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Abstract

Important to the success of additive manufacturing (AM) is the ability to inspect and qualify parts. 

The research community is pushing to identify correlations between part function and surface 

topography, yet little guidance specific to AM surface measurement exists. Thus, development of 

inspection methods for surface finish are required. In laser powder bed fusion (LPBF) AM, parts 

are built through a complex process with many variables, and the length scales of interest on 

the surface cover a wide range. Full characterization of the surface is time consuming and costly 

as high resolution in surface measurements decreases field-of-view (FoV), requiring stitching 

multiple FoVs to cover large areas. Statistical methods exist to estimate the maximum value based 

on a sample of FoVs, but are not yet commonplace in AM surface measurement. The goal of 

this work is to understand the use of these statistical methods in the estimation of maximum area 

valley depth (Sv) of a surface, an extreme value parameter, for which researchers have already 

found relationship to fatigue life. This work also investigates the effect of microscope objective, 

measurement region size, and nesting index of areal filters on Sv. A large (i.e., greater than 40 mm 

× 40 mm) planar LPBF surface is fabricated in nickel superalloy 625 and measured using a focus 

variation microscope with a 10 × objective and again with a 20 × objective. Results show that there 

is little difference in the maximum value of Sv between the two objectives, but the nesting index 

does have some effect. Results also show that a Type 1 Generalized Extreme Value, or Gumbel, 

distribution can be used to accurately estimate the maximum value of Sv for a surface from a small 

set of measurements, providing a framework for users to develop inspection routines that balance 

measurement time and accuracy of estimation.
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Introduction

Due to the ability to reduce time-to-market and cost to manufacture, a key technology for 

production of complex and high-value parts has been additive manufacturing (AM) [1,2]. 

With the ability to produce fine detail in finished parts compared to other AM technologies, 

laser powder bed fusion (LPBF) has generated a great deal of interest [3]. However, a 

limitation hindering the widespread adoption of AM is the as-built surface topography and 

the difficulty in determining its effect on part performance. While performance indicators 

exist for other metal manufacturing processes, it is not yet clear how these indicators can 

be translated to AM processes. As such, the development of functional correlations to 

surface topography and stronger understanding of corresponding measurement techniques 

has been cited as a knowledge gap by multiple standardization roadmaps [4,5]. The 

research community has responded to this limitation through investigations of AM surface 

topography to characterize relationships to the process physics and to correlate the surface 

to function and numerous studies are presented in the review articles by Townsend et al. [6] 

and Leach et al. [7].

Relevant to this publication, Kleszczynski et al. determined the importance of laser incident 

angle on the profile average roughness (Ra) of downward facing parts [8]. This was later 

confirmed by Rott et al. with more detailed analysis of the laser incident angle [9]. Fox et 
al. found that the parameter Ra provides little benefit to more nuanced characterization of 

downward facing surfaces beyond changes in build angle, but other available parameters, 

such as the mean width of profile elements (Rsm) and profile peak density (Rpc) may be 

useful [10,11]. Triantaphyllou et al. [12] found that parameters such as the area average 

roughness (Sa), the area root mean square roughness (Sq), and area skewness (Ssk) could 

be used to identify the difference between upskin and downskin surfaces, but additional 

research is required to confirm the usefulness of these parameters. Work by Fox et al. [10] 

found that there is little statistical difference in the Ra parameter for surfaces with drastically 

different topographies so it follows that the usefulness of the areal parameter Sa may be 

limited as well.

The research community is also actively investigating relationships between part function 

and surface topography. Stimpson et al. investigated the effect of as-built surface finish on 

the heat transfer in AM channels [13]. Gockel et al. found correlation between the maximum 

area valley depth (Sv) and the number of cycles to failure in axial fatigue tests, while Sa
showed no correlation [14]. Similarly, Zhang and Fatemi investigated the effect of surface 

roughness on multiaxial fatigue of Ti-6Al-4V samples, finding correlation to the maximum 

profile valley depth (Rv) [15].

Through the investigations into process-structure-property (PSP) relationships for AM, it 

has become clear that the existing measurement methods (i.e., those laid out in ASME 

B46.1 [16], ISO 4287 [17], and ISO 25178 [18]), require additional scrutiny to be 

effective. For example, as previously mentioned, Fox et al. [10] found that there is little 

statistical difference in the Ra parameter for surfaces with drastically different topographies. 

Triantaphyllou et al. [12] found that the 2.5 mm L-filter nesting index was sufficient to 

capture the required data for use of parameters Sa, Sq, and Ssk, suggesting that the 8.0 mm 
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L-filter nesting index may not be required. Other studies have successfully investigated the 

use of more complex methods, such as feature based characterization [19] and segmentation 

[20]. These methods, and others, also benefit from the development of relationships between 

the process and resultant features (e.g., those depicted in Strano et al. [21], Cabanettes et al. 
[22], and Tian et al. [23]) as they provide a general expectation that can inform more focused 

analysis.

Issues in developing PSP relationships are also complicated by the plethora of technologies 

used for the measurement of surface finish, whose bandwidth characteristics vary [24]. 

Thompson et al. [25] investigated the agreement and discrepancy between various 

technologies in the measurement of top surfaces of an AM part. They found that that 

these comparisons, while currently too limited to provide guidance on the most appropriate 

technology for measurement of AM surfaces, will be vital to improving our understanding 

of topography measurement artifacts and their effect on texture parameters. Zanini et al. 
[26,27] compared optical and X-ray computed tomography (XCT) surface measurements 

against twodimensional (2D) cross-sectional profiles, noting that the re-entrant features of 

AM surfaces significantly affect the accuracy of optical measurements. Fox et al. [28,29] 

investigated the registration of optical surface measurements and three-dimensional (3D) 

XCT measurements for more information-rich metrology (a term coined by Leach et al. 
[30]). While findings were too limited to provide insight into a relationship between 

surface texture and subsurface porosity, a key finding was that users should be cautious 

of sub-voxel rescaling of XCT measurements as it provided little to no improvement over 

the original voxel size data in comparison to laser confocal measurements. This observation 

is also confirmed in Thompson et al. [25], who investigated the effect of magnification and 

sampling resolution in XCT of metal AM surfaces, finding that geometric magnification has 

a stronger effect than sampling resolution.

Still, there is inadequate knowledge in the AM research community of appropriate methods 

for characterization of AM surfaces [31]. Standards from ASME [16] and ISO [17,18], as 

well as an extensive library of Good Practice Guides from the National Physical Laboratory 

[32], guide the evaluation of traditionally manufactured surface topography but it is still 

unclear how well these methods will apply to as-built AM surfaces. Gomez et al. presented 

insights and recommendation for optimization of metal AM surface measurements using 

coherence scanning interferometry (CSI) through use of advanced measurement functions 

(e.g., signal oversampling, high dynamic range lighting levels, sophisticated topography 

reconstruction algorithms, etc.) that are available from equipment manufacturers [33]. 

Newton et al. [34] explored the effect of measurement control parameters (e.g., objective, 

illumination, vertical and lateral resolution settings) on the measurement of AM surfaces 

using focus variation microscopy and found that these settings had little effect on the areal 

parameter Sa but did see changes in local repeatability and the percentage of non-measured 

points. ASTM currently has a work item to develop guidance for measurement of AM 

surfaces [35] and the ASME B46 committee has a project team (PT53) dedicated to 

determining the changes required of the B46.1 standard to address AM surfaces; however, 

little guidance is currently provided on how to appropriately characterize AM surfaces. 
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Thus, without a strong understanding of the required fidelity, point spacing, measurement 

size, etc., it can be difficult to determine the quality of the correlations found in research.

Additionally, length scales of interest in AM can be vast making detailed characterization 

of larger surfaces difficult. Statistical modeling and sampling techniques can be leveraged 

to characterize an entire part surface using only measurements from a small fraction of 

it. Sampling techniques include completely at random, stratified, and systematic. These 

techniques help to ensure the representativeness of the sample, increasing our confidence 

that an important part of the surface has not been overlooked. Moreover, these sampling 

techniques provide the structure on which the assumptions of probabilistic models may 

rest, and these models are used to make predictions about the part surface, which is the 

analysis goal. Manufacturing industries have been using statistical modeling and sampling 

techniques for quality control for many years. For that reason, prior work by the authors [31] 

investigated the effect of sampling strategy on the areal parameter Sq, finding that random 

sampling across the surface performed better than contiguous sampling for representing 

a large surface with a small sample of measurements. That work also found additional 

evidence that measurement size should be dictated by the maximum spatial wavelength of 

interest.

With these aspects in mind, the purpose of this research is to investigate the effect that 

measurement and sampling strategies have on calculated areal surface parameters, as well 

as the ability to adequately represent a large surface measurement from a set of sampled 

regions. We focus on extreme value parameters in surface analysis. A part made from nickel 

superalloy 625 (IN625) with a large (over 40 mm × 40 mm) planar surface was measured in 

a focus variation (FV) system with multiple focusing objectives. The data from these surface 

measurements are subdivided into common measurement region sizes based on various 

numbers of stitched field-of-views (FoVs). Random samples of subdivided measurement 

regions in varying quantities are analyzed to determine the ability of the sample(s) to 

represent the entire surface. This work provides a framework for developing measurement 

routines in the qualification of AM parts.

Methods

The part and data used for this research is the same used in prior work by the authors 

[31]. The part, which is shown in Figure 1, was fabricated on an EOS M290 system at 

the National Institute of Standards and Technology (NIST) using the vendor recommended 

parameter settings. The part was designed as a 55 mm × 55 mm × 25 mm block. The 

feedstock material used for the study was the commercially available EOS NickelAlloy 

IN625, which corresponds to the unified numbering system (UNS) classification N06625 

[36]. For the remainder of this manuscript, the material will be abbreviated as IN625. 

Material used for the build was powder reclaimed from prior builds using an 80 μm sieve.

All areal surface height measurements used in this study were taken from the large vertical 

surface of the part (i.e., the 55 mm × 55 mm surface) whose orientation is nominally 

perpendicular to the top of the build substrate. Height measurements were taken using 

an Alicona InfiniteFocus G5 focus variation (FV) microscope, which conforms to ISO 
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25178–606:2015 [37]. Coaxial and ring (i.e., off-axis) lighting was used and settings (e.g., 

intensity, brightness and contrast) were optimized for each measurement. A 10 × objective 

with numerical aperture (NA) of 0.3 and 20 × objective with NA of 0.4 were used in the 

analysis. Point spacings for the 10 × and 20 × objectives were approximately 0.88 μm and 

0.44 μm, respectively, which are smaller than the optical lateral resolution limit for each 

objective (i.e., 1.09 μm for the 10 × objective and 0.82 μm for the 20 × objective [38]). 

The microscope’s sensor captures data as an 1840 pixel × 1840 pixel grid for a single 

field-of-view (FoV). Thus, a single FoV measures 1.62 mm × 1.62 mm for the 10 × objective 

and 0.81 mm × 0.81 mm for the 20 × objective.

To create the large measurement dataset for this study, 31 FoVs × 31 FoVs and 

60 FoVs × 60 FoVs were stitched for the 10 × and 20 × objectives, respectively, creating 

measurement regions greater than 40 mm × 40 mm while maintaining the previously 

mentioned point spacings. The additional FoV for the 10 × objective measurements (e.g., 

31 FoV × 31 FoV instead of 30 FoV × 30 FoV) was captured to reduce errors in alignment of 

measurements with the 10 × objective and 20 × objective; however, that analysis was not 

performed in this work. Measurements were taken at a minimum of 5 mm away from any 

edge of the part to minimize the effect of the part geometry on the surface texture. Three 

separate measurements were taken one after another for each objective to be averaged later 

to reduce the effect of measurement noise. For example, a 31 FoV × 31 FoV measurement 

with the 10 × objective was taken, stitched, and saved by the equipment and this process was 

repeated two more times before replicating the process with the 20 × objective.

Measurements were exported from the microscope’s software as 16-bit gray scale images, 

the highest resolution option for saving and exporting a measurement region of this size. 

In this export method, heights are mapped to 16-bit integers where the minimum height 

corresponds to zero, and the maximum height 216 − 1. This discretization led to a rounding 

of the vertical spacing to approximately 3.7 nm and 3.4 nm for the 10 × and 20 × objectives, 

respectively. The influence on the result should be negligible as this is an order of magnitude 

lower than the stated height resolution of the equipment (50 nm for the 20 × objective) 

[38]. Once the three 31 FoV × 31 FoV measurements with the 10 × objective and three 60 

FoV × 60 FoV measurements with the 20 × objective were exported as an image, the three 

height values for a given objective at each (x,y) location were averaged to reduce noise. 

Analysis of the three data points at each (x,y) location over the entire measurement area 

was performed and an average standard deviation of 0.96 μm and 1.09 μm for the 10 × and 

20 × objectives, respectively, was found. A subset of this analysis taken from the upper left 

corner of the measurement area with the 20 × objective is shown in Figure 2. In this analysis, 

large standard deviations near the borders of powder particles (e.g., where steep drops occur) 

were found where values eclipse 25 μm. This variation is likely due to errors in the (x,y) 

positioning between the three measurements.

The averaged data was then subdivided into smaller measurement samples using MATLAB. 

The height data was subdivided into the smaller measurement regions based on equivalent 

stitched FoVs and assuming a 10 % overlap for the stitching. The associated measurement 

region sizes are presented in Table 1.
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While the magnifications are such that at 1 × 1 FoV with the 10 × objective is twice the size 

of a 1 × 1 FoV with the 20 × objective, the overlap distance required for stitching creates a 

difference in the overall size. This difference is illustrated in Figure 3.

When subdividing the full measurement of the surface into smaller measurement regions, 

using the measurement sizes listed in Table 1, the number of measurement regions that fit 

into the full measurement of the surface are listed in Table 2. Due to the required overlap 

during stitching of the 31 FoV × 31 FoV measurement region, the final measured area is 

reduced to a corresponding 26 FoV × 26 FoV. The measurement regions (e.g., 1 × 1 FoV, 

2 × 2 FoV, etc.) from the subdivision do not overlap one another in the full measurement 

space since we are partitioning the already stitched measurement.

To determine positions of the subdivided samples, the set of measurement samples in a 

square array were centered in the full area of available data and any excess data that could 

not form a full FoV around the perimeter was neglected from the analysis. For example, 

for the 10 × objective with a 2 × 2 FoV size, 13.68 samples × 13.68 samples can fit in the 

full measurement area. Thus, an array of 13 samples × 13 samples centered in the full 

measurement area was extracted and the excess data around the perimeter was neglected. 

An example of the how this layout changes for each measurement sample size is shown in 

Figure 4 using the 1 × 1 FoV and 5 × 5 FoV measurement sizes with the 10 × objective.

Once the data were subdivided they were exported from MATLAB, converted to the X3P 

format [39], and imported into the commercially available OmniSurf3D software [40]. The 

data were leveled by a least squares plane reference geometry using vertical residuals and 

outliers were removed using a standard deviation cutoff of 5.0. This setting for the outlier 

removal was chosen as smaller values noticeably began to remove features of the topography 

that were not attributed to noise (i.e., the tops of apparent powder particles). Prior to the 

calculation of parameters, the data were filtered using digital Gaussian filters. An analysis 

of filters is performed, and the filter settings are described in the Comparison of Objectives, 

Filters, and Measurement Region Sizes section. For the remainder of the analysis, which 

focuses on the 20 × objective data, nesting indices of S-filter = 2.2 μm and L-filter = 0.405 

mm are used. The 2.2 μm S-filter was chosen because it is five times larger than the point 

spacing (0.44 μm), per guidance in ISO 25178–3 [41] and ASME B46.1 (2019) [16]. The 

0.405 mm L-filter because it is half the lateral size of the smallest FoV region size (0.81 mm 

for the 1 × 1 FoV with the 20 × objective). This is smaller than the guidance provided in ISO 

25178–3 [41]; however, recommendations for a filter cutoff at half the lateral size are seen 

in ASME B46.1 (2019) [16]. While this guidance is not specifically for areal measurements 

of AM surfaces, the fundamental reasoning behind these choices is still valid for comparing 

the various FoV region sizes and half the lateral size was chosen to be the more conservative 

selection. While the choice of data preparation, including but not limited to outlier removal 

and filter selection, is expected to affect the resulting calculated parameters, it does not 

affect the statistical methods presented in the next section. Nevertheless, more detailed 

analysis of the effect these choices for discrimination of surfaces is suggested for future 

work and discussion of the effect of measurement uncertainty on the results is presented in 

the Limitations of the Study section.
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Statistical methods

The probability distribution for the maximum value of a sample of independent and 

identically distributed observations converges to the generalized extreme value (GEV) 

distribution as the sample size increases. The GEV distribution connects three separate 

probability distributions often referred to as Type 1, 2, and 3, or Gumbel, Frèchet, and 

Reversed Weibull, respectively. They were first identified for this purpose almost 100 years 

ago by Fisher and Tippett [42]. These three distributions differ most markedly in their tail 

behavior, i.e., the amount of probability that is placed far away from the central mass of the 

distribution. The Reversed Weibull distribution places positive mass on the interval (-infinity, 

u), with u finite. It is said to have a light upper tail since zero probability is placed above 

u. The Frèchet distribution places positive mass on the interval (l, infinity) with l finite. 

In some cases, while it is always a proper probability distribution, so much probability is 

placed on very large positive numbers that the mean is infinite. Thus, it is said to have a 

heavy upper tail. The Gumbel distribution places positive probability on all real values and 

the amount of mass it places on very large numbers is a compromise between the Reversed 

Weibull and Frèchet distributions.

The Gumbel distribution is important in engineering applications such as the current one. 

This is because in engineering applications, measurements often cannot be arbitrarily large. 

An upper bound exists, but it may not be known precisely. For example, in the current 

application, any measurement of the depth of a valley on the surface must be less that the 

depth of the part itself. That is an upper bound, but it is much too large. For these situations, 

the Reversed Weibull distribution may be the most appropriate of the three extreme value 

distributions. In practice, however, it is very difficult to estimate the upper bound from a 

finite sample, and if safety is crucial, it may be unwise to try to do so. Since the Gumbel 

distribution has the lightest infinite tail of the three distributions, it often used in place of the 

Reversed Weibull distribution.

The probability density function of the Gumbel distribution is given in Equation (1) and 

it has two parameters, μ and σ > 0, corresponding to the distribution’s location and scale, 

respectively. The mean of the Gumbel distribution is μ + γσ, where γ ≈ 0.5772 and is the 

Euler-Mascheroni constant [43]. The standard deviation is πσ
6 . Using a sample of three or 

more maxima, the values of μ and σ, and their standard errors may be estimated using 

maximum likelihood (see Casella and Berger, 2002, pages 315 and 496) [44]. The likelihood 

function is the product of Gumbel probability density functions, with one term for each 

observed maximum.

y = 1
σ e −e − x − μ

σ − x − μ
σ

(1)
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Results and Discussion

In surface topography of AM parts, the Gumbel distribution is an appropriate model for both 

the maximum area peak height (Sp) and the maximum area valley depth (Sv). The results 

to follow will focus on the parameter Sv. The purpose for investigating Sv in this paper is 

due to its relationship to fatigue found in other research by Gockel et al. [14]. However, it is 

anticipated that the relationships found here will hold for other extreme value parameters.

Comparison of Objectives, Filters, and Measurement Region Sizes

Using the measurements from both microscope objectives, a comparison of the calculation 

of the maximum Sv from all the available data for varying FoV region sizes is presented in 

Table 3. In order to match bandwidths between the two objectives and multiple FoV region 

sizes, digital Gaussian filters with nesting indices of S-filter = 4.4 μm and L-filter = 405 μm 

were used. Since the point spacing of the 10 × objective data is 0.88 μm and the width/height 

of the 20 × objective 1 × 1 FoV is 0.81 mm, all the measurements in the Table 3 will meet the 

criteria described in the Methods section.

From the data presented in Table 3, little difference, compared to the magnitude of the 

maximum Sv value, can be seen in the data from the various measurement objectives and 

FoV region sizes when the same filters are applied to all of the data. This comparison, 

however, is without considering differences in uncertainty between the two objectives. 

Though these values are similar, the uncertainty is expected to change between the two 

objectives and should be considered in any analysis. The steep slopes typically seen in 

as-built AM surfaces should contribute to these differences [25]. For one, the steep slopes 

create difficulty in returning light that is reflected outside the NA of the objective, though 

advances continue to minimize this limitation [45]. While FV systems are capable of up to 

80° slope in idealized examinations [46], it is not clear how well this will translate to the 

measurement of actual AM surfaces. Additionally, changes in resolution between the two 

objectives are expected to be relevant as the powder diameters are on the order of tens of 

micrometers and FV has been shown to have difficulty capturing the spherical shape [19]. 

Thus, the study of this issue is suggested for future work and the Limitations of the Study 

section contains additional discussion of the effect of uncertainty on the methods presented.

As a continuation, an analysis of various L-filter sizes is shown for the 20 × objective in 

Table 4. For this analysis, an S-filter of 2.2 μm (e.g., five times the 0.44 μm point spacing of 

the 20 × objective) was used. From this data, again there is little difference in the maximum 

value of Sv when changing measurement region size and maintaining filter settings. There 

is, however, an increase in Sv as the L-filter increases. While this increase is inconsequential 

to the statistical analyses presented in the subsequent sections, it motivates future work in 

understanding how long wavelength surface variations affect Sv.

Distribution of the Extreme Value Surface Parameter Sv
We can investigate the variation of Sv across the surface. Figure 5 shows Sv from the 20 ×
objective data, subdivided into the 1 × 1 FoVs from the entire measured surface. Note that 

while various filters were analyzed in the previous section, the filters and settings described 
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in the methods section will be used for the remaining analyses. Since there is no functional 

performance objective to these measurements, the selection of filters is of no consequence if 

they are consistent among all measurement region sizes.

From this figure, we can see that there is a large spread in values. However, in situations 

where Sv is correlated to function, the maximum value (or a small set of the largest values) 

is most important. The maximum value from this dataset is 40.8 μm. A histogram of all 

values, the Gumbel distribution fitted to them, and uncertainty associated with the fitted 

Gumbel distribution is shown in Figure 6. The code used for fitting the Gumbel distribution 

is supplied in Appendix: Python Code for Gumbel Distribution Fit.

In extreme value analyses, estimates of maximum values, otherwise known as return values, 

are often of interest. In topography of AM part surfaces, we might refer to, for example, 

the 1000 FoV return value. This would be interpreted as the Sv value in which we expect 

exactly one FoV to have an Sv of that size or larger in a sample of 1000 FoVs. If it takes N
FoVs to cover the whole part surface, the N FoV return value would be the value such that 

we expect an Sv of that magnitude or larger to occur once over the whole part. Keep in mind 

that N will depend on the size of the FoV. Assuming a Gumbel distribution with parameters 

μ and σ, the N FoV return value is given by Equation (2). The return value for the entire part 

is taken to be the prediction of the maximum value of Sv for the part.

xN = μ − σlog[log(N) − log(N − 1)]

(2)

Checking the Gumbel Fit

The Gumbel distribution is justified theoretically by taking the maximum of a collection of 

random variables and it becomes more tenable as the size of the collection increases. For the 

calculation of Sv, the maximum is determined over an FoV. As the size as the FoV increases, 

the Gumbel distribution should become more appropriate as a model for Sv. This implies 

making the FoVs as large as possible. However, large FoVs take a lot of time to measure. 

Further, the crucial assumption for the theory of independent and identically distributed 

observations may not hold for large FoVs because of spatial structure in the image used 

to calculate Sv. Lastly, the observed Sv values must be statistically independent for the 

maximum likelihood procedure described above to be appropriate. Irrespective of the size 

of measurement region chosen, we recommend examining the fit of the Gumbel distribution 

to the observed Sv values. A histogram of the Sv values with the fitted Gumbel probability 

density function overlaid, as shown in Figure 6, is one way to perform this validation. 

For smaller sample sizes, a quantile-quantile plot is more appropriate. A quantile-quantile 

plot shows the ordered observations on one axis versus the corresponding quantiles of the 

Gumbel distribution on the other. Such a plot is shown in Figure 7, using the same data 

depicted in both Figures 4 and 5. In the case that the Gumbel distribution accurately captures 

the observations, the ordered observations and quantiles should nearly follow a one-to-one 

relationship (denoted by the 45° line in Figure 6).
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Return Value of Sv for the Entire Surface from a Sample

In most cases, we will not measure the surface of the entire part; instead, a small sample 

of FoVs will be measured. By fitting a Gumbel distribution to that sample, the return value 

for the whole part can be estimated. To investigate the performance of this approach, sample 

sizes from 10 to 2704 were chosen from the 1 × 1 FoV dataset taken with the 20 × objective 

at random. Note that 2704 is the upper limit for the sample size as that is all the available 

Sv values for a 1 × 1 FoV with the 20 × objective as shown in Table 2. The return value of 

Sv for the whole part was then calculated from the Gumbel distribution using the estimated 

values of μ and σ. The results of those calculations are shown in Figure 8. As expected, the 

accuracy of the prediction improves as the number of samples increases by converging to a 

value close to the observed maximum Sv value (the horizontal red line). Note that the return 

values presented in Figure 8 do not include uncertainty or standard deviation from multiple 

iterations as those topics are covered later in the paper.

Moreover, we can investigate the repeated performance of a set of random samples. To 

achieve this, sets of 9, 16, 25, 36, and 49 Sv values were randomly selected from the 2704 

available values and fit with the Gumbel distribution to estimate the return value for the 

entire surface. This process was repeated 1000 times to provide a better understanding of the 

distribution of return values given a specific number of randomly selected Sv values. The 

results of this analysis are shown in Figure 9.

Figure 9 shows the 2.5th and 97.5th quantiles of the 1000 repetitions (vertical blue lines) as 

well as the median (horizontal blue line). The observed maximum Sv = 40.8 μm is depicted 

by the red line. As expected, the difference between the median return value and the actual 

maximum value of Sv, as well as the spread in return values decreases as the number 

of randomly selected values increases. The largest decrease in the spread occurs between 

from 9 and 25 randomly selected measurements. This provides insight into the measurement 

routines that should be used in the inspection of large AM surfaces.

Uncertainty from a Single Sample

The intervals (vertical blue lines) in Figure 9 depict uncertainty due to sampling variability. 

To calculate the intervals in that figure, we were able to sample multiple times from our 

population of interest. However, in practice, sampling multiple times from our population 

of interest is not possible. Only a single sample of FoVs will be used to estimate the return 

value for the part surface. Maximum likelihood provides a strategy for assessing uncertainty 

with only a single sample. The negative inverse of the matrix of second derivatives of the 

log-likelihood function, evaluated at the maximum likelihood estimate, serves as an estimate 

of the variance-covariance matrix for μ and σ. This matrix is sometimes referred to as the 

observed information matrix. Since a return value for the Gumbel distribution is a linear 

combination of μ and σ, an estimate of the variance of the return value is a quadratic form of 

the observed information matrix. If the observed information matrix is denoted Σ(μ, σ), then 

the standard error of the N-FoV return value is
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1 − log[log(N) − log(N − 1)] Σ(μ, σ) 1 − log[log(N) − log(N − 1)] T .

(3)

An approximate 95% confidence interval is then the canonical, estimate +/− twice the 

standard error.

Effect of Measurement Region Size

We can investigate the effect of the measurement region size on the prediction of Sv. Figure 

10 shows approximate 95% confidence intervals for the Sv return value of the whole part 

surface for 20 combinations of sample size and measurement region size. Each combination 

is repeated 10 times. As expected, the widest intervals occur for the smallest combination of 

sample size and measurement region size, and the narrowest intervals occur for the largest 

combination of sample size and measurement region size. However, at the largest sample 

size, the intervals for the 1 × 1 FoV size are very similar in width to the intervals for the 

6 × 6 FoV size at the largest sample size. In Figure 10, we also see a potential bias for the 

high sample size and high measurement region size combination. The confidence intervals 

almost all lie above the true maximum value of Sv. For the pictured intervals, at the highest 

sample size (49 FoVs), the estimated bias for the 1 × 1 FoV size is 0.3 μm, and for the 

6 × 6 FoV size it is 4.2 μm. We observe that the 6 × 6 FoV data are not fitted very well 

by the Gumbel distribution (not pictured), leading to the biased results. This highlights the 

importance of examining the fit of the Gumbel distribution to the data, irrespective of the 

measurement region size. If the data and probability model do not match well, predictions 

from the probability are untrustworthy. Based on Figure 10, we recommend sampling as 

many small FoVs as resources permit, as long as the FoVs are large enough so that the 

Gumbel distribution provides a good fit to the sampled Sv values.

Limitations of the Study

Sampling Strategies

There are many sensible strategies to sample the surface of an AM part. In this paper we 

have focused only on sampling FoVs of various sizes at random. This is often a reasonable 

approach and can be easy to implement. However, it does not recognize the potential 

existence of spatial correlation between the Sv values. A sampling strategy that intentionally 

distributes the samples over the whole surface may be more appropriate. One example is 

stratified sampling. In the current set up, an example of stratified sampling would be to 

sample completely at random one 1 × 1 FoV from each 6 × 6 FoV. We also might consider 

a 2D version systematic sampling. Since our surface is rectangular, an initial location is 

chosen at random in the upper left corner. Then the sampling is performed by rastering 

from left to right, and top to bottom by fixed horizontal and vertical displacements. This 

approach, however, requires a strong understanding of the longer spatial wavelengths that 

may affect the parameters being estimated as inadvertent matching of the sample spacing to 

those spatial wavelengths may lead to inaccurate results. Yet a third possibility is sampling 

according to a Latin Square design (depicted in Chapter 4 of Box et al., 2005) [47]. The 
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most important point is that our samples are not clustered together with large portions of the 

surface left unsampled.

A strategy that we do not recommend is to separate measurements into smaller sets to 

increase the number of Sv values for fitting. For example, assume five locations on the 

surface are chosen at random for measurement and a 2 × 2 FoV stitched measurement is 

performed at each location. That would create five values of Sv (i.e., one for each location). 

These five regions should not be divided into smaller ones to create more Sv values for 

fitting the Gumbel distribution. If there exists spatial correlation between the Sv values, 

this sampling strategy would invalidate the maximum likelihood approach to fitting and 

uncertainty quantification that we recommend. Consider this analogy. Suppose that we are 

estimating the return value of Sv for the whole contiguous United States. If our sample was 

formed only by partitioning the state of Kansas, we would have a very biased view of the 

topography under study.

Measurement Uncertainty

While uncertainty due to the sampling and fitting of data is discussed in the previous 

section, it is also important to discuss the measurement uncertainty. Ideally, uncertainty 

with the measurand should be calculated based on the metrological characteristics of the 

equipment (e.g., those described in ISO 25178–600 [48]). However, this is a difficult and 

open problem that has yet to be solved for FV microscopy [34]. Additionally, uncertainty 

in the measurements affects the approach for fitting a Gumbel distribution to the data for 

prediction of extreme value parameters. There are several ways to include measurement 

uncertainty in the fitting procedure. One approach is to consider the measurements to be 

interval censored and use the fitting techniques described in Liu et al. [49]. Another is to 

use a measurement error model, which are common for calibration [50]. A last approach, 

which directly applies the fitting method described herein, is to perturb the measurements 

according to their uncertainties, fit a Gumbel distribution, and repeat in a Monte Carlo 

fashion. Regardless, uncertainty in the measurement of AM surfaces and proper application 

of that uncertainty to the measurand is an open and important topic for future work.

Conclusions

Part function can depend on the maximum value of a measurement parameter like Sv. 

When we select a subset of our surface for measurement, we may or may not have the 

maximum value of the entire surface within our sample of FoVs. As researchers begin 

to find relationships between function and the maximum value of surface measurement 

parameters like Sv (e.g., relationships between Sv and fatigue cycles to failure [14]), it 

will become increasingly important to understand how to optimize measurement routines 

to estimate these peak values. This work has shown that a Gumbel distribution can be 

used for prediction of the maximum Sv, for a large planar surface manufactured by laser 

powder bed fusion in IN625 using only a small subset of the surface. We found that 25 

randomly selected 1 × 1 FoVs balanced the tradeoffs between accuracy, uncertainty, and cost. 

In analysis of the effect of the number of randomly selected 1 × 1 FoVs, the greatest decrease 

in the spread of the predicted maximum Sv occurred between the selections of 9 to 25 
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1 × 1 FoVs. In analysis of the 95% confidence intervals for the 1 × 1 FoV size, the average 

width of the intervals is 16 μm for 25 randomly selected FoVs, and 12 μm for 49 randomly 

selected FoVs. In addition, for large FoV sizes (e.g., the 6 × 6 FoV size), a bias is observed 

in the results. For 49 randomly selected 6 × 6 FoVs, the estimated bias is 4.2 μm. This 

tradeoff, however, will be dependent on the application and how critical the inspection is to 

the use of the part. For example, flight critical components will require greater confidence in 

the result of the inspection than non-flight critical ones.

While these methods provide a strong basis for the development of measurement routines 

for inspection and quality assurance, they will work best when the surface topography under 

study is mostly homogeneous. They are unlikely to predict events that are independent of 

the AM process (e.g., a scratch on the optics which interferes with the laser, damage from 

handling the surface with improper tools, etc.). Thus, as users investigate the relationship 

between surface structures and function and develop sampling routines in order to determine 

quality of the part, this method should not be used for defect detection. Other probabilistic 

models and sampling strategies would be necessary to achieve that goal. It is likely that 

much larger sample sizes would be necessary to provide a high degree of confidence that a 

part is defect free.

Additionally, the design of the part in this study minimized variability (i.e., a single large 

planar part near the center of the build volume, with no change in dwell time due variable 

sizes of neighboring parts for a given layer). In a system where complexity is a hallmark 

of parts produced, it will be important to test how correlations between part function 

and surface topography parameters like Sv hold as additional variables are introduced. 

These variables may include, but are not limited to, changes in geometry, positioning, 

process parameters, post-processing, feedstock condition, and build environment. Future 

work should take these factors into account to better determine the applicability of the 

Gumbel distribution for the prediction of peak surface topography parameters like Sv.
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Appendix: Python Code for Gumbel Distribution Fit

full_histogram.py:

import pandas as pd

import numpy as np

import matplotlib

import matplotlib.pyplot as plt
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import gumbel_mle

fovs = pd.read_csv(“./20x_1×1_0p0022to0p405.csv”, header=None, skiprows=2)

fovs = fovs.iloc[:, 14]

mle, vcov = gumbel_mle.gumbel_mle(fovs)

def gumbel_pdf(mu, sigma, x):

   z = (x - mu)/sigma

   return (1/sigma)*np.exp(−(z + np.exp(−z)))

x = np.linspace(10, 45, 100)

fx = gumbel_pdf(mle[0], mle[1], x)

plt.hist(fovs, density=True)

for i in range(50):

   mle_str = np.random.multivariate_normal(mle, vcov)

   fx_str = gumbel_pdf(mle_str[0], mle_str[1], x)

   plt.plot(x, fx_str, color = “tab:red”,

        alpha = 0.05)

plt.plot(x, fx, color=“tab:red”,

        label=“Gumbel Distribution”)

plt.xlabel(“$S_v$ ($\mu$m)”)

plt.ylabel(“Density”)

plt.legend()

ax = plt.gca()

ax.spines[‘top’].set_visible(False)

ax.spines[‘right’].set_visible(False)

plt.savefig(“hist_density_1×1_fovs.png”, dpi=300)

plt.close(“all”)

def gumbel_inv_cdf(mu, sigma, p):

    return mu - sigma*np.log(-np.log(p))

n = fovs.shape[0]

p = np.linspace(1/n, (n - 1)/n, n)

plt.plot(np.sort(fovs),

     gumbel_inv_cdf(mle[0], mle[1], p),

     “o”)

plt.plot([10, 45], [10, 45], color=“tab:red”)
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plt.xlabel(“Ordered $S_v$ Values”)

plt.ylabel(“Gumbel Quantiles”)

plt.savefig(“full_quantile-quantile_1×1_fovs.png”, dpi=300)

Gumble_mle.py:

import numpy as np

import scipy.optimize

def ll(theta, x):

   mu = theta[0]

   lbeta = theta[1]

   beta = np.exp(lbeta)

   n = len(x)

   term1 = n*lbeta

   term2 = (1/beta)*(np.sum(x) - n*mu)

   term3 = np.sum(np.exp((mu - x)/beta))

   return term1+term2+term3

def gumbel_mle(x):

   beta_hat = np.sqrt(6)/np.pi*np.std(x)

   mu_hat = np.mean(x) - beta_hat*np.euler_gamma

   lbeta_hat = np.log(beta_hat)

   mle = scipy.optimize.minimize(ll, np.array([mu_hat, lbeta_hat]),

          args=(x))

   tmp = mle.x.copy()

   mle_est = np.array([tmp[0], np.exp(tmp[1])])

   tmp = mle.hess_inv.copy()

   mle_vcov = np.array([[tmp[0, 0], tmp[0, 1]*mle_est[1]],

         [tmp[0, 1]*mle_est[1], tmp[1, 1]*mle_est[1]**2]])

   return mle_est, mle_vcov

def gumbel_return_value(x, N):

   mle_est, mle_vcov = gumbel_mle(x)

   mu = mle_est[0]
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   beta = mle_est[1]

   return_value = mu - beta*np.log(np.log(N) - np.log(N - 1))

   gradient = np.array([[1, -np.log(np.log(N) - np.log(N - 1))]])

   return_value_se = np.sqrt((gradient @ mle_vcov @ gradient.T)[0, 0])

   return return_value, return_value_se
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Figure 1. 
Part used for the analysis (in the foreground). The larger block in the background was not 

used in this analysis. Dimensions of the substrate are 12.7 cm × 12.7 cm × 1.3 cm [31].
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Figure 2. 
Example of the standard deviation calculated for each (x,y) location from the three 

measurements performed with the 20 × objective. “NM” represents the non-measured points.
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Figure 3. 
Illustration of the difference in approximate measurement sizes of stitched FoVs for the 20 ×
objective (left) and 10 × objective (right) assuming a 10% overlap.
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Figure 4. 
Comparison of the layout of 1 × 1 FoV and 5 × 5 FoV measurement sizes using the 10 ×
objective, overlaid on the full 10 × measurement dataset.
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Figure 5. 
Calculation of areal parameter Sv using the 20 × objective data, subdivided in to 1 × 1 FoVs. 

Data is displayed by their location on the surface, which is denoted by the x and y axes.
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Figure 6. 
Histogram of Sv values in the 1 × 1 FoV dataset, the Gumbel distribution fitted to them (dark 

red curve, and uncertainty associated with the fitted Gumbel distribution (light red curves). 

Uncertainty is depicted by 50 replicate Gumbel distributions, where a replicate is obtained 

by perturbing the maximum likelihood estimates of μ and σ by a multivariate normal vector 

with mean zero, and covariance matrix given by the negative inverse of the Hessian matrix 

of the likelihood function evaluated at its maximum.
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Figure 7. 
Quantile-Quantile plot of Sv values in the 1 × 1 FoV dataset and fitted Gumbel distribution.

Fox and Pintar Page 25

Surf Topogr. Author manuscript; available in PMC 2024 October 08.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 8. 
Return values of Sv for the entire part predicted from the Gumbel distribution, which was 

fit to a set of random samples from the full dataset. Subfigure a) shows the full set of 

calculations and subfigure b) shows sample sizes up to 500.
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Figure 9. 
Median return values of Sv for the entire part surface, calculated from the Gumbel 

distribution, which was fit to 9, 16, 25, 36, and 49 randomly selected Sv values. Error 

bars represent the 2.5th and 97.5th quantiles from repeating this process for 1000 iterations.

Fox and Pintar Page 27

Surf Topogr. Author manuscript; available in PMC 2024 October 08.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 10. 
Approximate 95% confidence intervals for the return value of Sv for the entire part surface 

for different combinations of sample size and FoV size. The individual vertical lines 

represent replicates from different random samples (10 each).

Fox and Pintar Page 28

Surf Topogr. Author manuscript; available in PMC 2024 October 08.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Fox and Pintar Page 29

Table 1.

Lateral size of measurement samples after stitching.

Lateral Size of Measurement Sample

Stitched FoVs Pixels 10 × obj. (mm) 20 × obj. (mm)

1 × 1 1840 1.62 0.81

2 × 2 3496 3.08 1.53

3 × 3 5152 4.54 2.26

4 × 4 6808 5.99 2.98

5 × 5 8464 7.45 3.71

6 × 6 10120 8.91 4.44

8 × 8 13432 11.82 5.89
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Table 2.

Number of measurement samples after subdividing the full area measured. Numbers marked as N/a were not 

used in this analysis either for brevity or due to memory limitations of the analysis computer.

10 × Objective 20 × Objective

Stitched FoVs Count in x, y Total Count in x, y Total

1 × 1 26 676 52 2704

2 × 2 13 169 27 729

3 × 3 9 81 N/a N/a

4 × 4 7 49 17 289

5 × 5 5 25 N/a N/a

6 × 6 N/a N/a 9 81

8 × 8 N/a N/a 7 49
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Table 3.

Comparison of maximum Sv values for 10 × and 20 × objective data subdivided into various FoVs. Similar 

sizes of measurement regions in terms of millimeters are listed adjacent to one another (e.g., the 10 × 1 × 1 FoV 

is similar in size to the 20 × 2 × 2 FoV).

10 ×  20 ×
FoV Sv (μm) FoV

40.8 1 × 1
1 × 1 41.7 40.5 2 × 2
2 × 2 41.6 40.6 4 × 4
3 × 3 41.6 40.4 6 × 6
4 × 4 42.6 41.1 8 × 8
5 × 5 41.6
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Table 4.

Analysis of the effect of L-Filter selection on the maximum value of Sv from all the available data.

Sv (μm) L-Filter (mm)

FoV 0.405 0.765 1.49 2.22 2.945

1 × 1 40.8 N/a N/a N/a N/a

2 × 2 40.6 45.1 N/a N/a N/a

4 × 4 41.2 43.0 46.4 N/a N/a

6 × 6 40.6 43.6 46.7 47.4 N/a

8 × 8 41.5 45.4 48.9 50.8 52.0
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