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Therapeutic Advances in 
Musculoskeletal Disease

Introduction
Ankylosing spondylitis (AS) is a chronic inflam-
matory rheumatic disease and a subset of axial 
spondyloarthritis (axSpA).1 AS predominantly 
involves inflammation of the axial skeleton, 
including the spine and sacroiliac joints, as well as 

sometimes the peripheral joints.2 The axial struc-
tural change seen in patients with AS may begin 
at a young age, and progress from damage in sac-
roiliac joints to the whole spine, leading to the 
impairment of spine motility.3 There are many 
instruments available for evaluating the structural 
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Abstract
Background: Detecting vertebral structural damage in patients with ankylosing spondylitis 
(AS) is crucial for understanding disease progression and in research settings.
Objectives: This study aimed to use deep learning to score the modified Stoke Ankylosing 
Spondylitis Spinal Score (mSASSS) using lateral X-ray images of the cervical and lumbar spine 
in patients with AS in Asian populations.
Design: A deep learning model was developed to automate the scoring of mSASSS based on 
X-ray images.
Methods: We enrolled patients with AS at a tertiary medical center in Taiwan from August 1, 
2001 to December 30, 2020. A localization module was used to locate the vertebral bodies in 
the images of the cervical and lumbar spine. Images were then extracted from these localized 
points and fed into a classification module to determine whether common lesions of AS were 
present. The scores of each localized point were calculated based on the presence of these 
lesions and summed to obtain the total mSASSS score. The performance of the model was 
evaluated on both validation set and testing set.
Results: This study reviewed X-ray image data from 554 patients diagnosed with AS, which 
were then annotated by 3 medical experts for structural changes. The accuracy for judging 
various structural changes in the validation set ranged from 0.886 to 0.985, whereas the 
accuracy for scoring the single vertebral corner in the test set was 0.865.
Conclusion: This study demonstrated a well-trained deep learning model of mSASSS scoring 
for detecting the vertebral structural damage in patients with AS at an accuracy rate of 
86.5%. This artificial intelligence model would provide real-time mSASSS assessment for 
physicians to help better assist in radiographic status evaluation with minimal human errors. 
Furthermore, it can assist in a research setting by offering a consistent and objective method 
of scoring, which could enhance the reproducibility and reliability of clinical studies.
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change of AS, including conventional radio-
graphs, computed tomography, and magnetic 
resonance imaging. Although conventional radio-
graphs are less sensitive, they remain an efficient, 
less time-consuming and the most widely used 
method for the detection of structural change in 
AS.4 Several composite methods for assessing 
radiographic damage in AS using conventional 
radiographs have been proposed, including the 
Stoke Ankylosing Spondylitis Spinal Score 
(SASSS), the Bath Ankylosing Spondylitis 
Radiology Index, the modified Stoke Ankylosing 
Spondylitis Spinal Score (mSASSS), and the 
Radiographic Ankylosing Spondylitis Spinal 
Score (RASSS).5–7 Establishing a method for 
assessing radiographic destruction is crucial in the 
evaluation of drug response for the purpose of 
preventing the progression of structural damage 
in patients with AS. Previous studies which com-
pared multiple composite methods revealed that 
the mSASSS is the most valid and feasible tool for 
scoring radiographic damage in AS, including 
early axSpA.8,9 One review article also indicates 
that the mSASSS is a reliable tool for determining 
the progression of radiographic damage in AS, 
which is associated with the worsening of clinical 
manifestations and physical function in patients 
with AS.10 However, it is essential to acknowl-
edge the limitations of mSASSS, including inter-
observer and intraobserver variability and 
reliability.11

mSASSS is a modification of SASSS, created by 
adding an additional scoring category for the cer-
vical spine, thus making a more clear definition of 
squaring.5 The totals taken from mSASSSs, 
which count the sum of the lumbar and cervical 
spine lesion scores, range from 0 to 72, with a 
score of 0 indicating no radiographic change, a 
score of 1 for erosion, squaring, or sclerosis, a 
score of 2 for syndesmophytes, and a score of 3 
for bridging syndesmophytes or ankylosis. Since 
there are 5 damaged parts that need to be identi-
fied in 12 spine columns, scoring with mSASSS is 
time-consuming and adds to the workload of 
radiologists and rheumatologists.12,13 This is not 
only labor-intensive but also subject to operative 
error. Consequently, obtaining help from artifi-
cial intelligence (AI) is urgent, not only for clini-
cians but also for clinical researchers, to better 
assist in the interpretation of radiographs and 
automatically give rise to mSASSSs in patients 
with AS. Currently, there are several clinical trials 

that support the efficacy of certain biologic agents, 
such as certolizumab, secukinumab, and ixeki-
zumab, in delaying or even improving radio-
graphic progression in patients with AS.14–16 
Slowing radiographic progression will lead to 
reduced disability, improved quality of life, and 
delayed disease complications in patients with 
AS. Rapid mSASSS calculation is therefore vital 
for clinicians to monitor disease progression and 
prompt treatments of adequate biologic agents to 
slow radiographic progression in patients with 
AS. Moreover, mSASSS is also utilized across 
numerous clinical trials to standardize radio-
graphic changes in patients with AS, and AI-based 
mSASSS calculation can mitigate individual dis-
crepancies in scoring, helping researchers accu-
rately assess disease progression and treatment 
efficacy in clinical trials.

Recently, one study in Korea demonstrated a 
deep learning model for scoring the corner of the 
vertebrae in patients with AS using mSASSSs, 
with the accuracy, sensitivity, and specificity of 
one corner being 0.91604, 0.80288, and 0.94244, 
respectively.17 However, the characteristics of dif-
ferent spinal structural lesions counted by one 
score are not differentiated, and subjects having 
spinal deformities or foreign body implantation 
were not included in the Korea cohort, thus mak-
ing clinical application difficult. There is cur-
rently no appropriate real-world model for scoring 
structural damage in mSASSSs using machine 
deep learning and AI for patients with AS. Thus, 
our study aimed to develop an optimal model for 
the auto-calculation of mSASSSs using deep 
learning in patients with AS in Asian populations 
for assistance in clinical decision-making.

Methods

Enrollment of participants and data collection
We identified patients with AS from a tertiary 
medical center in Taiwan from August 1, 2001 
to December 30, 2020. AS was diagnosed clini-
cally and excluded if not fulfill the modified  
New York criteria or ASAS (Assessment of 
SpondyloArthritis International Society) classifi-
cation criteria.18–20 Radiographs were reviewed 
and collected in DICOM format. If X-ray images 
of the lateral view of cervical spines and lumbar 
spines were seen within 3 months, they would be 
defined as one set of images. In total, 1056 sets 
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of X-ray images from 554 patients with AS were 
collected.

The datasets of X-ray images were divided into 
three categories: the training set, the validation 
set, and the testing set. We randomly selected and 
categorized 20% of the datasets, resulting in 211 
images being used as the testing set. When one set 
of a patient was selected into the testing set, other 
data belonging to this patient would also be 
selected into the testing set to ensure that the 
patients placed into the testing set were not 
grouped into the training and validation sets. The 
remaining 845 sets of datasets were used for the 
training and validation sets for the purpose of AI 
training.

Data labeling process
The lesions noted on the radiographs for cervical 
and lumbar spines were labeled by two rheuma-
tologists and one radiologist. The labeling tool is 
shown in Figure 1. In mSASSS, there were 24 
anterior corners of the vertebra to be labeled, 
including 12 anterior corners for cervical spines 
and 12 anterior corners for lumber spines. For 
each anterior corner, an annotator needed to be 
present to label the lesions. The label items for 
each anterior corner were: no abnormality (score 
0), erosion (score 1), sclerosis (score 1), squaring 
(score 1), syndesmophyte (score 2), total bony 

bridging at each site (score 3), osteophytes (cor-
ner not considered for scoring), others such as 
non-marginal syndesmophytes, intra-discal anky-
losis, intervertebral ossification, and paravertebral 
ossification (corner not considered for scoring), 
not clearly visible or blurry (corner not consid-
ered for scoring).5,21 Notably, the third cervical 
vertebra is not scored for squaring in mSASSS 
calculation due to its naturally straight shape on 
the lateral surface.5 When discrepancies arose 
among physicians, consensus meetings were held 
to reach a decision based on the majority of 
opinion.

AI models construction and imbalanced  
data correction
Two types of AI models, localization model and 
classification model, were used in algorithm con-
struction (Figure 2). The localization model was 
executed in order to find the position of each ver-
tebral body, including the upper anterior corner, 
lower anterior corner, and center point of each 
vertebra. The AI architectures including U-Net-
based segmentation, YOLO, and PoseNet were 
considered for localization initially. However, it 
was necessary to delineate the boundaries of all 
vertebrae in U-Net-based segmentation, which 
increased labeling time and labeling errors for 
physicians. For YOLO architecture, it could only 
frame a square area and once the vertebrae were 

Figure 1.  mSASSS labeling tool in patients with AS.
AS, ankylosing spondylitis; mSASSS, the modified Stoke Ankylosing Spondylitis Spinal Score.
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not arranged in a straight and orderly manner, the 
squared frame might include nearby vertebrae. 
We finally selected the PoseNet-based model as 
the localization model, which was good for pose 
estimation in previous studies.22,23 We further cut 
out small images from the cervical and lumbar 
X-ray images based on the above point informa-
tion. These small images were sent to a classifica-
tion model to check the corners for any lesions. 
Next, we calculated the score for each corner 
based on the lesion information, and then added 
up all the scores to develop mSASSS scores. The 
DenseNet-121-based model was used as the clas-
sification model.24,25

To enhance the efficacy of AI in identifying 
lesions, considering that the number of positive 
samples varies across different lesions, training 
all lesions with the same training and validation 
set does not yield optimal training outcomes for 
individual lesions. Therefore, each lesion iden-
tification AI model is equipped with its dedi-
cated training and validation datasets, totaling 
eight sets. This approach aims for precise AI 
training, enabling effective identification of var-
ious lesions. Specifically, positive samples from 
each lesion were randomly selected and divided 
into the training set and the validation set at the 
ratio of 8:2. Moreover, due to the severe imbal-
ance between positive and negative samples, if 
unaddressed, AI may tend to predict negative 
outcome after learning from an excess of nega-
tive samples, thus reducing prediction accu-
racy. To tackle this issue, the negative samples 
were randomly deleted, with the ratio of posi-
tive to negative samples ultimately being 1:3. 
This aims to achieve more balanced training 
conditions, thereby enhancing the AI’s predic-
tive accuracy.

Additionally, we took certain measures to increase 
the number of positive samples. Since the num-
ber of positive samples of an image was not equal 
to the number of lesion sites, for example, a bony 
bridge included the upper and lower corners of 
the adjacent vertebrae, which implied that the 
number of positive samples of bridges was only at 
half the number of lesion sites. To increase the 
number of positive samples, we vertically flipped 
the positive images and added them to the data-
set; after that, we performed oversampling for 
some lesions to increase the chances of the 
AI   model being trained on only positive samples. 
The DenseNet-121 model, the densely connected 
convolutional networks, was implemented due to 
the relatively small number of positive samples for 
most lesions.24 Data augmentation techniques, 
such as rotation, width shift, height shift, and 
zoom, were also used to train the model. 
Furthermore, due to the low number of positive 
samples for sclerosis and squaring, sclerosis 
lesions seen in the cervical and lumbar images 
were merged together, as were the squaring 
lesions in the cervical and lumbar images. For 
erosion, there were too few positive samples, and 
combining cervical and lumbar spine images was 
not enough to train a model that yielded results.

Ethics statement
This study was approved by the Institutional 
Review Board of Taichung Veterans General 
Hospital, Taiwan (IRB No. CE20295A) and 
waived requirement for informed consent because 
patient data were anonymized before analysis.

The reporting of this study conforms to the 
Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement.26

Figure 2.  The AI model construction for mSASSS scoring in patients with AS.
AI, artificial intelligence; AS, ankylosing spondylitis; mSASSS, the modified Stoke Ankylosing Spondylitis Spinal Score.
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Results

Demographic characteristics and specific 
lesions on radiographs in patients with AS
Table 1 shows the characteristics of patients with 
AS. The mean age at AS diagnosis was 
26.5 ± 10.7 years, and most of the participants 
were men (76.4%). The numbers for the labeling 
of each lesion after the majority decision are 
shown in Table 2. Bony bridges (13.58%) were 
the most observed lesions seen in cervical spines, 
followed by osteophytes (6.38%), squaring 
(5.32%), and syndesmophytes (4.48%). As for 
lumbar spines, bony bridges (16.63%) were also 
the most seen, followed by osteophytes (6.83%), 
sclerosis (4.86%), and squaring (4.61%). The 
interobserver agreement was appropriate, ranging 
from 84.0% of squaring lesion to 99.2% of ero-
sion lesion, as shown in Table 3. The interob-
server agreement was defined as the number of 
agreements between the independent observers 
and divided by the total number of agreements 
plus disagreements.

AI model in the validation set
The training results from the validation set are 
summarized in Table 4, and the accuracy for 
judging various structural lesions in the validation 
set ranged from 0.886 to 0.985. The accuracy of 
bony bridge for cervical spine and lumbar spine 
was 0.985 and 0.974, respectively. The accuracy 
of syndesmophyte for cervical spine and lumbar 
spine was 0.9167 and 0.8936, respectively, 
whereas the accuracy of sclerosis and squaring for 
both cervical and lumbar spine was 0.916 and 
0.886, respectively. Owing to a shortage of posi-
tive samples for erosions, it was difficult to obtain 
effective results using the deep learning model.

AI model in the testing set
Table 5 shows the confusion matrix on the testing 
set. In this section, the results are compared 
between the scores predicted by the AI model and 
those labeled by the rheumatologist, with a score 
range of 0–3 for each individual joint assessment. 
The overall accuracy of mSASSS site scores is 
86.5%, where the accuracy of a score of 0 is 
88.6% 1 is 67.7%, 2 is 73.8%, and 3 is 89.9%. It 
should be noted that the accuracy of a score of 2 
is slightly lower than the results separately calcu-
lated for that of score 3. This is because a very 

Table 1.  Baseline characteristics of patients with AS.

Demography N %

Age at AS diagnosis (years), 
mean ± SD

26.5 10.7

Age of mSASSS score (years), 
mean ± SD

41.1 12.7

Gender, male 423 76.4

Clinical manifestations

  Uveitis 134 24.2

  Psoriasis 41 7.4

  Inflammatory bowel disease 3 0.5

  Peripheral arthritis 102 18.4

  Enthesitis 92 16.6

  Dactylitis 8 1.4

Disease activities

  ESR (mm/h), mean ± SD 12.4 14

  hsCRP (mg/dL), mean ± SD 0.5 0.9

  ASDAS-ESR, mean ± SD 1.7 0.9

    0 ⩽ ASDAS-ESR < 1.3 184 33.2

    1.3 ⩽ ASDAS-ESR < 2.1 202 36.5

    2.1 ⩽ ASDAS-ESR ⩽ 3.5 147 26.5

    3.5 < ASDAS-ESR 21 3.8

  ASDAS-CRP, mean ± SD 1.7 0.9

    0 ⩽ ASDAS-CRP < 1.3 198 35.7

    1.3 ⩽ ASDAS-CRP < 2.1 188 33.9

    2.1 ⩽ ASDAS-CRP ⩽ 3.5 144 26

    3.5 < ASDAS-CRP 24 4.3

  BASDAI, mean ± SD 2.5 1.8

    0 ⩽ BASDAI < 3 348 62.8

    3 ⩽ BASDAI < 4 88 15.9

    4 ⩽ BASDAI < 6 91 16.4

    6 ⩽ BASDAI 27 4.9

(Continued)
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small number of sites were judged by the AI 
model to have structural changes of both bridge 
and syndesmophyte simultaneously. In such 
cases, only a score of 3 is shown, resulting in 
slightly fewer sites being counted as having a 
score of 2. The overall accuracy rate of score 
judgments in this test set is 86.5%.

Discussion
This study demonstrated the use of a deep learning 
model for scoring mSASSS to detect vertebral 
structural damage in patients with AS. The 

Demography N %

Comorbidities

  Hypertension 111 20

  Diabetes mellitus 46 8.3

  Hyperlipidemia 71 12.8

  Chronic kidney disease 9 1.6

  Coronary artery disease 17 3.1

  Fracture, any sites 54 9.7

  Post total hip replacement 18 3.2

  Post total knee replacement 3 0.5

Family history

  AS, the first generation 102 18.4

  AS, the second generation 152 27.4

  Psoriasis 21 3.8

  Psoriatic arthritis 4 0.7

  Uveitis 27 4.9

  Inflammatory bowel disease 2 0.2

  Rheumatoid arthritis 34 6.1

 � Systemic lupus erythematosus 17 3.1

  Sjogren’s syndrome 10 1.8

AS, ankylosing spondylitis; ASDAS-CRP, The Ankylosing 
Spondylitis Disease Activity Score with C-reactive protein; 
ASDAS-ESR, The Ankylosing Spondylitis Disease Activity 
Score with ESR; BASDAI, Bath Ankylosing Spondylitis 
Disease Activity Index; ESR, erythrocyte sedimentation 
rate; mSASSS, modified Stoke Ankylosing Spondylitis 
Spinal Score; SD, standard deviation.

Table 1.  (Continued) accuracy for judging various structural lesions in 
the validation set ranged from 0.886 to 0.985, with 
the accuracy of all vertebral corners scoring from 
the perspective of the end user being 86.5%, a 
result expected to have solid clinical practicability.

The AI model accuracy of lesions in the valida-
tion set for all types of lesions was slightly better 
for the cervical spine in comparison to that of the 
lumbar spine, which could be attributed to the 
anatomical differences and the clarity of lesion 
manifestation in cervical X-rays. The cervical 
spine’s relatively straightforward structure may 
allow for more precise lesion identification. 
Additionally, the lumbar spine often has more 
osteophytes and may have undergone surgeries, 
which can complicate lesion scoring as these fac-
tors are not counted.

Owing to no extensively large numbers of lesions 
being seen in our mSASSS prediction model, 
DenseNet, a set of small-to-medium-sized net-
works, was selected as the basic AI model for fea-
sibility tests so as to avoid overfitting. Furthermore, 
because there were upper and lower corners in 
each patch image, and each corner may possess 
multiple lesions, we used the AI model of multi-
task multi-label architecture to initially evaluate 
the structural damage; however, the resulting 
accuracy was found to be unsatisfactory. The rea-
son for this could be that there was a shortage of 
certain structural lesion data, such as that regard-
ing erosions, as well as that there being data 
imbalance between each lesion. As a result, we 
went ahead and further used one label architec-
ture to assess one single lesion at a time, which 
contained a basic Convolutional Neural Network 
(CNN) Model, Global Average Pooling layer 
(GAP), and had the task to the upper and lower 
corners. CNN is a deep learning model for image 
processing, using convolutional layers to extract 
features and fully connected layers for tasks like 
classification. Although all structurally damaged 
lesions could not be evaluated at once, this would 
up markedly increasing the recognition accuracy 
by avoiding any data imbalance between each 
lesion in multi-task multi-label architecture. Of 
note, the number of lesion images was critical 
toward the achievement of AI model training. 
Due to an increasing number of lesion labels and 
the interactive training that occurred via a combi-
nation of cervical and lumbar spine patch images 
through one label architecture, specific lesions 
such as sclerosis and squaring were successfully 
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trained. Nonetheless, the number of erosion 
lesions seen in the spine was still insufficient, with 
the positive rate being only around one-thou-
sandth. This indicated that the incidence of ero-
sion lesions was low and there was a 
one-thousandth chance to lose 1 point due to 
there being no detection of erosion lesions occur-
ring while using this mSASSS AI model, which 
was estimated to have little impact. It should be 
noted that the scoring of spinal erosion lesions 
was excluded in RASSSs and that spinal erosion 
lesions could possibly be negligible in real-world 
practice. Both the increasing number of labeled 
data and the refinement of annotation accuracy 
play an important role. Along with the application 
and promotion of the AI mSASSS prediction 
model, more labeled data can be collected, mak-
ing it useful to train more AI models in the future.

Koo et  al.17 recently proposed a deep learning-
based model for mSASSS assessment in AS 
patients in Korea, with good accuracy resulting in 
one corner of the vertebral body. However, their 
study did not differentiate each structural lesion 
with a score of 1 point in their AI model; there-
fore, a score of 1 may represent erosions as well as 
squaring or sclerosis. We distinguished each type 
of different structural damage and determined 
the total accuracy with satisfactory results. 
Additionally, cases of severe deformities or artifi-
cial structures were excluded in the Korea cohort, 
and the developed algorithm was not constructed 
using software, thus causing difficulty in clinical 
validation in medical settings. We scored all the 
structural lesions detected in the radiographs, and 
the results were more in line with real-world med-
ical conditions. Furthermore, we will include the 
AI model in the application program, so there 
may be an opportunity to carry out medical veri-
fication in the future. It should be a top priority to 
use machine deep learning and AI to develop the 
best mSASSS prediction model for patients with 
AS, and to also automatically report mSASSSs in 
medical settings in order to better reduce inter-
pretation errors and improve diagnostic accuracy. 
Previous studies have revealed that sclerosis 
change in sacroiliac joints correlated positively 
with lower back pain, stiffness, and sleep distur-
bance (r = 0.45, p < 0.05).27 Through automatic 
quantification, an mSASSS prediction model 
would assist physicians in making both clinical 
judgments and medical decisions in real time. By 
combining prompt mSASSSs, clinical conditions, 
AS disease activity, physical examinations, and 
laboratory results, we were able to predict treat-
ment efficacy, disease prognosis, and comorbidity 

Table 2.  Labeling for spinal lesions in cervical and 
lumbar spines in patients with AS after majority 
decision.

Lesions Cervical spines Lumbar spines

N % N %

Erosion 5 0.04 23 0.18

Sclerosis 96 0.76 616 4.86

Squaring 674 5.32 584 4.61

Syndesmophyte 568 4.48 520 4.10

Bony bridge 1721 13.58 2107 16.63

Osteophyte 808 6.38 797 6.83

AS, ankylosing spondylitis.

Table 3.  The interobserver agreement of labeling for spinal lesions in patients with AS in majority decision.

Lesions Total number of agreements 
plus disagreements

Number of 
agreements

Interobserver 
agreement

Intraobserver 
agreement

Erosion 27,768 27,542 99.2 99.8

Sclerosis 27,768 25,677 92.5 96.3

Squaring 27,768 23,312 84.0 93.9

Syndesmophyte 27,768 25,187 90.7 97.1

Bony bridge 27,768 26,669 96.0 99.1

Osteophyte 27,768 25,380 91.4 97.5

AS, ankylosing spondylitis.
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occurrence, while also providing an individual-
ized optimal treatment plan and integrated health 
care for each patient with AS.

Evidence has shown that there is low inter- and 
intra-observer reproducibility for scoring the radi-
ographs of spine and sacroiliac joints in patients 
with AS.27,28 Well-trained and experienced rheu-
matologists and radiologists were usually needed 
for mSASSS assessments, but the reliability of the 
results remained doubtful. Additionally, minimal 
structural changes seen on radiographs were 

initially difficult to detect with the human eye, so 
it required a long observation period after over-
whelming radiographic damage had developed. 
Therefore, a trained and attentive AI system is 
necessary for mSASSS evaluation as a clinical 
aide. To improve accuracy, we have also 
attempted using the most advanced EfficientNet 
V2 for AI training. However, the accuracy was 
not as high as expected. Since the use of AI tech-
nology is currently booming, perhaps an ideal AI 
model that is particularly in line with mSASSS 
assessment will be released in the future.

Table 5.  Confusion matrix on the testing set among two experienced rheumatologists, one experienced 
radiologist, and AI model.

Rheumatologists/
radiologists

AI model Total Accuracy

0 1 2 3

0 3496 269 144 38 3947 0.886

1 82 276 22 28 408 0.677

2 26 13 138 10 187 0.738

3 18 9 26 469 522 0.899

Total 3622 567 330 545 5064 0.865

AI, artificial intelligence.

Table 4.  The training results of the validation set in patients with AS.

Lesions Score AUC-ROC Specificity Sensitivity Accuracy

Cervical

  Bony bridge 3 0.998 0.988 0.974 0.985

  Syndesmophyte 2 0.957 0.942 0.778 0.917

  Erosion 1 NA NA NA NA

Lumbar

  Bony bridge 3 0.994 0.983 0.971 0.974

  Syndesmophyte 2 0.940 0.905 0.806 0.894

  Erosion 1 NA NA NA NA

Cervical and lumber

  Sclerosis 1 0.956 0.939 0.798 0.916

  Squaring 1 0.944 0.922 0.776 0.886

AS, ankylosing spondylitis; AUC-ROC, area under the curve of the receiver operating characteristic curve; NA, not 
available.
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The present study has demonstrated the use of 
the deep learning model for scoring mSASSS to 
detect the vertebral structural change in patients 
with AS through one label architecture, which 
could be put into clinical application in the future. 
Notably, spine X-rays from a normal or control 
population without AS were not included in our 
AI model development, and it cannot be applied 
to patients without AS.

There were some limitations in the study. First, 
although structural damage of the vertebrae seen 
on radiographs was interpreted by physicians 
across different hospitals, participants in the study 
were recruited from only a single center. External 
validation is still required and is now in progress at 
the Rheumatology and Immunology Center of 
China Medical University Hospital in Taiwan. 
Second, there was a shortage of certain structural 
lesion data in the mSASSS prediction model. 
However, we introduced a one label architecture 
AI model to enrich lesion size, allowing us to 
examine one single lesion at a time, which increased 
the accuracy remarkably. Third, there still remains 
certain difficulties that must be overcome regard-
ing clinical implementation. Future plans include 
extending the study by incorporating a larger and 
more diverse patient population and exploring the 
model’s applicability to sacroiliac joint radio-
graphs. We will also focus on refining our AI 
model, including external validation, to address 
current limitations. Moreover, the inclusion of 
medical records, patient-reported outcomes, and 
environments such as lifestyles and genetic infor-
mation could also be considered in future research. 
More studies are still necessary in order to explore 
any additional issues that may be related to clinical 
implementation of the mSASSS prediction model.

Conclusion
This study developed a well-trained deep learning 
model involving mSASSS scoring in order to 
detect the vertebral structural damage in patients 
with AS, with solid accuracy. The model would 
be further validated externally in the future for 
improving reliability in outcomes. An AI model 
for mSASSS scoring could provide accurate and 
real-time mSASSS evaluation, which is essential 
for advancing research and understanding the 
progression of AS. This tool can aid researchers 
in obtaining consistent and objective data, thereby 
enhancing the reproducibility and reliability of 
clinical studies.
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