IQ15 in the observed data via the matsmok—RIQ15—
IQ15 pathway i.e. due to collider/selection bias because 
we are conditioning on RIQ15. Estimates of the coefficient 
(i.e. the logarithm of the odds ratio) for matsmok and bf 
from a logistic regression of RIQ15 on matsmok, bf, and 
confounders, were -0.39 (95% CI: -0.51, -0.27) and 0.44 
(95% CI: 0.35, 0.53), respectively. This suggests that, con-
ditional on the confounders and each other, matsmok and 
bf are strongly predictive of missingness of IQ15. These 
results, combined with our prior knowledge of the data, 
suggest that inclusion of matsmok in the imputation 
model for IQ15 may amplify any bias due to IQ15 being 

Fig. 8 Directed acyclic graph depicting the relationship between child’s IQ at age 15 years (IQ15), duration of breastfeeding (bf ), confounders 
of the IQ15-bf relationship (C), whether the mother smoked during the first trimester of pregnancy (matsmok), missingness indicator  RIQ15 (a 
binary variable indicating whether IQ15 is observed), and unmeasured variable(s) U. Lines indicate causally related variables, with arrows indicating 
the direction of the causal relationship. Black lines depict the assumed causal relationships (including those assumed in theoretical Scenario 1); grey 
lines depict additional relationships that are plausible in our real data example; absent lines represent variables with no direct causal relationship
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MNAR. Note that it is not possible to check for a direct  
relationship between IQ15 and its missingness using 
the observed data due to perfect prediction (because all 
observed values of IQ15 have RIQ15 = 1). However, the 
observed relationship between bf and RIQ15 is consistent 
with our assumption (based on our prior knowledge) 
that missingness depends on IQ15 itself i.e. via the  
bf—IQ15—RIQ15 pathway (although this observed rela-
tionship could also imply bf is a direct cause of missing-
ness of IQ15).

Substituting values based on the observed data into 
our equation (with coefficient βRZ and the product 
βRY βYX estimated as -0.23 and 0.26, respectively, based 
on coefficient estimates given above, and additionally, 
using estimates of Var(Z) and Var(X) of 0.18 and 0.25, 
respectively), we estimated that including matsmok in 
the imputation model for IQ15 would amplify any bias 
in the bf coefficient due to IQ15 being MNAR by 1% 
towards the null.

Analysis results (Table  2) confirmed that MI esti-
mates of the bf coefficient were very similar, regard-
less of whether auxiliary variable matsmok was used in 
the MI procedure. The MI estimate based on matsmok 
was slightly smaller than the MI estimate based only on 
analysis model variables, as predicted by our equation 
and consistent with results in the theoretical Scenario 1. 
Both MI estimates were smaller than the CRA estimate. 
Based on the conclusions from previous studies [8, 14], 
both MI and CRA estimates under-estimate the true 
magnitude of the association. Using matsmok, a predic-
tor of missingness but not of IQ15 itself, as an auxiliary 
variable amplifies rather than reduces any bias, albeit 
the size of the bias amplification is small in this particu-
lar setting. The magnitude of bias amplification would 
be larger in our real data setting if the relationship 
between our auxiliary variable, matsmok, and missing-
ness of IQ15 was much stronger than the relationship 
between our exposure, bf, and missingness of IQ15. This 
can be seen more clearly if we express our equation for 
bias amplification, above, as:
1+ 1

(1/β2

RZ
σ 2

Z
)−1−(β2

RY
β2
YX

σ 2
X
/β2

RZ
σ 2

Z
)
 and also note that the 

terms β2

RZ
σ 2

Z
 and β2

RY
β2
YX

σ 2
X
 represent the squared correla-

tions of matsmok and bf with missingness of IQ15, 
respectively. In our real data setting, these expressions 
are of very similar magnitude (i.e. the magnitudes of 
our estimates of both coefficient βRZ and the product 
βRY βYX , and Var(Z) and Var(X), are very similar). Hence, 
including matsmok in the imputation model for IQ15 
makes little difference to the MI estimate.

Discussion
In this paper, we quantify, algebraically and by simulation, 
the magnitude of the additional bias of the MI estimator, 
in addition to any bias due to data MNAR, from includ-
ing a predictor of missingness but not the missing values 
themselves in the imputation model. We have derived 
algebraic expressions for the maximum additional bias 
when a continuous outcome is partially observed. We 
have demonstrated that if missingness is caused by the 
outcome, the additional bias can be substantial, relative 
to the magnitude of the exposure coefficient (and also if 
the outcome is binary). Furthermore, if missingness is 
caused by the outcome and the exposure, the additional 
bias can be even larger, when either the (continuous or 
binary) outcome or exposure is partially observed. In 
both situations, we have shown that the magnitude of the 
additional bias depends on the relative magnitude of the 
relationships between the exposure and outcome, and 
between each of the exposure, outcome, and potential 
auxiliary variable and missingness, as well as on the pro-
portion of missing data.

In addition, when a continuous analysis model out-
come Y is partially observed and linear regression mod-
els are fitted (for both analysis and imputation), we have 
demonstrated algebraically the, perhaps surprising, 
result: if missingness is only related to Y via another vari-
able U (where U causes Y and its missingness but is only 
related to exposure X and confounders via Y), then both 
CRA and MI will be unbiased even if U is not included 
in the analysis and imputation models. Furthermore, in 
this scenario, the bias of the MI estimate is likely to be 
small when binary Y (fitting a logistic regression model) 
or (continuous or binary) X is partially observed.

Table 2 Relationship between child’s IQ at age 15 years and 
duration of breastfeeding, estimated using different analysis 
strategies

SE Standard error, CRA  Complete records analysis, MI Multiple imputation
a Adjusted for mother’s educational level, occupational social class, age, parity, 
and housing tenure, and child’s sex
b Whether mother smoked during first trimester of pregnancy

Duration of 
breastfeeding

Mean change in child’s IQ at age 15: 
estimate (SE)a

CRA 
(N = 4,115)

MI, no 
auxiliary 
variables
(N = 13,923)

MI, including 
auxiliary 
variableb

(N = 13,923)

Never/ < 3 months - - -

3 months plus 3.75 (0.40) 3.57 (0.35) 3.54 (0.37)
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A strength of our approach is that we have considered 
a range of commonly-occurring scenarios, in which the 
partially observed variable is either the analysis model 
outcome or the exposure, as well as either continuous 
or binary. By using both algebra and simulation, we have 
been able to provide a detailed illustration of the mag-
nitude of bias due to including auxiliary variables that 
only predict missingness, and how this is related to the 
magnitude and sign of individual assocations between 
exposure, outcome, auxiliary variables, and missingness. 
A limitation of our study is that we have only consid-
ered simple models, without interactions or non-linear 
relationships. However, since our general argument is 
based on a “missingness” DAG [24, 25], which does not 
make any distributional assumptions, our findings can 
be applied to more complex models (e.g. including an 
exposure-confounder interaction), to avoid using MI in 
a way which may increase bias. Note that the magnitude 
and direction of additional bias may be different from 
those suggested by our equations in this case, particu-
larly if either the analysis or missingness model includes 
interactions.

A further limitation of our study is that in each of our 
scenarios, only a single variable has missing values. In 
this case, imputation using draws from a suitable condi-
tional distribution gives a valid imputation from the joint 
distribution. Given multiple missingness, the chained 
equations and joint modelling approaches can be made 
equivalent for multivariate normal data, or approximately 
equivalent in many cases for binary and categorical data 
[4, 26, 27]. Thus, we expect our results to apply more 
generally in multiple missingness settings, regardless of 
whether a chained equations or joint modelling approach 
is used. If multiple missingness is handled using MI by 
chained equations (as we did in the real data example), 
each imputation model only considers one variable to 
have missing values, as here. In this case, auxiliary varia-
bles should be considered separately for each imputation 
model, because an auxiliary variable may be predictive of 
one partially observed variable (and/or its missingness), 
but not another. Note that in the case of multiple partially 
observed variables, the MAR assumption may imply dif-
ferent causes of missingness depending on the patterns 
of missing data. This may be implausible and/or difficult 
to accommodate in the imputation scheme in practice. In 
this situation, we recommend focusing on assessing the 
validity of the MAR assumption for the most common 
missing data patterns and/or variables with the most 
missing data. Less common missing data patterns can 
often be assumed to be missing completely at random—it 
is unlikely to change the final conclusions if this assump-
tion is incorrect [4, 28].

In summary, we conclude that, whilst auxiliary vari-
ables have the potential to improve precision of MI esti-
mates and reduce bias due to data MNAR, the naïve and 
commonly used strategy of including all available auxil-
iary variables should be avoided. Any auxiliary variables 
that, in truth, cause missingness but are independent of 
the partially observed variable may cause additional bias, 
over and above any bias due to data MNAR. As with bias 
amplification in confounding [29], it is possible that vari-
ables that are weakly associated, rather than completely 
independent, of the partially observed variable may also 
inflate the bias due to data MNAR—this is an area for 
future research. Note that, in practice, it is generally not 
possible to determine whether a variable is weakly pre-
dictive, rather than independent, of the partially observed 
variable. This is both due to finite sampling variation and 
because this requires knowledge of the missing values 
themselves. Furthermore, auxiliary variables that are 
only weakly predictive of the partially observed variables 
can increase the standard error of the MI estimate [10]. 
Therefore, although it is important to identify predictors 
of missingness to inform analysis strategy (e.g. to deter-
mine whether CRA is likely to be valid), our results show 
that such variables should not necessarily be included 
as predictors in the imputation models unless they also 
predict the partially observed variable. Given a choice of 
potential auxiliary variables, we recommend including 
the variables most predictive of the partially observed 
variable as auxiliary variables in the imputation model (in 
addition to all variables required for the analysis model) 
in order to minimise the risk of amplifying any bias due 
to data being MNAR. These variables can be identified 
through consideration of the plausible casual diagrams 
and missingness mechanisms, as well as data explora-
tion (noting that associations with the partially observed 
variable in the complete records may be distorted due to 
selection bias).
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