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To address challenges in screening for chronic kidney disease (CKD), we devised a deep learning-
based CKD screening model named UWF-CKDS. It utilizes ultra-wide-field (UWF) fundus images to
predict the presence ofCKD.Wevalidated themodelwith data from23 tertiary hospitals acrossChina.
Retinal vessels and retinal microvascular parameters (RMPs) were extracted to enhance model
interpretability, which revealed a significant correlation between renal function and RMPs. UWF-
CKDS, utilizing UWF images, RMPs, and relevant medical history, can accurately determine CKD
status. Importantly, UWF-CKDS exhibited superior performance compared to CTR-CKDS, a model
developed using the central region (CTR) cropped fromUWF images, underscoring the contribution of
the peripheral retina in predicting renal function. The study presents UWF-CKDS as a highly
implementable method for large-scale and accurate CKD screening at the population level.

Chronic kidney disease (CKD) has emerged as a prominent cause of pre-
ventablemorbidity andmortality, posing a significant threat to global public
health. In 2017, 697.5 million cases of all-stage CKD were recorded, with a
global prevalence of 9.1%. An estimated 1.2 million people died fromCKD,
with projections suggesting that this number could rise to 2.2 million by
2040 in the best-case scenario1–3. The associated healthcare and socio-
economic burdens have also become overwhelming. Patients who benefit
from renal replacement therapy (RRT) comprise about 0.15% of the global
population, but this small group can absorb 2–3% of the healthcare budget
of some advanced countries4. Nonetheless, costs for CKD are not limited to
the expensive RRT but also include nonrenal healthcare costs, costs not
related to healthcare, and costs for patients with CKD who are not yet
receiving RRT5. These results underscored the urgent need for early
detection and intervention ofCKDat the population level6,7.However, CKD
screening remains a formidable challenge, even in high-income developed
countries and in at-risk populations such as individuals with hypertension
or diabetes8,9. The primary hurdle lies in the fact that routineCKD screening
typically necessitates blood tests to measure the estimated glomerular fil-
tration rate (eGFR), or urine samples to detect protein or albumin, not to
mention the more invasive kidney biopsy10. Previous studies have reported
that awareness among patients with CKD remains shockingly low, around

10%11, and a CKD screening strategy focusing solely on at-risk populations
would overlook more than 50% of CKD cases12. To address this, there is a
pressing need for noninvasive, convenient, and highly precise clinical
examinations and biomarkers.

The retina offers a unique opportunity to directly and non-invasively
visualize humanmicrocirculation. Current consensus recognizes structural,
developmental, organizational, and physiological similarities between the
eye and kidney13. Retinal microvascular abnormalities have been proposed
as indicators of systemic microvascular damage and renal dysfunction,
while reducedeGFRhas alsobeen linked to retinal vascular diseases14–18.As a
result, there has been a growing interest in verifying the association between
these two and quantitatively evaluating retinal microvascular parameters
(RMPs) as predictive indicators of renal function19. However, existing
research in this area faces several unresolved issues. First, although a general
relationship between RMPs and renal function has been established, results
remain inconclusive20,21. Second, prior studies have primarily focused on
retinal vasculature within the 30–60° range of the posterior retina and have
been restricted tomanually selected vascular branches proximal to the optic
disc20,22. Recent perspectives suggest that peripheral retinal vessels may
exhibit even earlier changes than central retinal vessels, highlighting the
potential clinical significance of ultra-wide-field (UWF) scanning laser
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ophthalmoscopy, capable of capturing the ocular fundus up to 200° in a
single exposure. Third, the segmentation of vessels and the assessment of
RMPs may benefit from quick and automated artificial intelligence-based
processes2, as opposed to traditional manual vessel marking methods like
the Singapore I Vessel Assessment (SIVA) system23. However, arter-
iovenous segmentation in UWF fundus images remains relatively unex-
plored, primarily due to the extensive coverage of thinner blood vessels
within the 200° UWF image. This makes the annotation process and
algorithm development exceedingly time-consuming and challenging.

Sabanayagam et al.‘s recent research demonstrated the comparable
effectiveness of a retinal image-based deep learning algorithm (DLA) and
traditional risk factor-based models for CKD detection, highlighting the
potential of noninvasive retinal photography for screening24. In light of these
challenges and findings, our study aims to develop a DLA for CKD
screening using UWF fundus images and prospectively validate it across
multicenter settings nationwide.We also explored the role of the peripheral
retina in CKD prediction. Our approach provided a noninvasive, auto-
mated, accurate, and easily implementable solution for population-level
CKD screening.

Results
General data
Initially, we collected a total of 123,585 UWF images from 41,469
patients. After excluding low-quality images and patients lacking the
requisite renal function indicators, a total of 26,539 UWF fundus images,
corresponding to 9133 patients with paired renal function data, were
ultimately included in this study. The image screening process is outlined
in Fig. 1. During the evaluation of the image quality inspection
process, we got a mean inter-rater consistency score of 99.3% (95% CI:
97.8–99.8%) among the three ophthalmologists, the mean concordance
of each expert with the gold standardwas 99.7%, the kappa value between
the AI algorithm and the three retinal specialists was 0.975 (Supple-
mentary Table 1). A summary of the demographic characteristics of the
enrolled patients can be found in Table 1. The internal dataset consisted
of 23,313 UWF images paired with renal function indicators, which were
randomly divided into training, validation, and test sets at a ratio of
70:15:15. The multicenter test dataset encompassed 3226 UWF images
derived from 1352 patients. Among all the participants in the study, 2365
out of the 26,539 UWF images (8.91%) were associated with patients
diagnosed with CKD+. Further details pertaining to the internal dataset
and the multicenter test set can be found in Table 1.

Artery/vein segmentation
Our segmentationmodel, UNet++, could properly segment arteries, veins,
and optic discs fromUWF images. The DICE scores for each channel were
0.54, 0.61, and 0.88, respectively. The AUC scores were 0.74 (95% CI:
0.70–0.79), 0.80 (95% CI: 0.76–0.83), and 0.94 (95% CI: 0.91–0.98),
respectively. When the segmentation is limited in the posterior fundus
region, the DICE scores are 0.64, 0.70, and 0.88, respectively, and the AUC
scores are 0.83 (95%CI: 0.81–0.85), 0.86 (95%CI: 0.84–0.88), and 0.94 (95%
CI: 0.91–0.98), respectively. We randomly selected four UWF images for
visualization of the segmentation results, as shown in Fig. 2. From the
evaluation metrics and visualization results, the segmentation of the optic
discs and the vessels was closely similar to the doctor’s annotations.

Correlation between RMP and renal function
The results of the correlation analysis between the renal function indicators
and retinal vascularmetricswere summarized in Table 2. (1) ForAVR, both
B-AVR and C-AVR were significantly and negatively correlated with UCr,
UA, and Urea (All P < 0.05). C-AVR was additionally negatively associated
withUOB,UMAlb, Cr, andAlb (All P < 0.05). (2) ForDf, both CTR-Df and
UWF-Df were significantly and positively correlated with eGFR and UCr,
while negatively correlatedwithUA,Cr,Urea, andAlb (AllP < 0.05).UWF-
Df was additionally positively correlated with UOB (P < 0.05), while CTR-
Df was additionally negatively correlated with UMAlb and Alb (P < 0.05).
(3) For TORT, we found eGFR and UCr were significantly and positively
correlated with UWF-TORT (Both P < 0.05), while UMAlb, Cr, Urea, and
Alb were negatively correlated with UWF-TORT (All P < 0.05). Interest-
ingly, ACR was positively associated with CTR-TORT, while negatively
associated with UWF-TORT (Both P < 0.05). (4) In Table 3, further eva-
luation found that the artery- and vein-Df of the UWF and central images
were significantly correlated with most of the renal function indicators in
different level (P < 0.05), except for UOB. Moreover, we also found Artery-
UWF-Df showed the highest correlation coefficient with eGFR (r = 0.31,
95% CI 0.28–0.33), which was better than Artery-CTR-Df and Vein-UWF/
CTR-Df. Generally, UWF-Df showed a better correlation than CTR-Df,
while Artery-Df showed a better correlation than Vein-Df (Table 3 and
Fig. 3).

Classification model results
We trained the UWF-CKDS to predict CKD status and use the CTR-
CKDS for comparison. The performance metrics of these twomodels on
the internal test set and multicenter test set were shown in Fig. 3. The

Fig. 1 | Patient data collection and screening process of the nationwide and
multicenter study. a The 200° UWF images were captured, and the renal function
and medical history items were prospectively extracted from 23 tertiary hospitals
nationwide in China (See Supplementary Note 1 for detailed hospital information).
b 123,585 UWF images from 41,469 patients were initially collected. 218 images
from 218 patients were finally included for training the UWF image segmentation

model. 23,313 images from 7781 patients were finally included for creating the CKD
screening model in a 7:1.5:1.5 distribution for internal training, validation, and test.
3226 images from 1352 patients from multicenter collection were used for outer
validation. Blue arrows: patients and images permitted to subsequent procedures.
Red arrows: excluded patients and images according to the exclusion criteria.
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UWF-CKDS achieved higher AUC values than CTR-CKDS on both test
datasets (internal 0.86 95% CI: 0.83–0.89 versus 0.82 95% CI: 0.79–0.86,
P < 0.01; multicenter 0.81 95% CI: 0.76–0.86 versus 0.77 95% CI:
0.72–0.83, P = 0.01), demonstrating better predicting performance of
UWF-CKDS over CTR-CKDS. Based on the analysis of the confusion
matrix, UWF-CKDS showed higher sensitivity and a relatively lower

specificity (Supplementary Fig. 1). When the sensitivity value was set at
0.80, UWF-CKDS showed significantly better specificity than CTR-
CKDS in themulticenter test (0.69 95%CI: 0.65–0.71 versus 0.53 95%CI:
0.50–0.56, P < 0.01). In Fig. 4, the heatmaps showed the regions of
interest of these two models. The UWF-CKDS focused not only on the
posterior pole but also on the peripheral retinal area.

Table 1 | Demographic data of enrolled patients and their distribution in study groups

Metric General data Internal dataset Multicenter test

Training set Validation set Test set

Number of images, n (%) 26,539 (100%) 16,266 (61.29%) 3535 (13.32%) 3512 (13.23%) 3226 (12.16)

Number of patients, n (%) 9133 (100%) 5446 (64.48%) 1167 (13.82%) 1168 (13.83%) 1352 (16.01)

Images of CKD−/CKD+, n (times) 24,174/2365 (10.22) 14,994/1272 (11.79) 3249/286 (11.36) 3227/285 (11.32) 2704/522 (5.18)

Age, years (mean ± SD) 47.14 ± 18.31 45.82 ± 18.4 44.87 ± 18.15 47.42 ± 18.78 55.96 ± 14.56

Female, n (%) 14,285 (53.83%) 9120 (56.07%) 1915 (54.17%) 1779 (50.65%) 1471 (45.60%)

eGFR, mL/min/1.73m² (mean ± SD) 97.48 ± 29.41 99.43 ± 29.12 99.43 ± 29.42 97.76 ± 28.49 85.18 ± 28.88

Previous medical history

Diabetes, n (%) 6287 (23.69%) 3578 (22.0%) 767 (21.7%) 825 (23.49%) 1117 (34.62%)

Hypertension, n (%) 6911 (26.04%) 3830 (23.55%) 720 (20.37%) 924 (26.31%) 1437 (44.54%)

Cerebrovascular disease, n (%) 1739 (6.55%) 1023 (6.29%) 220 (6.22%) 227 (6.46%) 269 (8.34%)

Coronary heart disease, n (%) 1791 (6.75%) 934 (5.74%) 181 (5.12%) 227 (6.46%) 449 (13.92%)

Dyslipidemia, n (%) 4761 (17.94%) 2584 (15.89%) 496 (14.03%) 641 (18.25%) 1040 (32.24%)

CKD chronic kidney disease, eGFR estimated glomerular filtration rate.

Fig. 2 | Representation and comparison of image
segmentation between experienced ophthalmol-
ogy experts and UNet++ based
segmentationmodel. FourUWF images (a) and the
segmentation results from experienced ophthal-
mology experts (b) and the segmentation model (c)
were randomly selected for representation. The
automatic segmentation of the optic disc and the
vessels were very close to the doctor’s annotation.
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Demographic effects on the prediction performance of
UWF-CKDS
Since not only the UWF images but also demographic characteristics, like
age and sex,were input to themodel. Further examinationwas conducted to
explore the impact of these demographic characteristics on the overall
model performance. The multi-variable logistic regression showed that sex,
age, diabetes, hypertension, and cerebrovascular disease have statistically
significant associations with the prediction of CKD (Supplementary Table
2). To further clarify the influence of age and other confounding factors, we
conducted age-matched experiments, as well as propensity score matching
(PSM) to control for all the above confounders and construct matched
training sets. The model trained on the age-matched dataset showed an
internalAUCof 0.79 (95%CI: 0.78–0.80) and an externalAUCof 0.68 (95%
CI: 0.66–0.70), while the model trained on the PSM dataset showed an
internalAUCof 0.81 (95%CI: 0.80–0.82) and an externalAUCof 0.70 (95%
CI: 0.68–0.72).Theywere only slightly inferior to thoseof theoriginalUWF-
CKDS (internal AUC = 0.86, 95% CI: 0.83–0.89; external AUC= 0.81, 95%
CI: 0.76–0.86, see Supplementary Tables 2–4).

Discussion
This prospective, nationwide, multicenter study developed a DLA for CKD
screening by UWF fundus images. The vascular segmentation model
achieved satisfactory performance in vessel segmentation and RMP mea-
surement. We found UWF-Df was significantly correlated with renal
functions, especially Artery-UWF-Df with eGFR (r = 0.31, 95% CI
0.29–0.33). Our UWF-CKDS demonstrated solid predicting ability and
suggested peripheral retina could contribute to CKD prediction, as the
UWF-CKDS achieved higher AUC than the CTR-CKDS in both internal
andmulticenter tests. For screening purpose, the specificity of UWF-CKDS

could also be superiorwhen the sensitivity valuewas set as 0.80, as verified in
the multicenter test (0.65 95% CI: 0.62–0.69 versus 0.56 95% CI:
0.53–0.60, P < 0.01).

To develop this model, the first step was to achieve automatic and
accurate artery/vein segmentation and measurement2. However, previous
studies focused only on conventional fundus images, segmenting the vessels
without distinguishing between arteries and veins, or could not achieve fully
automatic calculation of vessel indices for UWF fundus images25. Our
segmentation model was based on the UNet++ architecture, which
introduced dense connections between different levels, allowing the model
to capture richer multi-scale features than the previous U-Net architecture,
and thus improved the vessel segmentation ability for UWF images26.
Additionally, our model inputs larger-sized (1024 × 1024) UWF images,
better preserving the features of small vessels. We also avoided splitting the
entire UWF image into multiple patches for input, as this would severely
affect the distinction between arteries and veins. The optic disc channel was
used to help mimic ophthalmologists since they typically initiated the
arteriovenous differentiation process near the optic disc. As a result, our
model could simultaneously segment arteries, veins, and the optic discs for
UWF fundus images with high accuracy (AUC = 0.74, 0.80, and 0.94,
respectively). The representative images shown in Fig. 2 also demonstrated
high consistency between the model and human doctors.

As discussed earlier, the eye and kidney share some structural, phy-
siological, and even pathological similarities15,27. Thus, it might be possible
that a specific relationship between the two organs can be established by
measuring their associated indices, based on which we can further utilize
fundus information to predict renal functions. Indeed, in 2020, Xiayu et al.
found that for patients with type 2 diabetes, the presence of micro-
albuminuria was associated with smaller peripheral arteriolar caliber, larger

Fig. 3 | Comparison of retinal microvascular parameters-renal function corre-
lation between UWF- and CTR-CKDS models. a Df of the UWF or CTR images
were significantly correlated with most of the renal function indicators in different
level. Generally, the UWF-Df showed a better correlation with renal functions than
CTR-Df. The UWF-Df showed the highest correlation coefficient with eGFR. b The
UWF-CKDS model achieved higher AUC values than the CTR-CKDS model on
both test datasets (internal 0.86 95% CI: 0.83–0.89 versus 0.82 95% CI: 0.79–0.86,

P < 0.01; multicenter 0.81 95% CI: 0.76–0.86 versus 0.77 95% CI: 0.72–0.83,
P = 0.01). cMore detailed comparison of AUC, sensitivity, and specificity between
UWF- CKDS and CTR-CKDS on both datasets also revealed the better performance
of the former model. When the sensitivity value was set at 0.80, UWF-CKDS also
showed better specificity than CTR-CKDS in the multicenter test (0.69 95% CI:
0.65–0.71 versus 0.53 95% CI: 0.50–0.56, P < 0.01).
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peripheral venular caliber, and smaller arteriolar Df in color fundus
photographs22. These findings verified the above hypothesis and showed the
potential of noninvasive RMPs to serve as preclinical markers to identify
populations at high risk of early kidney disease. In this study,we assessed the
correlation between a series of RMPs and renal function indicators. Results
showed significant correlations at varying levels between eGFR, UCr, ACR,
UA, UMAlb, Cr, Urea, Alb, and RMPs. Notably, UWF-Df exhibited a
stronger correlation with eGFR than CTR-Df, with Artery-UWF-Df
showing the highest Pearson correlation coefficient. Our results might
provide stronger evidence for the notion mentioned in the former study in
several aspects. First, the peripheral vascular changes they claimed were
limited in the posterior pole of a traditional fundus photograph, while we
calculated the vascularDf of the entire UWF image, which contains the true
peripheral retina. Moreover, our findings indicated that the correlation
between TORT and renal function was predominantly observed in UWF
images, as opposed to CTR images. This suggests that peripheral retinal
microcirculation may reflect early pathophysiological changes more effec-
tively than the central retina. Second, they classified microalbuminuria as
absent or present, while renal function indicators and RMPs in our study
were both recorded as continuous variables. Thus, the analyzing results
might bemore reliable. Third, we included up to 9 renal function indicators
and reveal more comprehensive associations between 8 of them and RMPs.

In total, our study demonstrated that a broader fundus area could offer the
opportunity to establish a more robust correlation with renal function than
traditional fundus images.

When predicting CKD, ourUWF-CKDS did outperformCTR-CKDS,
showing a higher AUC with reduced variability. To the best of our
knowledge, there have been few studies utilizing UFW images to study the
relationship between renal functions. Thus, our study pioneers the
exploration of the peripheral retina’s important value in DLA-based CKD
prediction. In a recent study by Sabanayagam et al., a DLA based on tra-
ditional color fundus photography achieved good performance for CKD
detection in the internal dataset (AUC= 0.911, 95%CI 0.886–0.936), which
decreased significantly in two external datasets (AUC = 0.733 and AUC=
0.835, respectively)24. In contrast, our UWF-CKDS had a more stable
performancebetween internal (AUC = 0.86, 95%CI0.83–0.89) andexternal
tests (AUC = 0.81, 95%CI 0.76–0.86).We inferred themuch larger number
of UWF images used for training our model (n = 16,266 versus n = 5188 in
their study) helped maintain its performance stability. The two models
seemed to be similar in the external tests. However, considering the per-
formance of UWF-CKDS was better than that of CTR-CKDS in our study,
we thought the different DLA designs in our and Sabanayagam’s studies
might partially explain their similar external performances. Even though,
ourmodelmight still potentially bemore reliable since the resultswerebased

Fig. 4 | Representation and comparison of regions of interest between UWF- and
CTR-CKDS models. Four randomly selected images, along with the heatmaps,
showed the regions of interest of both UWF- and CTR-CKD models. The UWF-

CKDSmodel focused not only on the posterior pole but also on the peripheral retina.
aRawUWF fundus image, b region of interest of UWF-CKDS, c region of interest of
CTR-CKDS, and d corresponding extracted vessels and optic disc.
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on the quantified relationship between RMPs and renal functions. To fur-
ther minish the black-box effect of DLAs and to elucidate the operational
distinctions between UWF and CTR image-based models, we used Grad-
Camtohighlight areas of interest for both algorithms.UWF-CKDSnot only
focused on the optic disc region but also covered a larger peripheral
retinal area.

When further exploring the role of other demographic features
included in the model, we found the contributions of the factors, including
sex, age, diabetes, hypertension, and cerebrovascular disease, were sig-
nificantly smaller than the retinal image features, which means the latter
plays a major role in CKD prediction. It is important to note that the main
objective of this study is to develop a practical CKD screening tool that
integrates various available information to maximize diagnostic efficacy.
The confounding factor analysis helps to better understand the sources of
information for the model’s predictions. This understanding can also guide
the interpretation of the model’s results and improve its acceptability for
clinical usage.

The PUMCH, a national medical center, serves a diverse patient
population across China, ensuring the representativeness of our training
dataset.Our external datasetwasprospectively collected from23nationwide
tertiary hospitals, encompassing various ethnic groups and remote regions.
Thismeans that ourmodel was developed and tested in a real-world clinical
environment within a multi-ethnic country, making it well-suited for
clinical applications. By comparison, the number of patients included in the
former mentioned two studies was relatively limited and one of them was
conducted on community-based populations, which might limit their
clinical potentials22,24. Moreover, our approach is automatic and efficient,
eliminating the need for time-consuming and labor-intensive procedures.
This makes it ideal for population-level CKD screening. When combined
with a vehicle-mounted fundus camera, it can extend its utility at low cost to
community and primary care settings, particularly benefiting underserved
rural areaswith limitedmedical resources. An additional advantage of using
UWF images, as opposed to traditional fundus images, is that it does not
require mydriasis, making the process quicker and safer by avoiding
potential risks associated with mydriasis. Low-quality UWF images may
indicate a need for further ophthalmic assessment, which adds to their
screening value.

While the reported DICE scores indicated room for improvement in
our arteriovenous segmentation in UWF images, there were some note-
worthy issues. First, there was a scarcity of published research on arter-
iovenous segmentation in UWF images. Most current only focused on the
metrics in the posterior region. Second, although some studies reported
higher DICE scores based on the 35–55° posterior fundus images, their
arteriovenous segmentation was mainly developed and tested in relatively
normal and health images28. In contrast, our model was developed and
tested on 200° UWF images, and most of these patients took the UWF
images for certain kinds of ocular abnormalities, such as cataract, vitreous
opacity, and severe fundus diseases like retinal artery/vein obstruction, and
evenproliferative diabetic retinopathywithdense laser spots. Besides, due to
much wilder fundus field, the annotation of peripheral artery/vein was
extremely difficult. Since it might be inappropriate to directly compare the
200° UWF arteriovenous segmentation with current available studies, we
evaluated the metrics in the posterior region. In this area, our segmentation
model achieved DICE scores of 0.64 for arteries and 0.70 for veins, with
AUC scores of 0.83 and 0.86, respectively. This depicted a significantly
improved segmentationaccuracy in themost clinically relevant regionof the
retina.

Our study has limitations. First, though we found significant correla-
tions between renal function indicators and RMP, such as Artery-UWF-Df
with eGFR, these correlationswere relativelymodest (up to0.31), potentially
limiting the clinical utility of ourfindings. Second, ourmodel was developed
and tested in a nationwide, large-scale cross-sectional dataset. Prospective
follow-up data could enhance the model’s performance. Third, though our
study included multiple ethnic populations in vast area of China, they were
mainly Asians. Data for certain Chinese ethnic minorities and races from

other countries, like Caucasians, were still limited. We will try to include
patients of more races to further improve the utility of our UWF-CKDS.
Lastly, while our UWF-CKDS showed promise in CKD screening, it does
not provide quantitative eGFR or CKD stage predictions. It was primarily
designed as a binary classification system for innovative screening. Over
time, with more data, it may become more efficient and adaptable, poten-
tially evolving to provide quantitative predictions.

In conclusion, the UWF-CKDS trained and tested by a nationwide,
multicenter dataset showed solid performance in CKD screening and ver-
ified the role of the peripheral retina in predicting renal function. Notably,
Artery-UWF-Df showed the best correlation with renal function indicators.
This noninvasive, automatic, non-mydriatic, and highly adaptable UWF-
CKDS offers an innovative and accurate method for population-level CKD
screening.

Methods
Study design and participants
This prospective, multicenter study was spearheaded by the Department of
Ophthalmology at Peking Union Medical College Hospital (PUMCH) in
Beijing,China.The studywas carriedout in twophases, utilizing clinical data
gathered from the ophthalmology departments of 23 tertiary referral hos-
pitals across thenation.Thefirst phase tookplace fromNovember 1, 2018, to
December 1, 2022. During this phase, we initially developed a vascular
segmentation model for ultra-wide-field (UWF) fundus images and auto-
matically quantified various retinal microvascular parameters (RMPs),
including the fractal dimension (Df), vascular tortuosity (TORT), and
arteriovenous ratio (AVR). Subsequently, we analyzed the correlation
between these RMPs and multiple renal function indices. We then con-
structed a screening classification model capable of predicting whether a
subject had chronic kidney disease (CKD) by inputting UWF images, vas-
cular indicators, basic patient information, and medical history (Fig. 5). To
be specific, a 70:15:15patient-level data splitwasused for training, validation,
and internal testing, respectively. This approach ensured that there was no
potential information leakage across these datasets. The second phase of the
studywas conducted from January 1, 2023, to July 1, 2023.During this stage,
we employed amulticenter dataset collected from the 23medical settings to
evaluate the performance of the CKD screening model on a national scale.

Ethical approval for this study was obtained from the Institutional
ReviewBoard/EthicsCommittee of PekingUnionMedical CollegeHospital
(RegistrationNumber: I-22PJ252), theMedical EthicsCommittee of Beijing
Tsinghua Changgung Hospital, the Ethics Committee of Beijing Tiantan
Hospital, the Ethics Committee of Eye Hospital of Shandong First Medical
University, the EthicsCommittee ofTonghuaEyeHospital of JilinProvince,
the Ethics Committee of Guangdong Provincial People’s Hospital, the
Medical Ethics Committee of Guizhou Provincial People’s Hospital, the
Medical Ethics Committee of Hunan Provincial People’s Hospital, the
Ethics Committee of the Fourth People’s Hospital of Shenyang, the Ethics
Committee of the Affiliated Hospital of Chengde Medical University, the
Medical Ethics Committee of the SecondAffiliatedHospital ofHebeiNorth
University, theEthicsCommittee ofXi’anNo. 1Hospital, theMedical Ethics
Committee of the First Affiliated Hospital of KunmingMedical University,
the Medical Ethics Committee of Renmin Hospital of Wuhan University,
the Ethics Committee of the First Hospital of ChinaMedical University, the
Ethics Committee of Bayinguoleng people’sHospital, the Ethics Committee
of theAffiliatedHospital of InnerMongoliaMedicalUniversity, theMedical
Ethics Committee of HainanHospital of Chinese People’s Liberation Army
(PLA) General Hospital, the Ethics Committee of the Second Affiliated
Hospital of Harbin Medical University, the Ethics Committee of the First
Affiliated Hospital of Zhengzhou University, the Ethics Committee of
Fujian Medical University Union Hospital, the Ethics Committee of the
First Affiliated Hospital of Shanxi Medical University, and the Ethics
Committee of the Affiliated Hospital of Southwest Medical University. The
study was conducted in accordance with the principles outlined in the
Declaration of Helsinki29. Written informed consent was obtained from all
participating individuals.
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Bilateral Optos UWF fundus images (Daytona, Optos PLC, Dun-
fermline, UK) and renal function examinations conducted during this
period were independently reviewed by two retinal specialists (XZ and
LM). Discrepancies were assessed using kappa statistics, and consensus
was reached through discussions with the corresponding author (YC).
Inclusion criteria were defined as follows: (1) age above 18 years; (2)
possession of at least one Optos image; (3) concurrent renal function
examinations performed within 1 week of obtaining the Optos images;
(4) availability of comprehensive medical history, including diabetes,
hypertension, cerebrovascular disease, coronary heart disease, dyslipi-
demia, etc.; (5) absence of dialysis treatment, blood replacement, or
plasma exchange between image acquisition and laboratory testing; (6)
for subjects with multiple clinic visits, only images with an interval of
more than 3months between two visits were included. Exclusion criteria
encompassed: (1) images significantly affected by artifacts; (2) blurred
images caused by vitreous hemorrhage, astrocytosis, severe cataracts,
etc.; (3) images where retinal vessels, the optic disk, and other fundus
structures were inadequately displayed; (4) patients who had undergone
previous vitreoretinal surgery or retinal photocoagulation; (5) images
with excessive brightness or darkness. The evaluation of image quality
was conducted by a specially designed artificial intelligence (AI)
algorithm30. To assess the algorithm’s quality control precision in this
study, we randomly selected 200 images each from the algorithm’s
approved and rejected datasets, respectively. Three ophthalmologists
independently reviewed these 400 images (200 qualified images and 200
unqualified images), yielding inter-rater consistency scores. The collec-
tive verdict from the reviewers established the gold standard through a
majority vote. The concordance of each expert with the gold standard
was evaluated. Using the gold standard constituted by expert consensus,
the model’s performance relative to the gold standard in the 2 × 2 con-
tingency table was subsequently evaluated.

Clinical examinations of renal function and definition of
CKD cases
The renal function indicators included in this study were: estimated glo-
merularfiltration rate (eGFR), urinarymicroalbuminuria (UMAlb), urinary
creatinine (UCr), urinary albumin-to-creatinine ratio (ACR), blood urea
(Urea), blood uric acid (UA), urine occult blood (UOB), blood creatinine
(Cr), and blood albumin (Alb). eGFR was calculated using the Creatinine
Plus standardized enzymatic assay and the Chronic Kidney Disease-
Epidemiology Collaboration (CKD-EPI) equation31.

In this study, CKD+ was defined as eGFR <60mL/min/1.73m² for
more than 90 days, corresponding to CKD stages 3 and above, as defined by
theKidneyDisease ImprovingGlobalOutcomes (KDIGO) stages of CKD32.
This definition was supported by medical records or risk factors for renal
function impairment. Patients with potential transient renal dysfunction
underwent detailed evaluation and confirmation by a renal medicine spe-
cialist. Individuals with eGFR ≥60mL/min/1.73m² were categorized as
controls, corresponding to CKD stages 0 to 2.

Composition of the UWF image segmenting and CKD
screening system
Artery/vein segmentation of UWF images. The vessel segmentation
model was the UNet++ architecture26, with EfficientNet B5 serving as the
encoder33. UNet++was designed to improve the accuracy of segmentation
tasks by introducing nested and dense skip connections, optimizing the
original U-Net architecture. This modification enhances gradient flow and
allows formore levels of feature fusionwithin thenetwork,makingUNet++
particularly effective in capturing finer anatomical structures such as vessels.
EfficientNet was chosen for its efficient use of computational resources and
its good scalability across various tasks. With the pre-training based on a
large dataset of traditional fundus images, it has shown better performance
than other models, like ResNet50 and ViT (Supplementary Table 5). The

Fig. 5 | Overall input data collection and CKD status prediction procedure.
Vascular indices, including the Df, TORT and AVR, were measured automatically
after segmenting the UWF images with UNet++ based segmenting model. The
correlation between the vascular indices and multiple renal function indices was
further analyzed. Finally, a classification model, which combines the raw UWF

image, 2 items of patient information, 5 items of medical history information, and
the 3 items of vascular indicators as the input, generates the prediction output of
CKD status (yes or no). This model used the EfficientNet structure to extract image
features fromUWF images and then employed multi-layer fully connected layers to
fuse image features and numerical features.
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model ultimately generated three distinct channels, corresponding to
arteries, veins, and the optic discs. We utilized the Dice Loss function as the
loss function34. To strengthen the segmentation ability of small blood vessels,
and to better distinguish arteriovenous vessels, we initially padded theUWF
image into a square shape based on the longer side, followed by scaling it to a
fixed, larger size (1024×1024).Afternormalizing the image, itwas input into
the vessel segmentation model. Metrics used to evaluate the segmentation
results included the dice coefficient (DICE) and AUC. DICE = 2*TP/
(2*TP+ FP+ FN) where TP, TN, FP, and FN are the number of true
positive, true negative, false positive, and false negative image pixels,
respectively. In image segmentation, we could treat each pixel as a sample
and draw the ROC curve based on the probability of each pixel belonging to
the target object. The maximum values for both DICE and AUC are 1. The
larger the value, the better the model’s segmentation performance.

The vessel segmentation dataset comprised 218 UWF fundus images
annotatedby experiencedophthalmology experts, ofwhich184 imageswere
utilized for training purposes, while the remaining 34 images served as the
validation data. We initially pre-trained the model on conventional fundus
images and subsequently fine-tuned it on the annotated UWF fundus
images. During the fine-tuning process, a plethora of data augmentation
techniques were employed, such as random flipping, random adjustments
of brightness, saturation, and contrast. The model was implemented using
PyTorch and trained for 200 epochs on anNVIDIATITANRTXGPU.The
Adam optimizer was employed, with a learning rate of 1e-4.

Measurement of retinal vascular metrics. By segmenting the optic disc,
retinal arteries, and retinal veins according to their shapes, vascular indices
could be obtained automatically. The Df was calculated using the box-
counting method, which began by dividing the selected blood vessel mask
image into small squares, eachwith a side length of r. The number of squares
covering the vascular structure was calculated and denoted as N(r). Linear
regression was then employed to fit N(r) and r, and the resulting slope
represented the desiredDf. The curvature of blood vessels was measured by
simple tortuosity (sTORT).The sTORTcalculationmethod involves initially
segmenting the vessel from its branching points into individual segments.
Then, the actual length of each segment is measured and divided by the
Euclidean distance between its endpoints to find the ratio of the arc to the
chord length. Subsequently, these values of each vessel segment are averaged
todetermine the image’s tortuosity. To further study the association between
the peripheral retinal area and renal functions, we extracted the central
region (denoted as CTR) from the original UWF images, which roughly

correspond to the field of view observed by a traditional 50° fundus camera.
We calculated Df (UWF/CTR-Df) and TORT (UWF/CTR-TORT) for the
whole images (Fig. 6c). For AVR, we first excluded small branching vessels
and calculated the ratio by dividing themeanwidth of selected arteries by the
meanwidthof selected veins in twoannular regions: onewas theB-zonenear
the optic disc (0.5–1 DD outside the optic disc), and the other was the wider
C-zone (0.5–3.5 DD outside the optic disc), denoted as B-AVR andC-AVR,
respectively. The calculationof blood vessel diameter involves selectingmain
arteries and three main veins and was then measured at positions perpen-
dicular to the direction of the vessels, with themeasurements takenmultiple
times (Fig. 6b, right part). To obtain the CTR image, we cropped the UWF
image by drawing a circle around the center of the optic disc, which was
defined as the centroid of the circumscribed circle of the optic disc. The circle
was 3 DD away from the optic disc. (Fig. 6a, b).

CKD screening classification model. We developed a deep learning-
based and UWF fundus image-based CKD screening classification model
(UWF-CKDS). The model first input one UWF fundus image and used
three fully connected layers to fuse the extracted image features and other
input numerical features, ultimately outputting the probability of CKD+ for
that UWF image. The numerical features included patient information
(gender, age), medical history (diabetes, hypertension, cerebrovascular dis-
ease, coronary heart disease, dyslipidemia), and vascular indices (UWF-Df,
UWF-TORT, and C-AVR). The dimensions of three fully connected layers
were set to 26, 64, 32, and 2, respectively. Additionally, we trained another
classification model (CTR-CKDS) for comparison, which input the CTR
image and vascular indices (CTR-Df, CTR-TORT, and B-AVR), while other
numerical features were the same with UWF-CKDS. Both models used
EfficientNet B3, with the initial weights derived from ImageNet and an
internal fundus image dataset pre-training, and a fixed input image reso-
lution of 512 × 512. The loss function was Focal Loss35. The model was
implemented in PyTorch, trained for 50 epochs on an NVIDIA TITAN
RTX, using the Adam optimizer with a learning rate of 6e-4.

Statistical analysis
For continuous variables, we calculated means and standard deviations
(SD). To assess the relationships between renal function indicators (eGFR,
UMAlb, UCr, ACR, Urea, UA, UOB, Cr, and Alb) and retinal vascular
indices (UWF-Df, UWF-TORT, C-AVR, CTR-Df, CTR-TORT, and B-
AVR), we computed Pearson correlation coefficients (r) and their 95%
confidence intervals (CI). A P-value below 0.05 indicated statistical

Fig. 6 | Comparison of retinal microvascular parameters betweenUWF and optic
disc-centered image. aAn optic disc-centered circular region with a radius of 3 DD
away from the optic disc was cropped from the UWF image to represent the central
50° fundus region (denoted as CTR). b B-zone (an annular region that is 0.5–1 DD

outside the optic disc) and C-zone (an annular region that is 0.5–3.5 DD outside the
optic disc) are used for calculating the AVR for CTR and UFW image (denoted as
B-AVR and C-AVR, respectively). c The Df and TORT of both CTR and UWF
images were also calculated and compared.
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significance. To evaluate the CKD screeningmodel, we determined the area
under the receiver operating characteristic (ROC) curve (AUC). The
model’s classification threshold was set at 0.5, classifying instances with
probabilities exceeding 0.5 as positive outcomes. We also computed the
confusion matrix for both internal and external test sets to better assess the
performance. To visualize the areas of interest within the images associated
with renal function, we used Grad-CAM 28 for representation.

Data availability
Individual participant data will bemade available on request, directed to the
corresponding author (Y.C.). After approval by the Institutional Review
Board/Ethics Committee of PUMCH, partial data can be shared through a
secure onlineplatform for researchpurposes.Given thatmany aspects of the
deep learning system, such as data generation and model training, have a
large number of dependencies on internal tooling, infrastructure, and
hardware, we are unable to publicly release this code in the current stage.
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