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Significance

 Monitoring nociception, the flow 
of information associated with 
harmful stimuli through the 
nervous system even during 
unconsciousness, is critical for 
proper anesthesia care during 
surgery. Currently, this is done by 
tracking heart rate and blood 
pressure by eye. Objectively 
monitoring a patient’s 
nociceptive state remains a 
challenge, causing drugs to often 
be over- or underdosed 
intraoperatively. Postoperative 
consequences include poor pain 
control and cognitive 
dysfunction. In a prospective 
study of 101 surgeries containing 
almost 50,000 nociceptive 
stimuli, we demonstrate objective 
quantification of nociception 
throughout surgery. Our findings 
show that a statistically rigorous 
multisensor approach identifies a 
physiologically consistent and 
reliable nociceptive signature 
that occurs in the presence of 
nociceptive stimuli. This 
signature represents a principled 
approach to guiding anesthetic 
dosing.
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Monitoring nociception, the flow of information associated with harmful stimuli through 
the nervous system even during unconsciousness, is critical for proper anesthesia care 
during surgery. Currently, this is done by tracking heart rate and blood pressure by eye. 
Monitoring objectively a patient’s nociceptive state remains a challenge, causing drugs 
to often be over- or underdosed intraoperatively. Inefficient management of surgical 
nociception may lead to more complex postoperative pain management and side effects 
such as postoperative cognitive dysfunction, particularly in elderly patients. We collected 
a comprehensive and multisensor prospective observational dataset focused on surgical 
nociception (101 surgeries, 18,582 min, and 49,878 nociceptive stimuli), including 
annotations of all nociceptive stimuli occurring during surgery and medications admin-
istered. Using this dataset, we developed indices of autonomic nervous system activity 
based on physiologically and statistically rigorous point process representations of cardiac 
action potentials and sweat gland activity. Next, we constructed highly interpretable 
supervised and unsupervised models with appropriate inductive biases that quantify sur-
gical nociception throughout surgery. Our models track nociceptive stimuli more accu-
rately than existing nociception monitors. We also demonstrate that the characterizing 
signature of nociception learned by our models resembles the known physiology of the 
response to pain. Our work represents an important step toward objective multisensor 
physiology-based markers of surgical nociception. These markers are derived from an 
in-depth characterization of nociception as measured during surgery itself rather than 
using other experimental models as surrogates for surgical nociception.

surgical nociception | autonomic nervous system | anesthesia | multimodal | point process

 General anesthesia consists of four simultaneous components: lack of pain processing or 
antinociception, unconsciousness, amnesia or lack of memory, and muscle relaxation or 
paralysis while maintaining physiologic stability ( 1 ). In the case of general anesthesia, the 
unconscious processing of pain via primal reflexes at the level of the spinal cord and 
brainstem is termed nociception ( 2 ). One of the primary purposes of general anesthesia 
is to prevent nociception during surgery ( 2   – 4 ). Throughout this paper, nociception during 
general anesthesia will be referred to as surgical nociception. The current approach to 
manage surgical nociception is largely dependent on the individual intuition of the anes-
thesia caregiver. The only available objective measures involve the anesthesiologist tracking 
monitored heart rate and blood pressure, while accounting for factors such as patient’s 
age, BMI, the nature of the surgery, and the antinociceptive properties of administered 
medication ( 2   – 4 ). To complicate matters further, heart rate and blood pressure are highly 
nonspecific indicators of nociception and are often directly managed through the use of 
cardiac medications during surgery ( 2 ). Altogether, the standard of care results in frequent 
underdosing/overdosing of intraoperative pain medication ( 2 ). Underdosing can lead to 
the patient waking up in pain, delayed recovery and healing, postoperative cognitive 
dysfunction, and prolonged hospital stay. Overdosing can delay patient awakening, 
increase side effects such as nausea, vomiting, and constipation, exacerbate cognitive side 
effects such as delirium, and prolong hospital stay ( 2 ,  4 ,  5 ). The bottom line is that 
improved management of surgical nociception can ensure antinociception during surgery 
while also reducing the prevalence of undesirable postoperative outcomes including cog-
nitive impairment, postoperative pain ( 6 ), and nausea and vomiting.

 An important step to improve nociception management is to develop objective measures 
for tracking surgical nociception. The standard of care for quantification of pain in clinical 
settings is still limited to subjective 1 to 10 pain scales that can only be used when a patient 
is conscious and capable of providing meaningful responses ( 4 ,  7 ). The development of 
objective measures for monitoring surgical nociception could serve as a stepping stone 
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toward future assessment of pain in postoperative settings, disor-
ders of consciousness, or even chronic pain. This is a necessary 
step for future closed-loop nociceptive control systems. However, 
it is critical that such measures be constructed from data about 
surgical nociception. It may be tempting to use animal models of 
pain or nociception or controlled experimental human models of 
pain, such as cutaneous thermally or electrically induced pain 
models ( 8 ). However, these are nowhere near the magnitude nor 
intensity of surgical nociceptive stimuli. Subjects are not even 
anesthetized in the majority of experimental pain models.

 A popular approach employed for tracking surgical nociception 
has been based on autonomic nervous system (ANS) responses. 
This is justified by the fact that general anesthesia disrupts con-
scious processing of pain, which leaves the brainstem and spinal 
cord as the primary processing centers of nociceptive inputs ( 1 , 
 9 ). These regions govern the most primal reflexes to nociception, 
including autonomic responses (“fight or flight”), through several 
autonomic nuclei of the brainstem, including the nucleus of the 
solitary tract, the rostral and caudal ventrolateral medulla, and the 
dorsal motor nucleus of the vagus (the nociceptive medullary 
autonomic circuit) ( 1 ). These nuclei outflow to the heart, blood 
vessels, sweat glands, etc. Therefore, autonomic outputs can be 
used to gauge the nociceptive state of the body, if the concurrent 
contributions of anesthetic and cardiac medications are also 
considered.

 Several previous efforts have been made to define indices that 
track surgical nociception using autonomic responses. One of 
these is the Analgesic Nociception Index (ANI—now the HFVI), 
which uses a proprietary algorithm to extract information from 
the electrocardiogram (ECG) about heart rate variability (HRV) 
as a measure of cardiac autonomic activity ( 10 ). Other such meas-
ures have multiple sensors, relying on more than one physiological 
signal ( 11     – 14 ). To the best of our knowledge, several of these 
metrics were neither constructed from prospective surgical datasets 
focused on nociception nor do they have bases in physiological or 
statistical models. Most importantly, in validation studies, each 
surgery was condensed into a few timepoints and aggregated across 
subjects to obtain statistical significance ( 15                                   – 33 ). While this sug-
gests the existence of important trends, such models would not 
be recommended for continuous monitoring of individual noci-
ception during surgery.

 In this study, we have collected prospectively a comprehensive 
observational dataset focused on surgical nociception, including 
over 100 subjects and recorded during 18,500 min of surgery. 
Using this dataset, we constructed indices and models able to track 
nociception successfully throughout the course of surgery. The 
dataset includes annotations of the timing and type of almost 
50,000 nociceptive stimuli, the timing and doses of multiple 
classes of anesthetic medications, and over five separate physio-
logical signals collected continuously throughout surgery (ECG, 
EDA, respirations, PPG, and skin temperature). Our dataset 
includes a variety of drug classes across several types of surgery. 
While our dataset is observational, it could not have been collected 
retrospectively. A majority of the nociceptive stimuli we annotated, 
such as cautery, as well as some of the physiological signals, such 
as electrodermal activity (EDA), are not recorded or collected as 
part of the standard of care, rendering the medical record an 
incomplete information source with respect to surgical nocicep-
tion. Even the signals that are recorded, such as heart rate and 
blood pressure, have insufficient temporal resolution in the med-
ical record.

 To extract the most physiologically relevant information from 
the acquired signals, we rely on statistically rigorous point process 
models that underlie the physiology of heartbeat dynamics and 

EDA. We develop one model for the generation of heartbeats, 
which allows for the computation of HRV indices, and another 
for sweat gland pulses, which cause EDA ( 34       – 38 ). We feed the 
indices from these models into interpretable supervised and unsu-
pervised frameworks with embedded inductive biases (physiolog-
ical insight) to characterize surgical nociception. The supervised 
frameworks include logistic regression ( 39 ) and random forest ( 40 ), 
while the unsupervised framework is a state space model ( 41 ) 
assuming that the measurable observations (HRV and/or EDA 
indices) are driven by two hidden states related to the patient’s 
time-varying nociceptive state. Based on physiology, we postulate 
that there should be at least two components to the autonomic 
state (sympathetic and parasympathetic). Therefore, we hypothe-
sized two hidden states. We evaluate the performance of these 
frameworks, or the hidden states returned by the state space mod-
els, using the area under the receiver operating characteristic curve 
(AUROC) as well as the area under the precision–recall curve 
(AUPRC), and compare them to the performance of the ANI ( 42 ). 
We also include information about the timing and dosage of anes-
thetic drugs in some of the supervised models. We use the coeffi-
cients estimated in each framework (or frequency of occurrence of 
different features in the random forest) to assess whether the frame-
works are truly capturing physiologic nociception.

 The remainder of this paper is organized as follows. In Results, 
we show that our indices and models can track nociception during 
surgery with higher accuracy than the ANI. We also show that 
our analysis demonstrates objective tracking of surgical nocicep-
tion using both supervised (classification) and unsupervised 
approaches. Finally, we demonstrate that all of our models, both 
supervised and unsupervised, recover states that are physiologically 
consistent with nociception. In the Discussion, we explain the 
implications of our analysis and the results. In the  SI Appendix, 
online Methods  , we discuss the details of how we constructed the 
models of surgical nociception, including the model frameworks, 
data preprocessing, and results interpretation. 

Results

Summary of the Subject Cohort. This study was approved by the 
Massachusetts General Hospital Human Research Committee. 
The cohort consisted of 101 subjects, 48 men and 53 women, 
ranging in age from 29 to 77 y old (written informed consent was 
obtained) (43). Most surgeries were laparoscopic, with the majority 
being prostatectomies for the men and hysterectomies for the 
women. We chose analogous surgeries for men and women, both 
focused on the lower abdominal area and laparoscopic. A handful 
of the 101 surgeries were either open or the procedures were 
converted to open partway through. The age distribution of the 
subjects was different between men and women (Fig. 1A) since the 
surgeries themselves have a different age demographic. The women 
who undergo hysterectomies and salpingo oophorectomies are 
typically younger than the men who undergo prostatectomies. The 
durations of the surgeries ranged from under one hour to almost 
5 h (Fig. 1B). The salpingo oophorectomies and hysterectomies 
were typically shorter in duration than the prostatectomies. ANI 
data were either unable to be collected or not of sufficient quality 
to be included (at least 10 min of high-quality data across the full 
surgery) for 13 surgeries.

Indices Alone are not Sufficient to Detect Nociception. We report 
all of the physiologic indices computed from the acquired data and 
used in our models (Table 1) as well as subjects’ preprocessed data 
with annotated times of nociceptive stimuli during surgery (Fig. 2 
and SI Appendix, Figs. S9–S109). This includes our multisensor 
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HRV and EDA indices (Table  1) and the values returned by 
the ANI monitor (for more details on the computation of these 
indices, Materials and Methods). It is worth noting that using just 
the HRV, EDA, and ANI indices alone, it is not obvious to predict 
where nociceptive stimuli are occurring (Fig. 2 and SI Appendix, 
Fig. S8). This necessitates the use of more sophisticated models 
to capture patterns associated with nociception not detectable by 
eye alone.

Design of Study using Different Model Frameworks. All supervised 
models were fitted to predict whether or not each of the 223,017 
5-s time windows contained a nociceptive stimulus. The raw ANI 

index was assessed for its ability to do so. For our physiologic 
indices, two supervised (logistic regression and random forest) 
and one unsupervised model frameworks (state space model) were 
used. All indices (Table 1) as well as numerical estimates of their 
local derivatives over time were used as features for the supervised 
models. Only the indices themselves were used as observations for 
the state space model (no estimates of derivatives). For the state 
space model, the estimated hidden states were assessed as markers 
of nociception themselves. The performance of the better hidden 
state is reported throughout. Performance for both supervised 
and unsupervised models was measured using the AUROC and 
AUPRC across all 101 subjects after leave-one-subject-out cross-
validation (Tables 2 and 3).

Supervised Models Outperform ANI Monitor. The random 
classifier expectations were 0.50 for AUROC and 0.22 for AUPRC 
(Table  2). First, the ANI index performed slightly better than 
a random classifier (Table 2). The mean AUROC and AUPRC 
across subjects were 0.53 and 0.25, respectively. These results 
likely reflect the fact that the ANI was validated using data quite 
different from ours and that the algorithm is real-time.

 For the first set of our multisensor models, those relying only 
on physiological indices without any drug information, the overall 
model performance is markedly better than the ANI in terms of 
both AUROC and AUPRC. They were distinctly better than the 
random classifier expectation, with a mean AUROC and AUPRC 
of 0.62 and 0.31 for the logistic regression models, respectively, 
and a mean AUROC and AUPRC of 0.67 and 0.37 for the ran-
dom forest models, respectively ( Table 2 ). The performance of the 
nonparametric model (random forest) exceeds that of the para-
metric model (logistic regression) ( Table 3 ). Adding drug infor-
mation to both the logistic regression and random forest models 
improves classification performance across the board ( Table 3 ). 
The mean AUROC and AUPRC of the logistic regression models 
increased to 0.67 and 0.34, respectively. The mean AUROC and 
AUPRC of the random forest models increased to 0.73 and 0.42, 
respectively.  

Unsupervised Model Nearly Matches Supervised Performance. 
For the unsupervised model formulation, the performance of 
the best hidden state from the state space models as a marker of 
nociception is comparable to the performance of the multisensor 

Fig. 1.   Characterization of the subject cohort. (A) Distribution of age by sex. (B) Distribution of surgery durations.

Table 1.   Summary of all computed physiologic indices 
used to infer nociceptive state
Modality Index Definition

 HRV  Mean HR  Mean heart rate

 HRV  Sigma HR  SD of heart rate

 HRV  Total power  Total power across low, high, and 
very low frequency bands

 HRV  HF  High frequency power (0.15 to  
0.4 Hz)

 HRV  LFη﻿  Normalized fraction of total 
power that is low frequency (LF) 
power (0.04 to 0.15 Hz)

 HRV  HFη﻿  Normalized fraction of total 
power that is high frequency 
power

 HRV  LFη (no VLF)  Normalized fraction of low 
frequency power out of the sum 
of low and high frequency 
power (without very low 
frequencies)

 HRV  LF/HF  Low frequency to high frequency 
ratio (sympathovagal balance)

 EDA  EDA tonic  Tonic component of EDA

 EDA  Mean PA  Mean EDA pulse amplitude

 EDA  Sigma PA  SD of EDA pulse amplitude

 EDA  Mean PR  Mean EDA pulse rate

 EDA  Sigma PR  SD of EDA pulse rate
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http://www.pnas.org/lookup/doi/10.1073/pnas.2319316121#supplementary-materials


4 of 10   https://doi.org/10.1073/pnas.2319316121� pnas.org

logistic regression models, which were trained on information 
about the timing of nociceptive stimulation (Table 2). The mean 
AUROC and AUPRC of the best hidden state across the dataset 
were 0.59 and 0.28, respectively.

Model Predictions Visually Track Nociceptive Stimuli. Fig. 3 A 
and B provides an intuitive visual representation of the results in 
Tables 2 and 3. Fig. 4 shows all of the model predictions throughout 
the surgery for the same two example subjects whose data are shown 
in Fig. 2. In contrast to the indices in Fig. 2 alone, our model 
predictions in Fig. 4 clearly track with nociceptive stimuli even 
by eye. This suggests that the models characterize the signature of 
nociception better than the raw indices themselves.

Learned Signatures of Nociception Align with Known Physiology. 
Table 4 summarizes the nociceptive signature learned by the all of the 
models, in terms of 95% CI of coefficients of the models across cross-
validated runs for logistic regression and state space models, and the 
computed feature importance for random forest. This information is 
also further summarized using bold to denote significant coefficients 
and feature importance. Significant coefficients were defined as those 
for which the entire 95% CI was at least 0.05 away from 0 for logistic 
regression (classification) and state space models. Significant feature 
importance was defined as the entire 95% CI greater than 1e-5. 
The signs of the coefficients for each hidden state were remarkably 
consistent across all rounds of leave-one-out cross-validation, so there 
was no need to shuffle the labeling of hidden states by subject to 
match similar states (the assignment of State “1” and State “2” in 
a state space model can be arbitrary). For supervised models, the 
coefficient signs and feature importance for the derivatives of each 
index are also included.

Additional Results. The supplementary information contains 
additional analyses and results. SI Appendix, Fig. S1 shows the results 
of replicating one of the evaluation methodologies from a previous 
ANI study on our ANI data, aggregated across the entire dataset. 
SI Appendix, Fig. S2 shows the distribution of model performance 
across the dataset. SI  Appendix, Tables  S1 and S2 summarize 
hyperparameters used during preprocessing. SI Appendix, Figs S3–S7 
summarize the breakdown of model performance by demographic 
factors. It is worth noting that in our dataset, there is a strong 
correlation between age, gender, and surgery duration because the 
men and women had different surgeries which each had their own 
age and duration distributions. At this point, there is no convincing 
evidence of a correlation between model performance and any of 
the demographic factors examined. SI Appendix, Fig. S8 shows the 
boxplots of each feature including ANI compared in timepoints 
with and without nociceptive stimuli. It is clear from SI Appendix, 
Fig. S8 that no single feature (including ANI) is clearly different 
when there is a nociceptive stimulus. Even if there were single 
feature differences, there can be additional information and value 
in aggregating information across multiple indices. SI Appendix, 
Table S3 summarizes the performance of the random forest model 
compared to ANI when varying the window length from 2 to 15 s. 
The model performance is very consistent regardless of window 
length, which suggests that there is not significant information loss 
occurring due to compression into windows.

Discussion

 In this study, we used data collected in the operating room during 
surgery to measure surgical nociception and derive models to pre-
dict it using noninvasive physiological indices which incorporate 

Fig. 2.   Two example subjects ((A) Subject 31 and (B) Subject 90) along with 
some of the physiological features for both HRV and EDA and the ANI index 
for each. In each panel, the top row contains the information about the timing 
of nociceptive stimuli, depicted in red.

Table  2.   A summary of the AUROC and AUPRC of all 
of the models constructed using physiological indices 
alone, supervised and unsupervised, to classify time 
windows when nociceptive stimuli occurred, without 
including any information about drug dosing or timing

AUROC AUPRC

 Random classifier  0.50  0.22

 ANI index  [0.51, 0.55]  [0.23, 0.27]

 Multisensor (Logistic regression)  [0.60, 0.64]  [0.28, 0.33]

 Best Hidden State (State space)  [0.56, 0.61]  [0.25, 0.30]

 Multi-sensor (Random forest)  [0.64, 0.69]  [0.34, 0.40]
Performance is reported as the 95% CI of the mean AUROC and AUPRC across the full 
dataset after leave-one-subject-out cross-validation. AUROC and AUPRC were computed 
based on the model’s ability to classify time windows with and without nociceptive stim-
ulation during surgery.

Table  3.   A summary of the AUROC and AUPRC of the 
supervised models, allowing for comparison between 
the types of classification models and the effect of 
including drug information (Materials and Methods for 
how drug information was encoded)

AUROC AUPRC AUROC AUPRC

﻿  Logistic regression  Random forest

 Multisensor 
without 
drug info

 [0.60, 0.64]  [0.28, 0.33]  [0.64, 0.69]  [0.34, 0.40]

 Multisensor 
with drug 
info

 [0.65, 0.68]  [0.31, 0.36]  [0.71, 0.75]  [0.39, 0.45]

Performance is reported as the 95% CI of the mean AUROC and AUPRC across the full 
dataset after leave-one-subject-out cross-validation. AUROC and AUPRC were computed 
based on the model’s ability to classify time windows with and without nociceptive stim-
ulation during surgery.
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appropriate inductive biases. We collected a multisensor dataset 
in the operating room during surgery, including physiologic time 
series and manual annotations of nociceptive stimulation and drug 
dosing.

 We report three principal findings from our work. First, the per-
formance of our models shows that we can track surgical nociception 
accurately during surgery using multisensor ANS responses combined 
with statistically and physiologically rigorous computational models 
to extract the relevant information from the raw data ( Fig. 3  and 
 Tables 2  and  3 ). Including information about drug dosing and timing 
improves model performance as expected ( Table 3  and  Fig. 3B  ). It is 
important to note that when specific timepoints are examined and 
aggregated across all the subjects (SI Appendix, Fig. S1 ), the ANI 
performs as reported. However, this is not how the metric is used 
clinically. Significant results in group aggregate may not translate to 
individual or timepoint-by-timepoint validity. We specifically meas-
ured performance in terms of ability to track nociception throughout 
each individual surgery (for each subject) for this reason.

 Our second principal finding is that for both supervised and 
unsupervised models, the nociceptive signature learned by the 
model was largely physiologically consistent with known responses 
to nociception, especially with respect to EDA responses ( 3 ,  4 ). 
According to  Table 4 , the nociceptive signature consists of increas-
ing or high tonic EDA, EDA pulse amplitude, and EDA pulse 
rate. Even though the coefficients were smaller in magnitude for 
more of the HRV indices, the logistic regression signature also 
included increasing heart rate. The EDA indices are overall higher 
in importance than the HRV indices ( Table 4 ), but this is not 
surprising given that cardiovascular drugs directly affect HRV 
compared to peripheral sweating activity. This could also explain 
some of the ambiguous HRV coefficients, such as those for mean 
heart rate in the logistic regression. Therefore, the EDA indices 
were likely more reliable as indicators of underlying nociception 
even when certain drugs that affected HRV (e.g., beta blockers) 
were given. With the exception of EDA pulse rate variability, the 
definitions of the EDA nociceptive signature from the classifica-
tion and state space models agree entirely and are consistent with 
physiology ( Table 4 ). The implicitly defined nociceptive state 
captured high tonic EDA, pulse rate, and pulse amplitude even 
without information about the timing of nociceptive stimuli 
( Table 4 ). This suggests that our models incorporated the correct 
inductive biases which allowed them to learn to identify a true 
nociceptive state, rather than a confound in the data.

 Our third principal finding is that there is an underlying noci-
ceptive state that can be discerned from the physiologic responses 
even without knowledge of when the nociceptive stimulus is hav-
ing its effect in training. Based on the results of the state space 
modeling, there is the potential to define an implicit ‘nociceptive 

Fig. 3.   A visual summary of the performance of all the models. (A) A summary of the performance of all of the constructed from physiological responses 
alone, (B) A summary of the performance of the supervised models for each of the feature sets. In each plot with x- and y-axes defined by AUPRC and AUROC, 
respectively, the horizontal and vertical lines that cut across the whole plot mark the random classifier expected AUROC and AUPRC. Each model is represented 
by a single color-coded rectangle, centered at the two-dimensional mean of the model performance and with dimensions given by the 95% CI in each dimension. 
LR = logistic regression, RF = random forest.

Fig. 4.   The same two example subjects as in Fig. 2 ((A) Subject 31 and (B) 
Subject 90) with some of the model predictions along with the annotations of 
nociceptive stimuli. For each subject, the top row contains information about 
the timing of nociceptive stimuli, depicted in red. The second row for each 
subject shows our multisensor supervised model predictions with and without 
drug information in addition to the physiological information. LR stands for 
logistic regression, and RF for random forest. The third row for each subject 
shows the unsupervised model predictions. The bottom row for each subject 
shows the ANI index. p(Noc) = estimated probability of nociception.
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state’ that is physiologically consistent and can track nociception 
dynamically and with comparable performance to supervised 
models, without requiring information about the timing of noci-
ceptive stimulation. A state space framework using multisensor 
physiological observations is effective in uncovering this implicit 
nociceptive state with a consistent definition across multiple sub-
jects. This is an important step toward defining a metric to track 
nociception without including nociceptive “ground truth” infor-
mation, most practical for scalability and implementation in clin-
ical settings. This hidden state definition is a precursor to a future 
metric to track surgical nociception noninvasively in real-time for 
a closed-loop system to control surgical nociception.

 This study has some limitations. The most significant limitation 
is that we do not have a known ground truth for when nociception 
is experienced. Therefore, we use a superset of ground truth, which 
is the collection of all nociceptive stimuli during surgery. It is true 
that every nociceptive stimulus will not result in nociception, 
especially at times when adequate antinociceptive medication has 
been given. However, in this study, we observed (and the models 
corroborated) many instances in which clear nociceptive responses 
were occurring but passing undetected by the ANI. We hypoth-
esize that the better performance of our models was due to their 
increased ability to detect these true nociceptive responses. If our 
models had been detecting spurious responses not tied to nocic-
eption, the timing of these “false positives” would have been more 

randomly distributed, and the model signature associated with 
nociception would not have been as physiologically consistent as 
it was. A second limitation of our study is that while our models 
can detect nociceptive responses associated with inadequate pain 
control, they cannot detect responses associated with overdosing 
of pain medication during surgery. A third limitation is that our 
dataset consisted primarily of laparoscopic surgeries of the lower 
abdomen, which is not representative of all surgeries. In our future 
work, it is our intention to expand our data collection in the 
perioperative period and to different types of surgery to overcome 
both limitations. A fourth limitation is that our study involved 
fully post hoc data analysis, in which our algorithms benefit from 
having access to the full course of surgery. In contrast, the ANI is 
an online real-time algorithm. In our future work, we will inves-
tigate online implementations of our algorithms as well. This study 
serves as proof of concept that a signature of nociception exists 
within the data described.

 This study also presented several atypical challenges. First, work-
ing within a clinical setting presents several logistical challenges since 
it is not an ideal controlled research setting. Heavy-duty surgical 
equipment caused interference with most wireless sensor capabilities 
and occasional limitations in signal quality which we attempted to 
resolve in preprocessing. The demands of surgery allowed limited 
access for adjustments and troubleshooting after surgery started, 
including when the patient is moved or positioned. Most importantly, 

Table 4.   A summary of the fitted coefficients or feature importance of the various models, shown as the 95% CI of 
each coefficient or feature importance across leave-one-subject-out cross-validation

Logistic regression 
coefficients

Random forest fea-
ture importance

State space model 
coefficients

﻿Indices﻿ ﻿Mean HR﻿ [−0.34, –0.34] [8.0e-5, 8.2e-5] [0.02, 0.02]
﻿Sigma HR﻿ [0.11, 0.11] [6.2e-6, 6.5e-6] [0.13, 0.13]
﻿Total power﻿ [−0.04, −0.04] [8.5e-6, 8.7e-6] [0.07, 0.07]
﻿HF﻿ [−0.02, −0.02] [1.2e-5, 1.3e-5] [0.07, 0.08]
﻿LFη﻿﻿ [−0.05, −0.05] [7.8e-7, 8.3e-7] [0.02, 0.02]
﻿HFη﻿﻿ [0.07, 0.07] [6.8e-6, 7. 2e-6] [0.03, 0.03]
﻿LF/HF﻿ [0.01, 0.01] [3.3e-6, 3.5e-6] [−0.002, −0.002]
﻿EDA tonic﻿ [0.11, 0.11] [1.1e-4, 1.1e-4] [0.20, 0.20]
﻿Mean EDA pulse amplitude﻿ [0.15, 0.16] [1.0e-4, 1.1e-4] [0.08, 0.08]
﻿Sigma EDA pulse amplitude﻿ [0.07, 0.07] [5.1e-5, 5.3e-5] [0.09, 0.09]
﻿LogN mean pulse rate﻿ [0.19, 0.19] [2.9e-5, 3.0e-5] [0.12, 0.12]
﻿LogN sigma pulse rate﻿ [–0.19, –0.19] [1.1e-5, 1.2e-5] [0.08, 0.08]
﻿IG mean pulse rate﻿ [0.09, 0.09] [3.9e-5, 4.0e-5] [0.14, 0.14]
﻿IG sigma pulse rate﻿ [0.02, 0.02] [1.4e-5, 1.5e-5] [0.13, 0.13]

﻿Numerical derivatives﻿ ﻿Mean HR﻿ [0.04, 0.04] [8.2e-7, 8.9e-7]
﻿Sigma HR﻿ [0.05, 0.05] [1.1e-6, 1.2e-6]
﻿Total power﻿ [0.05, 0.05] [1.9e-6, 2.0e-6]
﻿HF﻿ [0.003, 0.003] [1.1e-6, 1.1e-6]
﻿LFη﻿﻿ [0.02, 0.02] [2.2e-7, 2.4e-7]
﻿HFη﻿﻿ [0.05, 0.05] [5.6e-7, 6.0e-7]
﻿LF/HF﻿ [0.01, 0.01] [3.3e-7, 3.6e-7]
﻿EDA tonic﻿ [0.01, 0.01] [1.0e-5, 1.1e-5]
﻿Mean EDA pulse amplitude﻿ [0.07, 0.07] [2.5e-5, 2.5e-5]
﻿Sigma EDA pulse amplitude﻿ [0.03, 0.03] [1.2e-5, 1.2e-5]
﻿LogN mean pulse rate﻿ [0.06, 0.06] [1.7e-6, 1.8e-6]
﻿LogN sigma pulse rate﻿ [−0.01, −0.01] [7.8e-7, 8.3e-7]
﻿IG mean pulse rate﻿ [0.08, 0.08] [8.8e-6, 9.2e-6]
﻿IG sigma pulse rate﻿ [−0.02, −0.02] [2.1e-6, 2.2e-6]
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working within the requirements and needs of the clinical staff, 
which by necessity are the highest priority, required constant adap-
tation, sometimes limiting access, rushing study procedures such as 
instrumentation, or cutting off portions of study procedures alto-
gether. Second, conducting an observational study in a clinical 
setting is drastically different from a controlled experimental setting. 
Each surgery had different anesthesia staff, additional surgical staff, 
and nursing, which leads to wide variation in anesthetic strategy 
and general workflow. The duration of surgery was also variable, 
even for the same surgery type. Many variables of each surgery were, 
for obvious reasons, not under our control.

 Despite these challenges and limitations, the operating room 
is the only place to study surgical nociception. The nociceptive 
responses associated with surgical stimuli cannot be studied in 
humans in any other controlled experimental setting. In an obser-
vational study paradigm, we can overcome these challenges by 
carefully keeping track of all of the relevant potential confounders 
and covariates, despite the lack of a controlled setting, and then 
accounting for them during data analysis and in model frame-
works. In our future work, as we expand our patient cohort, we 
will continue to investigate additional patient-specific factors that 
can influence surgical nociception, including not only demo-
graphic factors like age and gender but also comorbidities and 
outpatient medications. Our preliminary analysis of demographic 
factors within this dataset yielded no significant or consistent cor-
relations (SI Appendix, Figs. S3–S7 ). In addition, because we have 
such detailed annotations of the nociceptive stimuli, we can even-
tually compare the magnitude and latency of the physiologic 
response to different types and locations of nociceptive stimuli. 
This can contribute to a future definition of “intensity” for noci-
ceptive stimuli.

 Our study is an important step toward developing objective 
markers to track surgical nociception. These markers will enable 
objective assessment of nociception in other complex clinical set-
tings, such as the ICU, as well as catalyze future development of 
closed-loop control systems for nociception.  

Materials and Methods

Data and code to replicate this study are available on Physionet (https://www.
physionet.org) (43, 44).

Data Collection. We collected data from 101 subjects during surgery under a 
study protocol approved by the Massachusetts General Hospital (MGH) Human 
Research Committee (Protocol # 2017P002591). The Human Research Committee 
is the Institutional Review Board for MGH. Subjects were between the ages of 
28 and 77 and included 53 females. The majority of procedures were laparo-
scopic, consisting mainly of prostatectomies, hysterectomies, and Salpingo-
oophorectomies. After obtaining informed consent from subjects the morning 
of their surgery, we instrumented them with several sensors: 3-lead electrocar-
diogram (ECG) from the chest, electrodermal activity (EDA) from two digits of 
the left hand, pulse plethysmography (PPG) from one digit of either the right or 
left hand, respirations from an elastic strap around the chest, skin temperature 
from the surface of the hand, and the Analgesic Nociception Index (ANI) sensors 
on the chest. All except for the ANI were obtained using the Thought Technology 
Neurofeedback System (45). Data collection was started prior to induction of 
anesthesia and continued until after extubation. All sensor data were sampled 
at 256 Hz, except for the ANI, which was sampled around 1 Hz.

During the course of the surgery, nociceptive stimuli, such as intubation, 
incision, insufflation, electrocautery, desufflation, and extubation were man-
ually annotated. The timing and dosage of anesthetic medication delivered 
was also manually annotated and verified using the electronic health record. 
Anesthesiologists were told to follow what they would normally do with no 
interference due to the study. Surgeries were chosen to be laparoscopic lower 
abdominal surgeries, so as to not interfere with the placement of sensors on the 

chest and to allow for precise annotation of nociceptive stimuli using the video 
monitors throughout the operating room. Participation in this study in no way 
changed routine surgical or anesthetic care.

HRV Preprocessing. For ECG data, the goal of preprocessing is to accurately 
extract R peaks, because HRV measures are highly sensitive to errors in even a 
single beat (46). The extraction of R peaks from clean ECG has been accomplished 
robustly and efficiently already using the Pan Tompkins algorithm (47, 48). The 
main challenge in data collected from the operating room is the presence of 
artifact that interferes with the ability to cleanly extract R peaks. Even when there 
is lesser artifact, ectopic beats or temporary motion artifact can be misidentified by 
the Pan Tompkins algorithm as an R peak. Therefore, methods must be employed 
to check and correct for incorrectly identified R peaks.

Stage 1: After a 20 Hz low-pass filter, we identified large sections of artifact by 
thresholding the derivative of the ECG where the absolute value of the derivative 
was at least 10 SD from the mean. We isolated the 0.5 s before and after each such 
instance and set the ECG signal to zero. In addition, we measured the maximum 
and minimum values of the ECG signal for each minute and used 1.25 times 
the median of each distribution as a threshold for the bounds of the signal. Any 
portion of the ECG that was outside these bounds was also set to zero. We kept 
a record of all such “zeroed” time points. The Pan Tompkins algorithm was run 
after the identified portions of the ECG had been set to zero. It was important to 
zero out sections of large artifact before running the Pan Tompkins algorithm 
because the presence of such artifact can interfere with the identification of R 
peaks in neighboring artifact-free regions of ECG.

Stage 2: The use of the Pan Tompkins algorithm on ECG data with zeroed 
out sections led to the extraction of R peaks with gaps corresponding to those 
sections. Therefore, to fill in the gaps, we interpolated R peaks using the peaks 
extracted from the pulse plethysmography (PPG) signal. Peaks can be extracted 
from the PPG signal using any local maximum or peak finding method (such as 
findpeaks in Matlab). However, there is naturally a delay between the R peak in 
the ECG and the corresponding PPG peak to account for the distance between 
the heart and the finger. We estimated this delay by taking a 5-min segment of 
“clean” ECG (no artifact) and computing the median relative delay between ECG 
R peak and PPG peak for all of the beats within the 5-min segment. We then used 
the estimated relative delay as a backward shift for any segment of PPG peaks 
used to fill in a missing section of R peaks. This method of estimating the delay 
between signals will be improved upon in our future work using techniques such 
as generalized linear models (GLMs). This technique addressed broad sections 
of missing R peaks. For four of the surgeries, the extent of ECG artifact was such 
that the PPG peaks were used instead throughout the surgery.

Stage 3: To address the single beat discrepancies, Luca Citi and Riccardo 
Barbieri have previously developed an algorithm rooted in the same point pro-
cess framework to identify and correct irregular or ectopic beats in RR-interval 
traces (46). We used this algorithm on the extracted R peaks after Stage 2 for the 
next stage of correction.

Stage 4: We identified any sections of lingering irregularity in the RR-interval 
trace that were at least three R peaks in length and searched through all of the 
redundant versions of signal we had (between beat-corrected and uncorrected 
versions of both the ECG and PPG peaks) for the optimal placement of each R 
peak in those sections.

For each subject’s R peaks, the point process HRV model was fitted (34). The 
point process model has two hyperparameters: p, which is the model order for 
the autoregressive portion of the model, and w, which is the window length in 
seconds for the maximization of local likelihood. The values of p and w for each 
subject were chosen by screening across 6, 8, 10, and 12 for p and 60, 90, and 120 
for w. The optimal values were chosen based on the combination of hyperparam-
eter values that minimized the Kolmogorov–Smirnov (KS) distance (49) of the fit. 
The final hyperparameter values used for each subject are in SI Appendix, Table S1.

EDA Preprocessing. The methods we developed for identifying and removing 
electrocautery-related artifact from the EDA data have been detailed in refs. 50, 51.  
EDA is commonly divided into tonic and phasic components (52). We used the 
methods previously described (35, 36, 53, 54) to separate the phasic component 
and extract pulses from each subject’s EDA data after preprocessing and removing 
artifact. (The tonic component for each subject was also retained for later use.) 
Then, we fit 4 dynamic models for each subject using the extracted EDA pulses. 

http://www.pnas.org/lookup/doi/10.1073/pnas.2319316121#supplementary-materials
https://www.physionet.org
https://www.physionet.org
http://www.pnas.org/lookup/doi/10.1073/pnas.2319316121#supplementary-materials
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We have previously demonstrated the point process structure in the intervals 
between EDA pulses and their amplitudes (35, 36). The 4 dynamic models are 
detailed below.

History-dependent inverse Gaussian model: We fit a history-dependent 
inverse Gaussian (HDIG) model first, analogous to that for HRV (54). The hyper-
parameter values screened were larger, however, since EDA pulses are more 
spaced. To maximize local likelihood, we screened p (autoregressive model 
order) between 1 and 3 and w (window length) between 180 and 900 seconds 
in increments of 60. This model estimates the mean and SD of pulse rate con-
tinuously across time.

History-dependent lognormal model: Second, we fit a history-dependent log-
normal (HDL) model that was identical in structure to the HDIG model except that 
a lognormal density was used instead of the inverse Gaussian for the interpulse 
intervals. This directly follows from the results discussed in refs. 35, 53 which 
showed that both inverse Gaussian and lognormal models are appropriate fits 
for interpulse interval information in EDA data. The same hyperparameter values 
were used for screening. This model provides another estimate of mean and SD 
of pulse rate continuously across time.

History-dependent inverse Gaussian model with adaptive window length: 
One drawback of the HDIG model is that it does not return estimates for the first 
window length w of the data. For example, if w is 600, then there are no estimates 
of mean and SD of pulse rate for the first 600 s of the data.

To work around this, we built a modified version of the HDIG model with an 
adaptive window length. The window length is constrained in length by needing 
to contain at least P + 2 pulses within it at all times, where p is the autoregressive 
model order. Therefore, for a fixed value of w, the sections of data with the spars-
est pulses determine the value of w, even if other sections of data have a high 
density of pulses. We built a HDIG model in which the value of w is adjustable 
dynamically, such that w becomes larger specifically in regions with sparse pulses 
and reduces in length when pulses are more frequent. Then, we set the minimum 
length of w and minimized the lost time at the beginning in which there are no 
model estimates. Because of the loss in model fit, we only used the adaptive 
model estimates for the beginning portion of each subject’s EDA data, until the 
original HDIG model produced estimates. We screened the minimum window 
length w of the adaptive model to values up to 300 s only (60, 120, 180, 240, 
300). Therefore, we could guarantee the maximum of lost time (for EDA indices) 
to the first 5 min only.

History-dependent inverse Gaussian model for pulse amplitudes: Finally, 
we fit a history-dependent inverse Gaussian model for the pulse amplitudes. 
This directly follows from the results discussed in ref. 35 which showed that the 
inverse Gaussian is acceptable simplification for the amplitude structure in EDA. 
The hyperparameter values screened were the same as the HDIG and HDL models 
for temporal information because the spacing of pulses was the same. This model 
estimates the mean and SD of pulse amplitude continuously across time. The 
final threshold for extracting pulses as well as the final hyperparameter values 
for each of the 4 dynamic models for all 101 subjects are in SI Appendix, Table S2.

ANI Preprocessing. From the ANI monitor, the ANI index over time for each 
surgery was extracted. It is provided directly by the output of the monitor at 
roughly 1 Hz frequency. ANI data were either unable to be collected or not of 
sufficient quality to be included (at least 10 min of high-quality data across the 
full surgery) for 13 surgeries. For all surgeries for which ANI was included, ANI 
was affixed according to instructions provided with device and signal quality 
was verified at the beginning of surgery. However, in some cases, signal quality 
declined or wavered during the course of surgery, when we could no longer 
access the electrodes on the patient to perform manual adjustments, which is a 
challenge of the ANI.

Annotation Preprocessing. Nociceptive annotations: For nociceptive annota-
tions, first, we split them into cautery and noncautery annotations. For noncautery 
annotations (e.g., incision, intubation, insufflation, desufflation, and extubation), 
we assumed a 15-s window of uncertainty on either side of the annotation to 
account for the duration of the event itself and the variability in when it was 
documented. For cautery annotations, we annotated the start and stop of each 
event. To account for any mistake in annotation, we added 5 s after the annotated 
end of each instance of cautery.

Annotations about drug timing and dosing: For drug-related annotations, 
we were concerned with 8 classes of drugs typically given throughout surgery: 
sedative, antinociceptive, muscle relaxant, pressor, beta blocker, alpha agonist, 
NMDA antagonist, and inhaled sedative. Then, for each annotation, we extracted 
information about whether it was a bolus or an infusion and the dose. We then 
normalized the dosing levels between 0 and 1, where 1 referred to the largest 
dose of that class of drug given throughout the surgery. In some cases where 
more than one drug is in a class and they are dosed at very different levels (e.g., 
fentanyl and hydromorphone), we normalized each drug’s dosing separately. 
Infusion dosing was typically normalized separately from bolus dosing since they 
are not always comparable. All boluses were divided across 15 s total to account for 
uncertainty in exact timing. Finally, we compiled two dynamic summaries of the 
drug information, one that only contained binary timing information of whether 
a drug was administered or onboard in each class and one that also contained 
normalized dosage information.

Modeling Framework. For each subject, the duration of their surgery was 
divided into 5-s nonoverlapping windows. For ground truth, each 5-s time win-
dow was classified as nociceptive or not based on the presence of a nociceptive 
annotation within that time window. Model performance was measured based on 
the ability to accurately classify these 5-s windows as nociceptive or not.

The median of all of the indices in Table  1 within each window was com-
puted as part of the feature vector for each window (15 features). To account 
for the direction of change of an index as a possible feature, for each feature in 
Table 1, its 8th-order central finite difference derivative was also computed as a 
feature. Each feature in Table 1 was smoothed with a 12-point weighted linear 
least squares (with 1st-degree polynomial) moving filter before the derivative 
was computed so that the derivative captured overarching trends rather than 
temporary fluctuations. This accounted for an additional 15 features for each 
time window, for a total of 30.

When it was included, drug-related information consisted of timing informa-
tion and dose information as described in the Drug Annotations and added an 
additional 14 features to each time window, raising the total to 44.

All features were Z-score normalized within each subject before being con-
catenated across subjects to account for different baseline values across subjects. 
For the dependent variable, each 5-s window was coded either 0 or 1 based on 
whether it contained a nociceptive stimulus. The annotations were adjusted for 
uncertainty in exact timing as described in Annotations Section.

To compare the ability of the ANI to detect nociception, the ANI index was 
also divided into 5-s time windows and the median within each time window 
was computed.

Metrics of Performance. To test the generalizability of the model, model per-
formance was always evaluated using leave-one-subject-out cross-validation. 
This means that the model was always validated on an entirely new subject’s 
data compared to the training data.

Model performance was measured using two metrics. The first is area under 
the receiver operating characteristic, or AUROC. However, because the data are 
unbalanced where only ~20% of time windows contain nociceptive stimuli, 
the second metric was the area under the precision–recall curve, or AUPRC. The 
AUPRC can be a more reliable measure of model performance as the data tend 
to be more imbalanced (42). The random classifier performance for AUROC is 0.5, 
whereas for AUPRC, it is equal to the proportion of the data that are positives (in 
this case, ~20%).

ANI Accuracy. We also tested the accuracy of classifying nociceptive time win-
dows using the ANI index alone by computing the AUROC and AUPRC for the 
ANI index.

Classification Models. The two classification models used were logistic regres-
sion (39) and random forest (40). Each classification model was applied to the 
physiological features with and without drug information. For the logistic regres-
sion models, LASSO regularization was used to penalize the inclusion of redun-
dant or uninformative features in the model and minimize overfitting (55). The 
optimal model was always selected by minimizing Akaike’s Information Criterion 
(AIC) (56). For the random forest models, the random forest was bagged to min-
imize overfitting using the square root of the total number of features (40). Each 

http://www.pnas.org/lookup/doi/10.1073/pnas.2319316121#supplementary-materials
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random forest had 100 trees, and each tree had a maximum of 50 splits. Ninety 
percent of the data were randomly sampled at each split to reduce overfitting.

Finally, with respect to interpretation of the models, for the logistic regres-
sion models, we examined the magnitude and sign of the coefficient for each 
feature across the final models. Since leave-one-out cross-validation results in 
one model per subject, we included the coefficients from all models and kept 
track of the strongest and most consistent trends across models. For the random 
forest approach, we scored the importance of each feature based on how many 
times it is selected for a split throughout the forest. We kept track of features that 
were consistently most important across all final models.

State Space Models. The state space framework assumes that the measurable 
observations in the system are driven by a dynamically evolving latent or hidden 
state that cannot be directly observed (41). We treated the physiological indices as 
measurable observations governed by a latent nociceptive state that evolved over 
the course of surgery for each subject. We did not include any information about 
nociception, such as the nociception annotations, in the framework of the model, 
making it fully unsupervised. This is in contrast to the classification models, which 
were trained with the ground truth information about when nociceptive stimu-
lation occurred. Our goal was to test the hypothesis that an implicit definition of 
nociceptive state can be learned from the physiological observations alone, without 
explicitly defining nociception. If the state space framework yields a hidden state 
that tracks with nociception, this would constitute an implicit nociceptive state.

Our state space framework was defined as follows (as a linear Gaussian state 
space model):

State evolution equation:

Xk = FXk−1 + vk , vk ∈ N(O,Q).

Observation equation:
Yk = A + BXk + �k , �k ∈ N(0, R).

Here, Xk  is the hidden state at time k  , and Yk  is vector of observations at time 
k  . {F ,Q, A, B, R}  are the model parameters. Both the hidden state and observa-
tions are assumed to have Gaussian noise. The observations that made up the Y   
vector were the indices from Table 1, the 8 HRV indices and 7 EDA indices, Z-score 
normalized for each subject in 5-s windows. We defined a state space model with 
all 15 indices as observations and a two-dimensional hidden state. This was to 
account for different sets of governing dynamics, as we know the ANS has two 
arms: the sympathetic and parasympathetic.
The overall process of fitting a linear Gaussian state space model using the expecta-
tion–maximization (EM) algorithm is covered in ref. 41. We used the SPXEM package 
to fit linear state space models (57). At each iteration of the EM algorithm, the 
E-step (expectation) computes the expected value of the hidden state given the 

current estimates of the parameters {F ,Q, A, B, R} . Then, the M-step (maximization) 
updates the estimates of the parameters by maximizing the joint likelihood of the 
observations and the hidden state (41). We defined a leave-one-subject-out cross-
validation scheme that would allow the model to train on 100 subjects’ data and be 
truly blind to the test subject’s data. This consisted of several steps:

1.	 First, we ran the EM algorithm on each individual subject’s data backward (58), 
starting at the last set of observations running to the first set of observations. 
We saved the value of the last backward hidden state as the initial value of 
the forward hidden state for each subject.

2.	 We fitted a single-state space model to 100 of the 101 subjects by concate-
nating their data together. However, during each iteration of the Kalman filter, 
when a new subject’s data were reached, the saved initial value of the hidden 
state for that subject was used to reinitialize that subject. These measures were 
employed to avoid false assumption of continuity when data were concate-
nated across subjects.

3.	 Finally, for the held-out test subject, we used their saved initial value of the 
hidden state along with the model parameters from the model fitted on the 
training data and just performed one iteration of the E-step of the EM algo-
rithm to arrive at the estimated trajectory of the hidden state for that subject. 
This allowed the model fitting process to be truly blind to the test subject since 
each subject’s state initialization could be done using that subject’s data alone.

By treating each hidden state as a dynamic prediction of nociception, we tested 
the ability of each of the two hidden states to classify nociceptive timepoints. We 
used the state space model coefficients to interpret the model.

Data, Materials, and Software Availability. Anonymized Features from physi-
ological signals data have been deposited in Physionet (https://doi.org/10.13026/
gzmm-5h49) (43).
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