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Aggressive B-cell non-Hodgkin lymphomas (NHL) in children, adolescents, and young adults (CAYA) include Burkitt lymphoma (BL),
diffuse large B-cell lymphoma (DLBCL), and a subset of high-grade tumors with features intermediate between these entities whose
genetic and molecular profiles have not been completely elucidated. In this study, we have characterized 37 aggressive B-NHL in
CAYA, 33 with high-grade morphology, and 4 DLBCL with MYC rearrangement (MYC-R), using targeted next-generation sequencing
and the aggressive lymphoma gene expression germinal center B-cell-like (GCB), activated B-cell-like (ABC), and dark zone
signatures (DZsig). Twenty-two tumors had MYC-R without BCL2 breaks, and two MYC-non-R cases had BCL6 translocations. MYC-R
cases, including DLBCL, carried BL-related mutations and copy number alterations. Conversely, MYC-non-R lymphomas had
alterations in the B-cell receptor signaling/NF-κB pathway (71%). DZsig was expressed in 12/13 of MYC-R tumors but only in 2/10 of
MYC-non-R GCB tumors (P < 0.001). The 3-year event-free survival (EFS) of the whole cohort was 79.6%. TP53 and KMT2C mutations
conferred inferior outcome (3-year EFS P < 0.05). Overall, MYC-R lymphomas in CAYA have a molecular profile similar to BL
regardless of their high-grade or DLBCL morphology, whereas MYC-non-R has more heterogeneous genetic alterations closer to
that of DLBCL.
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INTRODUCTION
High-grade B-cell lymphoma, not otherwise specified (HGBCL,
NOS) is a diagnostic category introduced in the revised 4th
edition of the World Health Organization (WHO) classification of
lymphoid malignancies [1] and maintained in current lymphoid
neoplasms diagnostic guidelines [2, 3]. This diagnostic class
emerged from the dissolution of the wide WHO 2008 category
of B-cell lymphoma, unclassifiable, (BCLU) with features inter-
mediate between diffuse large B-cell lymphoma (DLBCL) and
Burkitt lymphoma (BL), which encompassed a heterogeneous
subset of mature B-cell lymphomas with morphological
appearances from blastoid to features intermediate between
BL and DLBCL. The HGBCL, NOS category retains this
morphological spectrum, in the lack of concomitant MYC and
BCL2 and/or BCL6 rearrangements (HGBCL-Double hit [DH]),
although 20–50% of them display MYC rearrangements (MYC-R)
[2–4]. In adults, all HGBCL entities have very poor prognosis
with a median overall survival of less than two years [4–6]. The

genetic landscape of HGBCL, NOS is still poorly understood and
up to date, only two different studies have highlighted the
molecular heterogeneity of these tumors, describing an
intermediate mutational profile between BL and DLBCL [7, 8].
Two independent studies have proposed gene expression
signatures of poor outcomes to identify these patients [9, 10].
Both molecular high-grade (MHG) [9] and DH signatures
(DHITsig) [10] are able to identify most of DH as well as a
subset of non-DH and distinguish them from the relatively
favorable germinal center B-cell-like (GCB) DLBCL. Moreover,
DHITsig defines a group of aggressive GCB lymphomas that
extend beyond HGBCL-DH and is also shared with archetypical
dark zone lymphomas as BL, an aspect that motivated to
rename it dark zone signature (DZsig) [11]. Recognition that a
subset of non-DH tumors displays this DZsig raises the
possibility that a proportion of HGBCL, NOS could harbor MYC
or other relevant rearrangements that are cryptic to fluores-
cence in situ hybridization (FISH), as it has been previously
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observed in other lymphoma entities by next-generation
sequencing (NGS) approaches [12–15].
In children and adolescents, BL and DLBCL are the predominant

mature B-cell lymphomas. Although the revised 4th WHO
classification [1] recommended avoiding the term HGBCL in
pediatric population, and DH is absent in this age range, there are
tumors that show intermediate features between the two entities
resembling the high-grade morphology observed in adults, as well
as a subset of DLBCL with MYC-R. In children, adolescents, and
young adults (CAYA), both BL and DLBCL have well-defined
mutational profiles [16–18]. In CAYA DLBCL, this profile differs
from the observed in the adult population [17], whereas in BL, the
mutational profile is shared between age groups but with
different incidences of the mutated genes according to age
[19, 20]. Although since the 4th WHO classification [21] a wider
morphological spectrum is avowed in BL, this assumption is based
in gene expression profiling (GEP) as the very well-known
molecular BL (mBL) signature described by the German Con-
sortium [22–24], but no mutational studies have been performed
to demonstrate that BL with atypical morphology share the
mutational profile of prototypic BL. In comparison to adult disease,
the overall prognosis of pediatric B-cell non-Hodgkin lymphoma
(B-NHL) is excellent, although relapses still confer poor outcomes
[25]. Nowadays, risk stratification of these patients relies on clinical
biomarkers such as elevated lactate dehydrogenase levels and
advanced stage (III–IV) [26]. However, there is a clear need for
predictive biological biomarkers for survival at progression or
relapse. Recent genomic studies have determined the association
of TP53 alterations with a worse outcome [17, 19]. Nevertheless,
whether the morphological features of these tumors and the
inclusion of HGBCL, NOS as a diagnostic category could be a
prognostic indicator remains unclear in this age group.
Overall, considering the rarity of these aggressive tumors with

overlapping features between BL and DLBCL in CAYA and the
challenges in differentiating them by conventional molecular
approaches, we performed an integrated genomic analysis aiming
to refine the understanding of the pathobiology of these
lymphomas, the borders among these two entities, and improve
diagnostic accuracy.

METHODS
Patients and samples
We searched for aggressive B-cell lymphomas diagnosed in CAYA patients
up to 35 years old. Biopsies and clinical data from 32 pediatric patients (up
to 18 y) were recruited from Spanish centers belonging to Sociedad
Española de Hematología y Oncología Pediátricas (SEHOP), and five young
adult cases (18–33 y) were retrieved from the files of Hospital Clínic of
Barcelona (Table 1, Supplementary Table S1).
Cases were selected from the national centralized pathology review of

the tumors of the Spanish national registry of pediatric and adolescent
lymphomas. The original diagnoses of the submitted cases were 13 BL, 8
HGBCL, NOS, 6 B-cell lymphomas suggestive of BL, 5 HGBCL-BCLU, and 5
DLBCL. DH-lymphomas, lymphomas bearing the characteristic 11q gain/
loss aberration of large/high-grade B-cell lymphoma with 11q-aberration
(LBCL/HG-11q), and prototypical BL were excluded [2, 3]. All samples were
collected at diagnosis except for case HG8, analyzed at progression. Eleven
cases were previously published [17]. The morphology details such as the
presence of starry sky pattern, cell pleomorphism, nuclei size and
irregularity, Burkitt-like chromatin, and necrosis were evaluated on H&E
stain of each case (Supplementary Table S2).
The tumors were reclassified by the pathology panel (NCdA, LW, EC,

and OB), blinded to the original diagnosis and MYC-R status [1], as 29
high-grade B-cell lymphomas with intermediate features between BL
and DLBCL, 4 HGBCL with blastoid morphology and 4 DLBCL
(Supplementary Table S1). All samples investigated contained more
than 60% of neoplastic cells. This study was approved by the Hospital
Clínic of Barcelona Ethics Review Board (HCB/2021/0847) and in
accordance with the Declaration of Helsinki. Informed consent was
obtained from all patients.

Immunohistochemistry and fluorescence in situ
hybridization (FISH)
The immunophenotype was studied using standard immunohistochem-
istry (IHC) protocols on an automated platform (Ventana BenchmarkUltra,
Roche, Basel, Switzerland). EBV status was determined by in situ
hybridization (Epstein–Barr virus-encoded small RNA, EBER) (Supplemen-
tary Table S3). FISH analyses were performed using standard protocols.
Breaks at BCL2, BCL6, MYC, and IGH, t(8;14) translocation and 11q
alterations were analyzed using commercial FISH probes (Metasystems,
Altlußheim, Germany; Agilent Technologies, Santa Clara, CA; Abbot,
Chicago, IL; ZytoVision, Bremerhaven, Germany).

Targeted NGS for structural variants (SV) and mutational
analysis
For the study of SV and mutations, a custom capture panel (SureSelectXT,
Agilent Technologies, Santa Clara, CA) was used for the analysis of 26
tumor samples (Supplementary Methods, Table S4, and Fig. S1). Libraries
were indexed and compatible with the NextSeq 2000 (Illumina, San Diego,
CA) instrument. SV and mutations were called following the respective in-
house pipelines (Supplementary Methods and Supplementary Fig. S2).
Mutational information from five additional previously published cases was
retrieved [17]. Sanger sequencing for TP53 mutational analysis [27] and
MYC breakpoint verification were performed in isolated cases.

DNA copy number (CN) alterations analysis
CN alterations were examined using OncoScan (n= 30) or CytoScan platforms
(n= 5) (Thermo Fisher Scientific, Waltham, MA, USA) (Supplementary Methods)
and evaluated using Nexus Copy Number v9.0 (Bionano, San Diego, CA, USA).
Previously published CN data were used for comparison [17, 28].

Gene expression profile
Digital GEP was performed using the DLBCL90 assay [10] and/or Lymphoma
Subtyping Test-Lymph2Cx (NanoString Technologies, Seattle, WA) to assign
DZsig and COO status, respectively (Supplementary Methods).

Statistical methods
Fisher’s exact test was utilized for discrete variables, while the Wilcoxon rank
sum exact test and Student t-test were employed for continuous variables. The
Kaplan–Meier method was used to estimate event-free survival (EFS). Hazard
risk was assessed using the Cox proportional hazards model and comparisons
were performed using the Log Rank test. Statistical significance was set at 0.05
and p-values were two-sided. Analyses were carried out with R v4.1.1.

RESULTS

Clinicopathological characteristics
The 37 patients included in the study were 32 children and
adolescents and 5 young adults. Twenty-seven (73%) were male,
and 10 (27%) were female, with a median age at diagnosis of 12 years
(range 3-33) (Table 1, Supplementary Table S1). Twelve (32%) patients
presented with nodal disease, whereas 25 (68%) had extranodal
presentation, the gastrointestinal tract (60%) being the most
frequently affected site. Among patients with available clinical
information, 25 (69%) had advanced-stage disease (III–IV). Thirty-
three patients (89%) were treated using pediatric B-NHL high-intensity
protocols, 3 (8%) received R-CHOP and 1 patient (3%) Burkimab dose-
intense immunochemotherapy. Fourteen patients (38%) were treated
with rituximab in combination with chemotherapy and two cases
underwent autologous hematopoietic stem cell transplantation as
consolidation in first-line treatment. Upon pathological review, most
tumors (33/37) had a high-grade morphology, 29 with features
intermediate between DLBCL and BL, and 4 with blastoid cytology.
Four cases showed DLBCL morphology and were included in the
study due to the presence of MYC-R that likely lead to the original
diagnosis of BL (Fig. 1, Supplementary Tables S1 and S2). Some cases,
initially diagnosed as BL, were included in the study as HGBCL due to
the atypical morphology with marked irregular nuclei, pleomorphism
or blastoid features, intense BCL2 expression, and/or negative
detection of MYC rearrangement by routine techniques
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(Supplementary Tables S1 and S2). All cases except one had a
germinal center (GC) phenotype according to the Hans algorithm [29].
In line with these results, the Lymph2Cx assay identified only 3/33
(9%) activated B-cell-like (ABC) tumors and 1/33 (3%) unclassified. Of
the 28 cases in which TdT expression was investigated, only one
showed scattered positivity. MUM1/IRF4 was negative in 23/34 studied
cases. Eleven out of 36 investigated cases expressed BCL2, whereas

LMO2, a GC marker downregulated in BL and other MYC-R
lymphomas [30], was negative in 11/25 (44%) analyzed cases. In
detail, only three of the 14 LMO2-positive cases harbored MYC-R,
while 9/11 LMO2-negative cases had MYC-R; notably one of the
LMO2-negative MYC-non-R cases was a CD10-negative ABC tumor
(HG4) [31]. Using a 40% cut-off [32], 15/30 (50%) cases were positive
for MYC expression by IHC. Additionally, three of 35 evaluated cases

Table 1. Clinical features of 37 aggressive B-cell NHL with overlapping features between DLBCL and BL according to MYC-R status.

n= 37 MYC-non-R n= 15 (41%) MYC-R n= 22 (59%) P-valuea

Sex 0.7

Female 10 (27%) 5 (33%) 5 (23%)

Male 27 (73%) 10 (67%) 17 (77%)

Mean age at diagnosis (range) 13 (3–33) 15 (8–33) 11 (3–29) 0.017

Age Group 0.4

Children 32 (86%) 12 (80%) 20 (91%)

Young Adults 5 (14%) 3 (20%) 2 (9%)

Mean months of follow-up
(range)

46 (1–277) 66 (1–277) 33 (1–123) 0.5

Stageb 0.14

I–II 11 (30%) 7 (47%) 4 (18%)

III–IV 25 (67%) 9 (53%) 17 (77%)

Unknown 1 (3%) - 1 (5%)

Extranodal involvement 0.7

Yes 25 (68%) 11 (73%) 14 (64%)

No 12 (32%) 4 (27%) 8 (36%)

Gastrointestinal location 0.5

Yes 15 (41%) 7 (47%) 8 (36%)

No 22 (59%) 8 (53%) 14 (64%)

Treatment strategy 0.9

BFM-Based 2 (5%) 1 (7%) 1 (5%)

Burkimab 1 (3%) - 1 (5%)

CHOP 3 (8%) 2 (13%) 1 (5%)

LMB-Based 31 (84%) 12 (80%) 19 (85%)

Rituximab at first-line therapy 0.6

Yes 14 (38%) 5 (33%) 9 (41%)

No 23 (62%) 10 (67%) 13 (59%)

LDH levels 0.14

High 12 (40%) 3 (20%) 9 (41%)

Normal 18 (60%) 11 (67%) 8 (36%)

Unknown 7 2 (13%) 5 (23%)

Hematopoietic stem cell
transplantation

>0.9

Yes 2 (5%) 1 (7%) 1 (5%)

No 31 (84%) 13 (86%) 18 (82%)

Unknown 4 (11%) 1 (7%) 3 (13%)

Relapse >0.9

Yes 5 (14%) 2 (13%) 3 (14%)

No 32 (86%) 14 (87%) 18 (86%)

Status 0.063

Deceasedc 6 (16%) - 6 (29%)

Alive 31 (84%) 16 (100%) 15 (71%)
aFisher’s exact test.
bStage was established according to the St. Jude/International Pediatric NHL Staging System or Ann Arbor staging system for pediatric and adult patients,
respectively.
cTwo patients deceased due to complications related to lymphoma disease.
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were EBER-positive and SOX11 was expressed in 3/28 (11%) cases.
Interestingly, MYC, EBER, and SOX11 positivity was restricted toMYC-R
cases, and the mutual exclusivity of SOX11 expression and EBV-
positivity reported in BL [33] was confirmed (Supplementary Fig. S3).
MYC translocations were detected by FISH break-apart (BAP) and/or

dual-fusion (DF) probes in 19 out of 37 tumors, including the 4 DLBCL.
Three of the 19 MYC-R cases were only detected using the DF probe
(Supplementary Fig. S3). Two MYC-non-R tumors carried BCL6 breaks.
No BCL2-R were detected. However, 6MYC-R cases expressed BCL2 by
IHC, although only two with a diffuse and intense pattern. Fifteen out
of the 19 MYC-R cases studied expressed MYC by IHC. Accordingly,
MYC RNA levels were significantly higher inMYC-R than inMYC-non-R
cases (P< 0.001) (Supplementary Fig. S4). Although tumors with

prototypical 11q-aberrations were excluded in the study, we found 3
cases that displayed 11q24.3 terminal deletions only (HG39, HG40,
and HG53), and one of them (HG53) also carried a MYC break.

Identification of SV by targeted NGS
Twenty-six tumors were analyzed by our SV-NGS approach. The mean
targeted coverage was 238× (range: 95–747). A total of 13 high-
quality SV (11 targeting MYC and 2 BCL6) were identified
(Supplementary Table S5). MYC and BCL6 rearrangements detected
by FISH were verified in 11 out of 12 tumors (92%) by the SV-NGS
panel. This strategy also identified two additional t(8;14)-positive cases
(HG11 and HG29) not recognized by FISH. No other recurrent
rearrangements nor DH cases were observed (Fig. 2A). In cases HG4

Fig. 1 Morphological, immunohistochemical, and genetic features of three high-grade cases. A Case HG28 showed a diffuse proliferation
of medium-sized lymphocytes with slight pleomorphism, irregular nuclei, and apoptotic bodies consistent with features intermediate
between BL and DLBCL (H&E, original magnification at 400×). B MYC break-apart FISH probe showed two colocalizations in each cell
consistent with the absence of gene rearrangement. C FISH analysis for 11q-aberration showed 2 green (11q23.3 minimal region gain, MRG), 2
orange (11q24.3 minimal region loss, MRL), and 2 aqua (CEN11 D11Z1) signals, compatible with a non-altered 11q chromosomal region.
D Case HG33 depicted a DLBCL morphology showing a predominance of large centroblastic lymphocytes (H&E, original magnification at
400×). E MYC break-apart FISH probe showed one red signal, one green signal, and one colocalization, consistent with the rearrangement of
the gene. F FISH analysis for 11q-aberration showed 2 green (11q23.3 MRG), 2 orange (11q24.3 MRL), and 2 aqua (CEN11 D11Z1) signals
constellation, compatible with a non-altered 11q chromosomal region. G Case HG39 consisted of monotonous medium-sized lymphocytes
with blastoid appearance (H&E, original magnification at 400×). H MYC break-apart FISH probe showed two colocalizations consistent with a
non-rearranged pattern. I A non-prototypic terminal deletion of 11q24.3 region was identified in case HG39. The FISH constellation showed 2
green (11q23.3 MRG), 1 orange (22q24.3 MRL), and 2 aqua (CEN11 D11Z1) signals.
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Fig. 2 SV architecture of 35 aggressive B-cell lymphomas with overlapping features between BL and DLBCL. A SV discovered by targeted
NGS sequencing (n= 26). B Location of the breakpoints identified in the MYC gene. C Location of breakpoints in the IGH locus according to
current consensus coordinates [37]. D, E Comparative plot of CN and CNN-LOH alterations among the 2 genetic groups based on MYC
rearrangement status. Light blue identifies MYC-R cases (n= 21), whereas dark pink identifies MYC-non-R tumors (n= 14).
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and HG34, BCL6 partners were IGL (22q11) and GRHPR (9p13),
respectively. The GRHPR gene has been previously described as BCL6
partner in follicular lymphoma [34] and DLBCL [35]. In our series, 73%
(8/11) of the reportedMYC breakpoints were in the first exon or intron
of the gene, thereby classified as class I [36]. Conversely, only one case
(HG21) demonstrated a class II breakpoint located immediately
upstream of MYC. Although no class III breakpoints far upstream MYC
were identified, cases HG41 and HG53 exhibited IGL::PVT1 transloca-
tions with breakpoints downstream of MYC (Fig. 2B). Meanwhile,
HG11 harbored a four-breakpoint complex IGH::MYC rearrangement
that juxtaposed the MYC coding exons 2 and 3 and the class-switch
region (CSR) of IGHA1 (Fig. 2C, Supplementary Fig. S5) [14, 37]. IG
breakpoints probably resulted from aberrant CSR in 5 cases and from
aberrant somatic hypermutation (SHM) in 4 cases (Supplementary
Table S5).

Copy number alteration profile
CN analysis detected genetic alterations in 31/35 investigated
tumors (mean 6.8 alterations/case; range 0–27 alterations) and a
total of 55 regions of CNN-LOH in 29 cases (Supplementary Table S6).
No significant differences in the genetic complexity according to age
were identified (P= 0.23) (Supplementary Fig. S6A). This level of
complexity was similar to that observed in BL and CAYA DLBCL
(Supplementary Fig. S6B) [17, 28]. Recurrent CN alterations (observed
in >15% of tumors) included gains in 1q21.1-q42.13, 13q31.3/
MIR17HG, chr7, and 12p13.31-q24.33. Frequent CNN-LOH (>10%)
involved 6p22.1-p21.32, 17p13.3-p12/TP53, 17q21.32-q24.3/GNA13,
and 19p13.3-13.2/CD70 regions. Homozygous deletions at 9p21.3/
CDKN2A and 19p13.3-p13.2/CD70 were observed in three cases each.
Chromothripsis‐like patterns were detected in 4 cases that showed
shattered pattern on chromosomes 1, 2, 12, and 13 (Supplementary
Fig. S7A). Moreover, in case HG8 we identified a CN profile indicative
of a cryptic MYC rearrangement with a gain and loss pattern at
8q24.21, suggesting the existence of a break at 3’ of the gene
(Supplementary Fig. S7B, C).
Although tumors with the prototypical 11q-aberration were

excluded, we confirmed by CN the presence of 11q24.3 deletions
in three cases previously observed by FISH. In case HG53, the
alteration was a focal 126 kb 11q24.2-q24.3 deletion not including
the whole telomeric region seen in LBCL/HG-11q (Supplementary
Fig. S8).
We also investigated the CN profile based on the MYC-R status.

MYC-R cases exhibited frequent 1q21.2-q32.1 gains (57%), whereas
gains at 12q14.2-q24.33 were recurrent in MYC-non-R tumors (43%).
Furthermore, MYC-R tumors recurrently showed CNN-LOH at
17p13.3-p12/TP53 (19%), while 6p25.3-p21.32 (21%) and 17q21.2-
q25.3/GNA13 (21%) CNN-LOH were characteristic of MYC-non-R
tumors (Fig. 2D, E). Gains/amplifications of MIR17HG loci have been
suggested to be alternative mechanisms of MYC dysregulation [13].
In our series, 3/5 tumors withMIR17HG gains/amplifications harbored
MYC rearrangements. A tendency towards a higher complexity was
observed in MYC-non-R cases (8.1 vs 5.9 alterations/case, P= 0.076).
The CN profile of ourMYC-R tumors was similar to that reported in BL
[28] with both groups of tumors sharing gains of 1q21.1-q44 and
chr7, and 17p deletions (Supplementary Fig. S6C).

Mutational analysis by targeted NGS
A total of 258 potential driver mutations were identified in the 31
analyzed tumors (mean 8.3 mutations/case) (Fig. 3, Supplementary
Table S7 and Supplementary Methods). No significant differences
in terms of mutational burden were observed between adult and
pediatric cases (7.6 vs 8.5 mutations/case, P= 0.62). Globally, the
most frequently mutated genes were MYC (39%), ID3 (35%), P2RY8
(35%), DDX3X (32%), GNA13 (29%), and FOXO1 and TP53 (26%). In
case HG46, a TP53 mutation was identified by Sanger sequencing.
A trend towards a higher number of mutations was observed in

MYC-R tumors, including the 4 DLBCL, compared to MYC-non-R
tumors (9.3 and 7.1 mutations/case, P= 0.085) and their mutational

profiles were clearly different. In detail, driver mutations in MYC, ID3,
and TP53 were significantly more recurrent in MYC-R tumors (71%,
59%, and 50%, respectively) than in those withoutMYC translocations
(0%, 7%, and 0%) (P-adjusted< 0.05). MYC variants mostly clustered
around N-terminal phosphorylation sites (Fig. 3B) and all the ID3
mutations affected the helix-loop-helix domain, potentially impairing
ID3 function. TP53mutations were generally localized in exons 5 to 8
and affected the TP53 DNA-binding domain (Fig. 3B). Furthermore, in
4/9 mutated cases, TP53 mutations were accompanied by 17p CNN-
LOH or loss. DDX3X mutations were also predominant in MYC-R
tumors (47% vs 14%) and were mainly localized on the helicase
domain. Nine out of the ten patients with DDX3X mutations were
male. MYC-R tumors also had recurrent alterations in FOXO1 (41%)
and CCND3 (35%), and mutations in the component of the SWI-SNF
chromatin remodeling complex ARID1A (35%). Overall, the genetic
landscape observed in MYC-R tumors resembled the one depicted in
sporadic BL (sBL) [38], although we did not find any TCF3 mutation
and we observed a tendency towards a higher frequency of P2RY8
alterations in our series (31% vs 9%, P-adjusted= 0.16) (Supplemen-
tary Fig. S9).
Conversely, the mutational profile of MYC-non-R tumors clearly

differed from the BL-like profile observed in MYC-R tumors, having
a more heterogeneous mutational landscape closer to that
reported in DLBCL. In detail, the most recurrent alterations
involved GNA13 (50%), P2RY8 (38%), CARD11 and NFKBIE (29%),
and EBF1 (23%) genes. Additionally, EZH2 mutations were found in
two cases. Sixty-four percent of MYC-non-R tumors had mutations
affecting either GNA13 or P2RY8, but the previously reported
mutual exclusivity of GNA13 and P2RY8 mutations on DLBCL [39]
could not be confirmed. CARD11 was solely found mutated in
MYC-non-R tumors and 83% of the mutations occurred in the
coiled-coil domain (Fig. 3B), known to produce NF-κB pathway
constitutive activation [40]. Furthermore, 29% of MYC-non-R
tumors displayed mutations in NFKBIE, an inhibitor of the NF-κB
pathway. Interestingly, among these, 3/4 mutated cases carried
the previously described frameshift 4-bp deletion p.Y254fs
(Fig. 3B) [41]. Isolated mutations in other B-cell receptor signaling
pathway genes including IKBKB, BCL10, NFKBIA, and MAP2K1 were
also observed among the MYC-non-R. Overall, 71% of the MYC-
non-R cases had mutations targeting the B-cell receptor signaling
pathway as confirmed by a pathway enrichment analysis
(Supplementary Table S8). However, MYC-non-R cases lacked
other characteristic mutations of adult GCB (KMT2D) and ABC-
DLBCL (MYD88L265P and CD79B) [42], as well as SOCS1 mutations
specifically seen in CAYA DLBCL (Supplementary Fig. S10) [17].
Furthermore, when we attempted to classify these tumors in the
molecular genetic subtypes described in adult DLBCL [43–45], only
one of the 31 investigated cases was classified (HG4, BN2
subgroup).

Dark zone signature prediction
Expression of the DZsig was observed in 15 of the 27 (56%)
investigated tumors (Fig. 3C), with 14 (93%) having GCB COO and one
with unclassifiable COO (HG44). Thirteen out of the sixteen (81%)
MYC-R tumors were DZsigpos, 1/16 was DZsigind and GCB COO, and 2/
16 had ABC COO (Fig. 3C; Supplementary Fig. S11). No DZsigneg cases
were identified among those tumors with MYC rearrangements. In
contrast, most MYC-non-R tumors were DZsigneg (6/11, 55%) or
DZsigind (2/11, 18%). One case had an ABC profile, and only two (18%)
MYC-non-R cases expressed the DZsig, one of them with high MYC
RNA expression levels (NM_002467.3 from DLBCL90 assay [10]) close
to those observed in MYC-R lymphomas (Fig. 3D). Interestingly, 92%
of GCB MYC-R cases expressed the DZsig, whereas DZsig expression
was only observed in 20% of GCB MYC-non-R tumors (P< 0.001).

Prognostic value of clinical and molecular features
The 3-year EFS of the whole series was 79.6% (95% CI 67.2–94.4%),
increasing to 83.4% (95% CI 69.6–92.4%) when focusing only on
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the pediatric population (<19 y). Although we assessed the impact
of several clinical and molecular features in the outcome of our
patients (Supplementary Table S9), only TP53 and KMT2C
mutations defined poor-prognosis groups (3-year EFS, TP53: 91%
vs 39% P < 0.05; KMT2C: 83% vs 40% P < 0.05) (Supplementary
Table S9 and Fig. S12).

DISCUSSION
HGBCL, NOS is a morphological category originally conceived to
accommodate borderline aggressive B-cell lymphomas that
cannot be reliably classified as BL, DLBCL, or HGBCL-DH, based
on the defined morphological, immunophenotypic, and molecular
criteria. The particularities of these cases still raise some
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uncertainty, and the diagnosis of HGBCL, NOS in the pediatric
population was not recommended in the revised 4th WHO
classification [1]. Nevertheless, pathologists observe tumors with
overlapping features between DLBCL and BL in CAYA, emphasiz-
ing the need for a better understanding of the biological insights
and clinical significance of these lymphomas.
To fill this knowledge gap, we searched our files for cases of

HGBCL with BCLU, HGBCL-blastoid or DLBCL with MYC rearrange-
ment in patients up to 35 years old. Most accrued cases showed
an intermediate morphology between BL and DLBCL, featuring
medium-sized nuclei with irregular contours and pleomorphism,
nine of them with BCL2 expression (Supplementary Table
S1 and S2). As expected in this age range, 97% of the cases were
GCB, including the three EBV-positive tumors. Integrated FISH and
NGS approach confirmed MYC rearrangements as the most
prevalent SV within our series, affecting 59% of the whole series
and 55% of those tumors with high-grade morphology. MYC
rearrangement status distinguished two genetically differentiated
subgroups.
In contrast to adult patients in the context of these

morphological features, BCL2-R and DH-lymphomas were absent,
as previously seen in pediatric B-NHL, and we only observed BCL6
rearrangements in two MYC-non-R cases [46]. BCL2 expression has
been described in a subset of BL, mainly in adult patients [47]. In
our series, 31% of cases expressed BCL2, without association with
age or presence of MYC rearrangement. Only in one MYC-R case,
BCL2 overexpression could be explained by the presence of
18q12.3-q23/BCL2 gain. LMO2 is a GC marker downregulated in
MYC-R lymphomas. In line with the previous series [31], our cases
showed a significant inverse correlation between LMO2 expres-
sion and the presence of the MYC-R in GCB, CD10 positive tumors
(P < 0.001). In our series, 3/16 (19%) MYC-R tumors expressed
SOX11, a frequency relatively lower than that recently described in
pediatric and adult BL (43–56%) [33, 48].
Regarding the architecture of MYC rearrangements, MYC

breakpoints in this cohort mainly clustered in the first exon/intron
of MYC (class I), in line with pediatric sBL [49]. This MYC breakpoint
distribution contrasts with the one observed in adult single-hit
MYC-R DLBCL and HGBCL-DH, in which class I/II breaks accounted
only for 41% and 28% of MYC breaks, respectively [12, 50]. In
contrast to DH in adults where the partner genes in MYC
translocations are more promiscuous [12, 50], in our study, IG loci
were the only MYC partners identified, and as reported for
pediatric sBL [49], abnormal CSR and SHM were the predominant
mechanisms leading to IG::MYC translocations. Altogether, these
findings indicate that, regardless of their high-grade or DLBCL
morphology, MYC translocations in these MYC-R tumors arise in a
similar way to those in sBL. The SV-NGS strategy also demon-
strated the absence of cryptic rearrangements targeting MYC or
BCL2 with the exception of the cryptic IGH::MYC rearrangement
observed in case HG11. It also identified the t(8;14) translocation
in one case (HG29) not previously recognized by FISH, probably
due to technical issues (see Supplementary Discussion).
MYC-R tumors, including the DLBCL, also shared mutational and

CN profiles with BL. The CN profile of our MYC-R tumors virtually
overlapped with the observed in BL, with recurrent 1q21.1-q44

gains and 17p CNN-LOH and deletions [28]. All MYC-R cases
studied harbored exonic and/or multiple intronic MYC mutations.
Somatic mutations in ID3, DDX3X, TP53, FOXO1, CCND3, and
ARID1A, previously described to cooperate with MYC dysregulation
in BL development, were also recurrently found in MYC-R tumors
[51]. In this sense, most of our MYC-R cases presented genetic
features characteristic of the prevalent molecular subgroups
recently defined in BL [20], IC-BL (mutations in ID3 and CCND3),
and DGG-BL (mutations in DDX3X, GNA13, and GNAI2). Importantly,
this mutational landscape resembling the one reported in BL was
not observed in any MYC-non-R tumors, except for HG39.
Moreover, virtually all MYC-R tumors with GCB COO expressed
the DZsig as previously reported for BL [11]. Of note, the features
observed in our CAYA MYC-R DLBCL contrast with a previous study
where those tumors did not align with the GEP of mBL [52].
Conversely, the mBL signature captured other MYC-non-R mature
B-cell lymphomas in CAYA that in later studies turned out to be
identified as LBCL/HG-11q [53].
The mutational landscape of MYC-non-R cases was closer to that

observed in DLBCL (GNA13, CARD11, NFKBIE, EZH2) but did not
fully mimic adult or CAYA DLBCL [7, 17]. In detail, KMT2D
mutations, previously reported in 39% of adult GCB-DLBCL [42],
23% of CAYA DLBCL, NOS [17], and also observed in 43% of adult
HGBCL, NOS [4, 7], were absent among MYC-non-R tumors
(Supplementary Fig. S10). Similarly, these tumors also lacked
mutations of ABC-DLBCL such as MYD88L265P or CD79B. Moreover,
only one of our MYC-non-R cases showed a SOCS1 mutation, while
this gene has been found mutated in up to 27% of CAYA DLBCL
[17].
Of note, only one of our MYC-non-R tumors was classified as

BN2 by the LymphGen algorithm [45], suggesting that despite their
similarities, they do not fit in the established adult DLBCL genetic
subgroups. Further studies are needed to elucidate whether these
MYC-non-R tumors with high-grade morphology constitute a
genetically differentiated entity.
Concomitant MYC translocations and 11q-aberrations have

been previously described, suggesting that the spectrum of
malignancies with 11q-aberration was broader than previously
assumed [54, 55, 56]. Although the presence of the prototypical
11q-aberration [3] was an exclusion criterion for entering the
series, two of the cases analyzed by NGS showed only terminal
11q deletions by FISH and CN array; one was negative for MYC-R
(HG39) and the other carried a t(8;22) translocation (HG53) [55, 57].
Interestingly, both cases displayed mutational profiles closer to BL
than the ones previously reported in LBCL/HG-11q [14, 57]. These
results confirm that the detection of an 11q telomeric loss only is
not sufficient to classify the cases as LBCL/HG-11q and that an
integrative morphological and broader molecular approach is
necessary. Nevertheless, further studies in larger series of tumors
are needed to ratify this observation.
Clinically, differently to what is described in adult HGBCL [4],

this specific morphological constellation does not seem to clearly
select a group of patients with poor outcomes, although our
pediatric cases had an inferior outcome compared to other
recently published pediatric B-NHL cohorts (83% vs 94%) [26].
Nevertheless, it is worth mentioning that our cohort is not only

Fig. 3 Molecular CN and mutational information on 31 B-cell lymphomas with overlapping features between BL and DLBCL. A Oncoprint
showing gene expression, mutations, and CN characteristics by case. Each column corresponds to a case, the light blue bars in the top
histogram depict the number of CNA while the dark blue bars represent the number of driver mutations. Each row of the bottom plot
represents a gene. Only genes with driver mutations in more than 2 cases are represented. Asterisks identify significant differences according
to adjusted (FDR) Fisher’s exact test (P-adjusted < 0.05). B Diagram of the relative positions of driver mutations is shown for MYC, TP53, CARD11,
and NFKBIE genes, x-axes indicate amino acid position. MYC domains (HLH, helix-loop-helix; MYC-LZ, leucine zipper; TAD, transactivation
domain). TP53 domains (DBD: DNA-binding domain); TAD: transcription activation domain; CARD11 (CARMA1) domains (CARD, caspase
activation, and recruitment domain; PDZ, PDZ containing domain). C Proportion of DZsig positive tumors in the whole analyzed series (n= 27)
and according to MYC-R status. D MYC RNA expression (NM_002467.3) according to DZsig and COO categorization and MYC-R status.
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small in number but also highly selected and heterogeneously
treated (only 67% of pediatric high-risk patients treated with
rituximab) therefore, comparisons cannot be properly performed.
Future prospective trials should clarify this issue. No differences
were observed in terms of survival between patients with MYC-R
and MYC-non-R tumors. However, TP53 mutations, that were
exclusively seen in MYC-R lymphomas in our cohort, defined a
poor-prognosis group, as previously reported in pediatric aggres-
sive B-cell lymphomas [19, 27].
To the best of our knowledge, we provided herein an

integrative molecular and clinical characterization of aggres-
sive CAYA B-NHL in the morphological spectrum between BL
and DLBCL. Our results demonstrated that the genetic profile
of these tumors is heterogeneous, but for the first time, we
have clearly distinguished two genetically defined subgroups
based on MYC-R status regardless of the morphology. One
group carrying MYC-R that should be diagnosed as BL, whereas
the second group had a mutational profile closer to DLBCL that
needs to be further investigated. Although FISH routine
techniques used in clinical diagnostics capture most MYC
translocations, our findings confirmed that some tumors may
harbor cryptic rearrangements that FISH can miss. DZsig
expression and a BL-related mutational profile, would support
a BL diagnosis in these cases and suggest the presence of a
cryptic MYC rearrangement that could be confirmed by an SV-
NGS approach. In Supplementary Fig. S13, we suggest how all
the information derived from our study would expand BL
diagnostic criteria and could be applied in the diagnostic
workup of aggressive CAYA B-NHL in the morphological
spectrum between BL and DLBCL.
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