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CONSPECTUS

Membrane proteins mediate a plethora of cellular functions and represent important targets for 

drug development. Unlike soluble proteins, membrane proteins require native-like environments 

to fold correctly and be active. Therefore, modern structural biology techniques have aimed to 

determine the structure and dynamics of these membrane proteins at physiological temperature 

and in liquid crystalline lipid bilayers. With the flourishing of new NMR methodologies and 

improvements in sample preparations, magic angle spinning (MAS) and oriented sample solid-

state NMR (OS-ssNMR) spectroscopy of membrane proteins is experiencing a new renaissance. 

Born as antagonistic approaches, these techniques nowadays offer complementary information on 

the structural topology and dynamics of membrane proteins reconstituted in lipid membranes. 

By spinning biosolid samples at the magic angle (θ = 54.7°), MAS NMR experiments remove 

the intrinsic anisotropy of the NMR interactions, increasing spectral resolution. Internuclear 

spin interactions (spin exchange) is reintroduced by RF pulses, providing distances and torsion 

angles to determine secondary, tertiary as well as quaternary structures of membrane proteins. 

OS-ssNMR, on the other hand, directly detects anisotropic NMR parameters such as dipolar 

couplings (DC) and anisotropic chemical shifts (CS), providing orientational constraints to 

determine the architecture (i.e., topology) of membrane proteins relative to the lipid membrane. 

Defining the orientation of membrane proteins and their interactions with lipid membranes is of 

paramount importance since lipid-protein interactions can shape membrane protein conformations 

and ultimately define their functional states. In this Accounts, we report selected studies from our 

group integrating MAS and OS-ssNMR techniques to give a comprehensive view of the biological 

processes occurring at cellular membranes. We focus on the main experiments for both techniques, 

with an emphasis on new implementation to increase both sensitivity and spectral resolution. We 

also describe how the structural constraints derived from both isotropic and anisotropic NMR 

parameters are integrated into dynamic structural modeling using replica-averaged orientational-

restrained molecular dynamics simulations (RAOR-MD). We showcase small membrane proteins 

that are involved in Ca2+ transport and regulate cardiac and skeletal muscle contractility: 
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phospholamban (PLN, 6 kDa), sarcolipin (SLN, 4 kDa), and DWORF (4 kDa). We summarize 

our results for the structures of these polypeptides free and in complex with the sarcoplasmic 

reticulum (SR) Ca2+-ATPase (SERCA, 110 kDa). Additionally, we illustrate the progress toward 

the determination of the structural topology of a six transmembrane protein associated with 

succinate and acetate transport (SaTP, hexamer 120 kDa). From these examples, the integrated 

MAS and OS-ssNMR approach, in combination with modern computational methods, emerges as 

a way to overcome the challenges posed by studying large membrane protein systems.

Graphical Abstract

Introduction

Membrane proteins are involved in vital cellular events, mediating intra- and inter-cellular 

communication.5 Their structure and function are regulated by diverse lipid membranes 

that constitute various cellular compartments. The heterogeneous membrane environment 

is a significant barrier for classical structural biology methods, and the characterization of 

membrane proteins at atomic resolution remains an outstanding challenge. Currently, X-ray 

crystallography is the method of choice for determining the structural features of membrane 

proteins in their ground states. The majority of membrane protein structures deposited in the 

protein data bank (PDB) have been determined by X-ray in detergent preparations. However, 

detergents are a rough approximation of native membranes and are somewhat problematic, 
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as they introduce structural distortions and deviations from a proteins’ native state.6,7 

The outstanding progress in cryogenic electron microscopy (cryo-EM) has facilitated the 

structure determination of relatively large membrane proteins.8 However, both X-ray and 

cryo-EM fall short in the characterization of lipid-protein interactions and cannot probe the 

timescale of the functional dynamics of membrane proteins.

Solid-state NMR (ssNMR) methods are now reaching a level of sophistication, enabling 

the characterization of membrane proteins’ structure, dynamics, and interactions in fully 

hydrated lipid membranes.9 Therefore, ssNMR can be used as a tool to validate X-ray 

and cryo-EM structures, which are typically determined in the absence of a native-like 

environment. In the past, ssNMR of membrane proteins relied on two distinct techniques: 

magic angle spinning (MAS)10 and oriented sample (OS)11 ssNMR. While the first 

approach removes the anisotropy from the NMR physical observable by spinning at 

the magic angle to obtain high-resolution spectra,12 the latter exploits anisotropic NMR 

parameters to obtain the orientation of membrane proteins’ helical or β-sheet domains.13 

While MAS NMR techniques are ideal for measuring distances and torsion angles of a 

protein’s backbone, OS-ssNMR directly measures the orientation of amide groups relative 

to the membrane bilayers. Specifically, this method provides tilt and rotation angles of 

membrane protein domains with respect to the bilayer normal. A significant advantage 

of ssNMR spectroscopy over X-ray and cryo-EM is the site-specific characterization of 

a protein’s motion, including the timescale at which these motions occur, as well as 

the depiction of the different energetic and functional states. Inspired by solution-state 

NMR,14 ssNMR is emerging as an atomic resolution technique suited for detecting 

conformationally excited states in lipid membranes.3,15–17 These high-energy conformations 

exemplify intermediates of protein folding reactions, active and inactive states, or alternate 

conformations that could be targeted by more specific allosteric drugs.

In the following synopsis, we describe the milestones that our group has reached in the past 

decade. By all means, this survey is not exhaustive and does not cover many breakthroughs 

achieved by other research groups in the study of membrane proteins.

Membrane mimetic systems for high-resolution ssNMR spectroscopy

The functional reconstitution of membrane proteins in membrane mimetic systems is 

an essential step for the structural and functional characterization by ssNMR. Detailed 

protocols have been outlined by Das et al.18 For MAS, we reconstitute recombinant 

membrane proteins in lipid vesicles via detergent-mediated preparations. For OS-ssNMR 

studies, we have been using two main procedures, involving either mechanically or 

magnetically aligned membrane preparations.18 Both reconstitution protocols have their 

merits and limitations. Mechanically aligned systems are prepared by spreading the lipid-

protein mixtures on solid supports (typically glass plates), and with iterative hydration/

dehydration cycles, both lipids and proteins align in a lasagna-like stacking of phospholipid 

and protein layers. Although with low hydration levels, these preparations are detergent-free 

and can be obtained using mixed lipid compositions to approximate native membranes.19 

Magnetically oriented preparations include lipid bicelles,20 and more recently, nano- and 

macro-discs.21 Lipid bicelles were among the first systems to be utilized for magnetic 
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alignment of membrane proteins.22 Bicelles are formed by one or more lipid types 

(long-chain component) and a detergent that solubilize the lipids (short-chain component). 

Depending on the ratio between the long- and short-chain components, anisotropic bicelles 

adopt a discoidal shape or a Swiss cheese phase.23 Unlike mechanically aligned membrane 

systems, the composition of bicelles has more restrictions as many lipids prevent the 

formation of stably aligned phases for NMR measurements.24 Also, the presence of proteins 

modifies the phase diagram of bicelles, and the conditions to obtain uniform orientation are 

often very narrow.

Another hurdle is represented by detergents (e.g., 1,2-dihexanoyl-sn-glycero-3-

phosphocholine, DHPC) that may interact with membrane proteins competing out lipids 

and causing the disruption of the bicellar phase.7 Additional limitation of bicelles have been 

extensively discussed by Salnikov et al. 25–27 Nonetheless, membrane proteins reconstituted 

in bicelle preparations possess more favorable conditions for ssNMR spectroscopic 

analysis compared to mechanically aligned systems.28 The dynamics of bicelles lengthen 

the transverse spin relaxation (T2) of proteins, resulting in sharper and more intense 

resonances.29 As a consequence, it is possible to obtain highly-resolved two-dimensional 

(2D) separated local field (SLF) spectra. More importantly, membrane proteins reconstituted 

in bicellar preparations make possible the acquisition of 3D SLF experiments, i.e., 
polarization inversion spin exchange at the magic angle (PISEMA) and SAMPI4, and 

residue-specific sequential assignments via proton driven spin diffusion (PDSD).

To spin or not to spin?

Since its inception, ssNMR of membrane proteins has been carried out using MAS 

techniques.30 OS-ssNMR has been less practiced than MAS NMR due to the more 

demanding sample preparations. However, the redundancy of the primary sequences of 

helical membrane proteins and the inherent conformational heterogeneity hampers the 

complete sequential assignments and structure determination. To date, the majority of the 

structures solved by NMR of membrane proteins are backbone structures of small and 

medium-sized membrane proteins obtained by OS-ssNMR.9 A few research groups have 

pioneered the combination of the two techniques to determine distances, torsion angles as 

well as orientational restraints.31–36 The marriage of these techniques, often performed in 

similar membrane preparations, is very powerful. Both isotropic and anisotropic parameters 

can be combined to describe the structural dynamics of membrane proteins that transition 

from one structural state to another (Fig.1). MAS techniques easily capture changes in 

the secondary structures. However, topological changes are more difficult to identify using 

isotropic NMR parameters. Transmembrane (TM) helix signaling occurs via intramembrane 

topological changes of helical domains, such as translation, piston, pivot (tilting), or rotation 

motions.37,38 While translation or piston-like motions can be monitored using inter-helical 

distances, tilt and rotation motions are often silent to the MAS analysis, but can be easily 

mapped using OS-ssNMR techniques. An example is the effects of a single mutation on the 

TM helix of DWarf Open Reading Frame (DWORF) (Fig.2). The proline to alanine mutation 

of this small protein affects not only the helical content, but also its tilt and rotation angles 

relative to the lipid membrane. These topological changes are silent to MAS techniques, 

but they can be readily characterized by SLF experiments (Fig.2). Although rotationally 
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aligned MAS experiments for determining the topology of membrane proteins have been 

developed, they require fast rotational diffusion of proteins within lipid membranes and are 

often challenging for membrane proteins interacting strongly with lipids.39,40

Advanced MAS and OS-ssNMR techniques

In the past decades, there have been several breakthroughs in MAS of membrane proteins. 

The first and most significant advancement involves the use of dynamic nuclear polarization 

(DNP)41, which enhances the nuclear polarization via dipolar interactions with unpaired 

spin electrons, giving rise to high sensitivity spectra. In a few cases, this technique has 

dramatically improved the NMR spectra, and for selected membrane proteins, DNP has 

accessed information that was difficult to achieve using classical spectroscopic methods 

or enabled the direct analysis of peptides in cell.42,43 Also, protein perdeuteration44 

and paramagnetic doping45 have contributed to speeding up NMR data acquisition. Our 

contribution has been in the development of novel pulse sequences with higher sensitivity 

for both MAS and OS-ssNMR.4,46 Our strategy is to recover orphan spin operators that are 

discarded during the execution of conventional pulse programs. We called these experiments 

POE for Polarization Optimized Experiments (Fig.3).4 The essential element of POE is the 

simultaneous cross-polarization (SIM-CP) that enables the transfer of polarization from the 
1H bath to two (or more) heteronuclei 13C and 15N. Dual acquisition MAS spectroscopy 

(DUMAS)47,48 was the first implementation of POE. In the DUMAS scheme, 13C- and 
15N-edited 2D (or 3D) experiments are simultaneously registered in a single experiment 

using two 13C acquisition periods per scan. In our laboratory, 2D CC and NC correlation 

spectra are routinely acquired using DUMAS-based CXCX-NCA and Double Quantum 

Single Quantum (DQSQ)-NCO pulse sequences. After an initial analysis of CC and NC 

fingerprints, one can move on to more robust sequential assignment protocols, e.g., a 3D 

DUMAS NCACX-CANCO experiment.

The sequential walk of carbonyl chemical shifts is obtained by matching the NCA planes of 

NCACX and CANCO data sets. In 3D DUMAS, a bidirectional SPECFIC-CP enables the 

polarization transfer from 15N to 13Cα and vice versa. For selecting the NC bidirectional 

transfer, we use a four-step phase cycle on 15N (+x, -x, +x, -x) and 13C (+x, +x, -x, 

-x) radio frequency (RF) spin-locks.49 This phase cycle selects the N to Cα or C to N 

transferred polarization and eliminates the 13C and 15N residual polarization pathways. 

To recover both transferred and residual polarization pathways of SPECIFIC-CP, we have 

developed the Multiple ExperIments via Orphan SpIn operatorS (MEIOSIS) approach that 

records four 2D spectra using two acquisitions per scan.50 The RF phases of SPECIFIC-CP 

spin-lock pulses are Hadamard-encoded, which enables the decoding of both transferred and 

residual polarization pathways leading to simultaneous acquisition of four multidimensional 

spectra. Similarly, a 3D MEIOSIS pulse sequence was developed for acquiring 3D CCC 

or CA(N)COCX correlation together with two other 3D spectra, NCACB and NCOCX, 

as shown for succinate and acetate transport membrane protein (SatP) (Fig.3). We have 

also exploited residual polarization to concatenate up to eight two-dimensional experiments 

using Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO) 

approach.51 The MAeSTOSO approach can be very useful for acquiring 2D CXCX and 

N(C)C spectra with Dipolar Assisted Rotational Resonance (DARR) mixing periods for 
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both long- and short-range correlations. All of these pulse sequences were tested with 

both crystalline preparations of globular proteins and single and/or multi-span membrane 

proteins such as sarcolipin (SLN), phospholamban (PLN), and SatP.52 POE can also 

take advantage of the afterglow phenomenon, introduced by Traaseth and co-workers,53 

which can be incorporated into Transferred Echo DOuble Resonance (TEDOR)-NCX-based 

pulse sequences.52 The 3D version of TEDOR-NCACX-NCOCX enables the simultaneous 

measurement of CC DARR restraints in the 1st acquisition and the TEDOR NC distance 

restraints in the 2nd acquisition. This subtype of POE enables one to record two different 

experiments, the first for resonance assignment and the second for distance measurements. 

More recently, POE were developed to include fast MAS experiments for the acquisition of 

ten experiments simultaneously.54,55

Parallel to the improvements of MAS spectroscopy, our group has developed sensitivity 

enhancement (SE) SLF and heteronuclear correlation (HETCOR) experiments.46 SE-

SLF experiments increase the signal-to-noise ratio (S/N) by 2.56,57 We routinely 

use SE-SLF for 2D experiments to determine the topology of membrane protein 

backbones with respect to the bilayer normal. Recently, our laboratory has utilized 

paramagnetic relaxation enhancement (PRE) for the fast acquisition of SE-SLF experiments. 

By doping bicelles with 5% 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-

diethylenetriaminepentaacetic acid copper salt lipid (Cu2+-DMPE-DTPA), we found that 

it is possible to accelerate the acquisition of multidimensional SE-SLF experiments up 

to 3 times. The improvements in sample stability combined with SE techniques and 

PRE made it possible to acquire 3D experiments for sequential residues assignments in 

magnetically oriented bicelle samples (Fig. 4).2 A significant drawback of the application 

of paramagnetic doping to multidimensional SE-SLF pulse sequences is the temperature 

variations during the experiments, which is due to to the relatively short pulse delay (~ 

1 s). These temperature oscillations not only affect the thermal stability of membrane 

proteins, but also disturb the magnetic alignment of the bicellar system. To address this 

issue, we designed heat-compensated SE-SLF pulse sequences (hcSE-SLF).58 By removing 

the heterogeneity of the resonances in the spectra, the hcSE-SLF pulse sequences provide 

approximately 20% increase in sensitivity relative to SE-SLF experiments. The use of PRE 

is now being combined with Dual Acquisition orIented ssNMR spectroscopy (DAISY), a 

technique that records 2D SLF and SLF-Proton Driven Spin Diffusion (PDSD) OS-ssNMR 

spectra, simultaneously.49

Structure calculations using ssNMR restraints

There are several approaches to implement isotropic and orientational restraints in 

the structure determination of membrane proteins. MAS experiments provide structural 

restraints, primarily isotropic chemical shifts that are converted into torsion angle restrains 

using TALOS+,59 and distances derived from DARR (or PDSD), chemical shift perturbation 

(CSP), and PREs, similarly to solution-state NMR. In most of the calculation protocols 

distances, angles, and chemical shift index (CSI) are implemented as harmonic restraints.60 

However, distances and angular restraints for membrane proteins are often very sparse 

and may result in ill-defined structures, with the register of TM helices poorly defined. 

This problem is common to solution NMR structures of membrane proteins in detergent 
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micelles.6 For OS-ssNMR, Opella and Nevzorov introduced structural fitting procedures that 

would offer the best fit of chemical shift anisotropy (CSA) and dipolar coupling (DC) to 

calculate backbone orientations.61 A more efficient procedure was introduced by Marassi 

and co-workers,62 where the orientational restraints were treated as harmonic restraints and 

minimized using a simulated annealing algorithm. Together with the Cross, Marassi, Opella, 

and Hong groups, we recognized the importance of using a hybrid approach that would 

include not only the physical parameters obtained by MAS or solution NMR, but also 

orientation dependent parameters obtained by OS-ssNMR.1,33 In our original calculations, 

we included in the force field a depth of insertion potential developed by DeGrado’s group 

that restrains the conformational freedom of membrane proteins within a low dielectric 

slab. This limits their conformational space to more physical minima defined by the 

hydrophobicity and electrostatics of membrane proteins. Using this protocol, we were able 

to determine the high-resolution structures of SLN and PLN (monomeric and pentameric 

assembly).1,33,35,36 Later on, we implemented distance, angular, and orientational restraints 

in a simulation system with explicit water and lipid environments (DMPC and POPC 

bilayers).63,64 The explicit environment provides an improved description and a more 

accurate search of the membrane protein conformational phase space.63,64 Restrained 

molecular dynamics samplings have been shown to be applicable to a many biological 

systems, ranging from relatively rigid structural states to heterogeneous conformational 

ensembles of proteins, including those adopting multiple topological states. Given the 

ensemble-averaged nature of the experimental ssNMR data, the latter case is accounted 

for by imposing the structural restraints as an average over independent simulations 

(replicas) evolving simultaneously in the so-called replica-averaged approach. These 

restrained simulations are able to give a view on the collective protein backbone motions at 

picosecond-to-millisecond timescales. To this extent, we were able to accurately describe the 

heterogeneous conformational ensembles of PLN both in its monomeric63 and pentameric64 

states. The conformational equilibrium of PLN matched with the distinct states that were 

observed by both MAS and OS-ssNMR.

Topological allostery: transmembrane signaling via dynamic interactions.

Unlike their soluble counterparts, membrane proteins are embedded in lipid bilayers 

where hydrophobicity is no longer a dominant force stabilizing ternary and quaternary 

structure.65 Concomitant with the allostery occurring throughout an extensive network of 

interactions, signal transduction throughout TM domains must be communicated throughout 

a structure held together by weaker van der Waals forces, side-chain packing motifs (i.e., 
leucine zippers), specific interactions with lipids and physical constraints imposed by the 

dimensions of lipid bilayers.66,67 Indeed, hydrogen bonding plays a significant role in 

stabilizing larger α-helical bundles,68 but how external signals are transduced throughout 

transmembrane helices is still unknown. As mentioned above, rigid-body motions of the 

helical domains (i.e., topological changes) are among the possible structural transitions 

that characterize TM dynamic signaling. In the current literature, there are many examples 

of rigid-body transitions such as those occurring in mechanosensitive channels, G protein-

coupled receptors (GPCRs), etc.65 Distance and torsion angle restraints are insufficient 

to define these global topological changes. In contrast, SLF experiments are extremely 

sensitive to small TM changes in rotation and tilt that propagate from one to the opposite 
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leaflet of the lipid membranes. Among the most remarkable examples are the topological 

changes mapped by Traaseth and co-workers for EmrE using OS-ssNMR.69 In this case, 

the topological changes of EmrE were so pronounced to enable the detection of exchanging 

topologies in the SLF spectra. Another example is the topological transitions of PLN in 

lipid membranes. (Fig.5) PLN possesses two major regions: a hydrophobic TM domain 

that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), and a cytoplasmic domain 

that tunes the extent of inhibition via phosphorylation by protein kinase A (PKA) and 

calmodulin-dependent protein kinase II (CaMKII).70 Our original topology of monomeric 

and pentameric PLN were obtained in mechanically aligned lipid bilayers.1,33 Under these 

conditions, the backbone resonances in the SLF spectra were so broad that we could not 

fully appreciate the presence of two different populations of resonances for the TM domain. 

In contrast, the spectra in lipid bicelles display a major and a minor population with slightly 

different tilt and rotation angles (Fig.5), mirroring the two populations (R and T states) 

identified for the cytoplasmic region by MAS spectroscopy (Fig.5A).

Upon phosphorylation of Ser16 by PKA, we observed a shift of the ground population 

toward the lowest populated state, which becomes the dominating state. These changes 

are very pronounced for Asn30 and Asn34, whose hydrogen bond interactions stabilize 

the E2 (Ca2+-free) state of SERCA. Since the inhibition of SERCA by PLN occurs via 

allosteric interactions between the TM domain of the regulator and the Ca2+ binding site 

of the ATPase (Fig.6), the topological changes of the TM domain allosterically modulate 

the extent of inhibition of the enzyme (topological allostery).71 It is possible that different 

SERCA modulators expressed in non-cardiac cells, i.e., regulins, might display different 

topologies reflecting their various biological activities. Therefore, the topological and 

allosteric diversity in regulins may modulate the ATPase affinity for Ca2+ ions, thereby 

differentially affecting calcium cycling.72

Characterization of motions via ssNMR

The characterization of the site-specific motions and more importantly the timescale of 

conformational changes are among the most important contributions of NMR to structural 

biology.73 However, the analysis of the dynamics of membrane proteins in lipid bilayers is 

still a significant challenge. Hong and co-workers are using the dipolar-coupling chemical-

shift correlation (DIPSHIFT) as a means to determine the dynamics of proteins and 

peptides.30 Although it is possible to characterize the backbone dynamics for a few selected 

cases, the heterogeneity of membrane proteins spectra represents a significant hurdle. Our 

group has been relying on a semi-quantitative analysis of the segmental motions using a 

combination of CP and refocused Insensitive Nuclei Enhanced by Polarization Transfer 

(rINEPT) experiments.3 Since the intensity of polarization obtained from these experiments 

depends on the dynamics of the proteins, the comparison of these spectra gives an overall 

view of the complex motions of membrane proteins. In particular, the membrane-associated 

protein domains are mapped via CP based experiments that rely on DCs, whereas the 

dynamic residues that undergo fast dynamics average out anisotropic interactions and 

retain longer T2 relaxation properties, which enables the mapping of these residues via 

J-coupling based INEPT transfer experiments.74 We typically start with 1D 15N CP and 

rINEPT experiments to look at the extent of dynamics by comparing the backbone spectral 
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intensities. Due to the presence of intense lipid signals, 1D 13C rINEPT experiments are 

usually less informative for a semi-quantitative analysis of mobile residues. However, a more 

detailed characterization can be made by using 13C-detected 2D 13C-13C DARR and INEPT-

TOtal through Bond correlation SpectroscopY (TOBSY) experiments that map immobile 

and dynamic residues, respectively. To these experiments, we recently added 1H-detected 

sensitivity enhanced refocused INEPT heteronuclear single quantum correlation (RI-HSQC) 

experiments for probing sparse conformational states with populations as low as 1%.75 

These experiments can be hybridized into new pulse sequences to map rigid and dynamic 

domains simultaneously.76

Interactions of intrinsically disordered proteins (IDPs) with lipid membranes.

Although both MAS and OS-ssNMR have been extensively used to study dynamic small 

peptides interacting with membranes, studies on the interactions between IDPs and the 

membrane bilayer are still limited. In collaboration with the De Simone laboratory, our 

group has carried out a series of studies on the interactions between α-synuclein (α−Syn) 

and membrane model systems.64,77,78 α−Syn in solution exists as a disordered polypeptide, 

adopting a random coil ensemble of conformers. Upon interactions with lipid membranes, 

α−Syn adopts a helical conformation.79 However, the membrane-binding region has been 

virtually invisible to solution-state NMR analysis. We used INEPT-based experiments to 

image the ‘dark side’ of α−Syn and identify the residues directly involved with the 

membrane interactions and possibly responsible for the pre-fibrillar aggregates that have 

been hypothesized to constitute the toxic species. More recently, we used a combination 

of CP and rINEPT experiments to determine the interaction of hematopoietic-substrate-1 

associated protein X-1 or HAX-1 with PLN (Fig.7).80 HAX-1 is a 279 amino acid 

intrinsically disordered protein (IDP) that is thought to interact with PLN, modulating 

the inhibition of SERCA. Indeed, our data confirm this hypothesis, but further suggest 

these interactions occur via an amphipathic helix located on the C-terminus of HAX-1 that 

interacts with lipid membranes (Fig.7). This helix may be crucial for localizing HAX-1 near 

the SERCA/PLN complex as well as promoting a rigid, more inhibitory state of PLN.

Conclusions and Perspectives

As for the entire field of structural biology,81,82 NMR is relying on multiple approaches 

to fully characterize the structure and dynamics of membrane proteins. Neither MAS 

nor OS-ssNMR possess the silver bullet; instead, the synergistic nature of these different 

approaches is emerging. Both MAS and OS-ssNMR are compatible with lipid compositions 

and ratios similar to physiological membranes in liquid crystalline phases, which represents 

a significant advantage over the other structural biology approaches. Under these conditions, 

membrane proteins, if properly reconstituted, are active and undergo conformational 

transitions that mimic their cellular function. From a spectroscopic viewpoint, MAS NMR 

methods are progressing rapidly. However, multidimensional spectroscopy of OS-ssNMR 

is still in its infancy. Our group is able to run double resonance 2D and 3D [1H,15N] OS-

ssNMR experiments routinely on selected samples. The quantum leap will be possible when 

triple resonance 3D [1H,13C,15N] experiments will become available for the unambiguous 

assignments of membrane proteins. The next frontier is the conjugation of these ssNMR 
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methodologies to determine the structure of multi-span membrane proteins. Fig.8 shows the 

application of MAS and OS-ssNMR to a six TM protein (SaTP) involved in the transport of 

succinate and acetate. Both the simulated spectra and the experimental fingerprints for both 

MAS and OS-ssNMR are rather promising, and the sensitivity of these experiments supports 

the feasibility of the structure determination at physiological temperature with lipids in a 

liquid crystalline phase. These results suggest that the future of ssNMR is bright. Although 

improvements in sample preparations, hardware, and pulse sequences must be in place, 

critical information on challenging biological systems can be obtained for the time being.
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Figure 1: MAS and OS-ssNMR studies of single pass membrane proteins PLN and SLN.
A. Structure and membrane orientation of PLN obtained from a combination of isotropic 

and anisotropic restraints. B. 13C,13C-DARR spectrum of PLN in lipid vesicles. C. SE-

SAMPI4 spectrum of PLN in oriented lipid bicelles. D. Structure and orientation of SLN 

in lipid membranes calculated using both MAS and OS-ssNMR data. E. 13C,13C-DARR 

spectrum of SLN in lipid vesicles. F. SE-SAMPI4 spectrum of PLN in oriented lipid 

bicelles. Note that the oriented spectrum of SLN was obtained using paramagnetic doping 

and in the absence of Yb3+ (unflipped bicelles).
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Figure 2: Effects of single mutation on the topology of DWORF in lipid membranes.
A. SE-SAMPI4 spectra of wild-type DWORF (blue) and P15A mutant (red) reconstituted 

into flipped 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1-palmitoyl-2-oleoyl-

glycero-3-phosphocholine (POPC) bicelles. B. Structural models of DWORF backbone 

obtained from replica-averaged orientational restrained molecular dynamics (RAOR-MD). 

Distinctive helical domains associated with the N-terminus (green) and C-terminus (blue) 

are fitted to PISA models.
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Figure 3: MAS Polarization optimized experiments (POE) on the six transmembrane helices 
SaTP protein transporter reconstituted in lipid membranes.
A. 2D DUMAS experiments for the simultaneous acquisition of DARR (200 ms) and 

NCA experiments. B. MEIOSIS experiment with the simultaneous acquisition of three 3D 

experiments: NCACB, CA(N)COCX, and NCOCX.
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Figure 4: Example of 3D SLF experiments performed on SLN aligned in lipid bicelles.
A. 3D SE-SAMPI4-PDSD spectrum of [U-15N]-SLN in bicelles doped with 5% Cu2+-

chelated lipids (DMPE-DTPA-Cu2+). B. 3D strip plots at specific dipolar coupling values 

from the 3D SE-SAMPI4-PDSD spectrum. The solid lines indicate [i, i+1] cross peaks.
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Figure 5: Two-state topological equilibrium of monomeric PLN.
A. Observation by MAS of two conformational states of PLN: the ground T-state and the 

excited R-state. B. 2D [15N-1H] SE-SAMPI4 spectrum of PLNAFA with (blue) and without 

(red) phosphorylation in flipped DMPC/POPC bicelles. The insets show the two-state 

equilibrium for a selective 15N-Phe labeled PLNAFA. C. T-state (PDB 2KB7) and R-state 

(PDB 2LPF) of PLNAFA.

Gopinath et al. Page 20

Acc Chem Res. Author manuscript; available in PMC 2024 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Structural determination of the SERCA-PLN complex by ssNMR.
Mapping the binding between the dynamic N-terminus was achieved previously by PRE 

experiments followed by MAS [13C-1H] rINEPT and [13C-13C] DARR measurements (Data 

from ref. 70). Residues marked by red spheres were found to experience unambiguous 

PRE-induced line broadening, yellow spheres ambiguous and blue sphere unambiguously 

no-PRE quenched.
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Figure 7: MAS ssNMR experiments on HAX-1, an intrinsically disordered protein of 279 amino 
acids.
A. Schematic of the predicted structural and functional domains of HAX-1. B. rINEPT 

spectra (right) normalized to CP spectra (left) of PLNAFA in complex with HAX-1203−245, 

the PLN binding region (PBR) of HAX-1 and full length HAX-1. C. Overlay of IDP HAX-1 

spectra, obtained from MAS RI-HSQC (red), and solution NMR [1H,15N]-HSQC (black). D. 
13C-13C DARR experiments of HAX-1 in lipid vesicles.
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Figure 8: 
Integrated MAS and OS-ssNMR spectroscopy of SaTP in lipid membranes. A. X-ray 

structure of SaTP (PDB 5ZUG). B. Predicted MAS NCA spectrum (left) using the ShiftX2 

Server versus experimental NCA spectrum (right). C. Predicted SE-PISEMA spectrum 

obtained from MD simulation versus experimental SE-PISEMA spectrum (right).
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