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ABSTRACT Ceftazidime-avibactam (CZA) and ceftolozane-tazobactam (C/T) are
important agents for treating multidrug-resistant P. aeruginosa infections. In this study,
we evaluated the molecular characteristics of 300 globally collected clinical P. aeruginosa
isolates non-susceptible (NS) to CZA, C/T, or both agents. Isolates were CZA-NS and
C/T-NS (n = 57), CZA-susceptible (S) and C/T-NS (n = 145), or CZA-NS and C/T-S (n = 98)
selected from the Antimicrobial Testing Leadership and Surveillance (ATLAS) surveil-
lance program from 2020 to 2021. Characterization was by whole-genome sequencing.
Analysis was performed to identify B-lactamase genes and mutations that impact efflux
regulation, AmpC regulation, and target binding (PBP3). Of the 57 CZA-NS+C/T-NS
isolates, 64.9% carried a metallo-3-lactamase (MBL), and a cumulative 84.2% carried
any non-intrinsic B-lactamase [i.e., not Pseudomonas-derived cephalosporinase (PDC) or
OXA-50-like]. Of the 145 CZA-S+C/T-NS isolates, 26.2% carried an extended-spectrum
B-lactamase (ESBL) and no carbapenemase, 17.9% carried a serine-carbapenemase, and
42.1% were negative for non-intrinsic B-lactamases. Of 98 CZA-NS+C/T-S isolates, 34.7%
carried mutations previously described as causing an upregulation of the MexAB-OprM
efflux pump, while only 9.2% carried a non-intrinsic B-lactamase, and no resistance
mechanism was identified in 29.6% of these isolates. MBLs were present in most isolates
NS to both agents. More than half of the CZA-S+C/T-NS isolates carried serine -lactama-
ses. The most frequently identified resistance mechanism identified in CZA-NS+C/T-S
isolates was a marker indicating the upregulation of MexAB-OprM. No mechanism was
identified that is thought to support resistance to these agents in numerous isolates. This
may be due in part to the fact that whole genome sequencing (WGS) cannot directly
measure gene expression of chromosomal resistance mechanisms.

KEYWORDS Pseudomonas aeruginosa, ATLAS global surveillance, ceftazidime-avibac-
tam, ceftolozane-tazobactam, WGS

P seudomonas aeruginosa is an opportunistic gram-negative pathogen and a common
cause of nosocomial infections, primarily respiratory tract infections, including
pneumonia (1). This pathogen is difficult to treat because it can present a wide
array of antimicrobial resistance mechanisms, both intrinsic and horizontally acquired.
Ceftazidime-avibactam (CZA) and ceftolozane/tazobactam (C/T) are a combination of
cephalosporin and B-lactamase inhibitor antimicrobial agents that have broad in vitro
activity against P. aeruginosa (2, 3).

Ceftazidime is a third-generation cephalosporin that has activity against gram-nega-
tive bacteria, but the activity of this agent is compromised by the rising prevalence
of multidrug resistance (MDR) bacteria. Avibactam is a diazabicyclooctane (DBO)
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B-lactamase inhibitor that restores the activity of ceftazidime against organisms carrying
class A, class C, and some class D B-lactamases, but not class B metallo-B-lactamases
(MBLs (4). Mutations that expand the substrate profile of the Pseudomonas-derived
cephalosporinase (PDC, also called AmpC), overexpression of PDC (5, 6), upregulation of
efflux pumps (7-11), and MBLs are the avenues of CZA resistance in P. aeruginosa (12).

C/T is an antipseudomonal cephalosporin/B-lactamase inhibitor combination. This
agent can overcome some common resistance mechanisms in P. aeruginosa. Ceftolo-
zane is stable to hydrolysis by PDC that lacks substrate-expanding mutations, and it is
not a substrate of resistance-nodulation cell division (RND) efflux pumps carried by P.
aeruginosa (13). Resistance to C/T can arise from the upregulation of PDC expression
(through mutations in the genes ampD, ampDh2, ampDh3, ampR, dacB, and mpl) (5, 6,
14-16) or mutations in PDC that expand the substrate profile to include ceftolozane
(17-20), MBLs (e.g., NDM, VIM, and IMP), serine carbapenemases (e.g., KPC, some variants
of GES), and extended-spectrum B-lactamases (ESBLs) (e.g., VEB, PER, and GES) (13).

In this study, 300 P. ageruginosa clinical isolates from the Antimicrobial Testing
Leadership and Surveillance (ATLAS) global surveillance program were characterized to
determine what resistance mechanisms were present in isolates presenting different
susceptibility profiles for these agents. This set was divided into three phenotypic
populations: isolates that were non-susceptible (NS) to C/T (MIC > 4 pg/mL), isolates
that were NS to CZA (MIC > 8 ug/mL), and isolates that were NS to both agents.

MATERIALS AND METHODS
Bacterial isolates

A random subsample of 300 isolates of P. aeruginosa that were CZA- and/or C/T-NS
were selected from the ATLAS global surveillance program from 2020 to 2021 (https://
atlas-surveillance.com) divided by region. A total of 16,104 P. aeruginosa isolates were
collected in 2020 and 2021 for ATLAS from the regions of Africa, Asia, Europe, Latin
America, Middle East, and South Pacific. A distribution of approximately 25% of the
isolates were from each of the following regions: Africa/Middle East, Asia Pacific, Europe,
and Latin America. Of those selected, 57 were CZA-NS and C/T-NS, 145 were CZA-suscep-
tible (S) and C/T-NS, and 98 were CZA-NS and C/T-S.

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed as a part of the ATLAS Global
Surveillance Program using the broth microdilution method according to CLSI guidelines
(21). All susceptibility interpretations use (22) breakpoints (22). Note that isolates testing
with C/T MIC values of 8 pg/mL are intermediate per CLSI 2023 (22) breakpoints and
resistant per EUCAST 2023 breakpoints, while isolates testing with CZA MICs of 16 ug/mL
are resistant according to both CLSI and EUCAST breakpoints.

Whole-genome sequencing

Cultured bacterial isolates were pelleted, and DNA isolation was performed using the
Qiagen Qiamp DNA Mini Kit. Library preparation was performed using the Illumina DNA
Prep kit, and short-read whole-genome sequencing (2 x 150 bp paired-end configura-
tion) was performed on an lllumina Hiseq platform to a calculated coverage depth of
100x.

Genomic assemblies were created using the CLC genomics workbench version 21.0.5
(Qiagen). To identify genes encoding B-lactamases, assemblies were queried using the
Resfinder database (updated 2 September 2021) with coverage and identity thresholds
set to =35% and >72%, respectively (23). Genes identified with <100% identity or
coverage were evaluated for a variant by pairwise alignment to a reference sequence
from the Bacterial Antimicrobial Resistance Reference Gene Database from the National
Center for Biotechnology Information (Bioproject 313047). Multi-locus sequence typing
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(Seemann T, https://github.com/tseemann/mlst, 24) was used to determine relatedness
of isolates.

Genes of interest were analyzed by pairwise alignment to the corresponding gene
in reference genome PAO1 (accession NC_002516). These genes were screened for the
mutations of known impact and gross disruptions (nonsense mutations, frameshifts,
insertions or deletions of greater than 20 codons, and ablation of start or stop codons)
as described previously (25). Analysis included previously reported mutations and gross
disruptions in genes involved in permeability (26), efflux regulation (nalC, nalD, mexR,
mexZ, mexS, mexT, and nfxB) (7-11), blappc mutation (17-20), blappc regulation (ampD,
ampDh2, ampDh3, ampR, dacB, and mpl) (5, 6, 12, 14-16), and target mutation (fts/) (27,
28) (Table S3). Other genes were analyzed that are not necessarily related to resistance
to either agent but are involved in metabolism (galU) (29-31), virulence (exoS/U/T/Y) (32,
33), or hypermutator phenotypes (mutL/S) (34-36).

To create phylogenetic trees, BactSNP v1.1.0 (https://github.com/IEKAdN/BactSNP)
was used to create pseudogenomes of each of the phenotypic groups of isolates aligned
to PAO1. RAXML-NG (37) was used to create the trees from these alignments, and these
were visualized using iTOL (38).

RESULTS

A total of 16,104 P. aeruginosa isolates were collected in 2020 and 2021 for ATLAS. These
isolates underwent antimicrobial susceptibility testing by broth microdilution against
anti-pseudomonal B-lactam agents (Table 1). By the percentage of susceptible isolates,
CZA was the most active agent tested (89.7%) followed closely by C/T (88.7%). Of all
isolates, 87.1% were susceptible to both CZA and C/T, 8.7% were NS to both CZA and to
C/T, 2.6% were CZA-S and C/T-NS, and 1.6% were CZA-NS and C/T-S (Fig. 1).

Resistance phenotypes and genotypes categorized by non-intrinsic and intrinsic
B-lactamases, indicators for AmpC upregulation, and indicators for efflux upregulation
are summarized in Table 2. Of the 57 isolates that are CZA-NS and C/T-NS, 64.9% carried
an MBL, and a cumulative 84.2% carried any non-intrinsic -lactamase. Of 145 CZA-S and
C/T-NS isolates, 26.2% carried an ESBL and no carbapenemase, 17.9% carried a serine
carbapenemase, and 42.1% did not carry a non-intrinsic B-lactamase. Of 98 CZA-NS and
C/T-S isolates, 34.7% carried a mutation previously described as leading to upregulation
of the MexAB-OprM efflux pump, while only 9.2% carried a non-intrinsic B-lactamase,
and no resistance mechanism was identified in 29.6% of these isolates.

A phylogenetic tree of all characterized isolates and resistance phenotypes shows the
distribution of sequence types and region (Fig. 2). The globally disseminated high-risk
clone ST235 (n = 63) was identified across all regions. In this study, ST235 clones were
infrequently CZA-NS, except those collected in Latin America (10/24, 42% NS versus
4/39, 10% NS rest of world). Another high-risk clone, ST244 (n = 18), was identified
in all regions with variable resistance phenotypes. Two clones, ST773 (n = 12) and
ST357 (n = 10), were most commonly identified among isolates collected in Africa/
Middle East and were predominantly NS to both agents (11/12 and 7/10 isolates NS
to both agents, respectively). Two clones, ST233 (n = 9) and ST111 (n = 7), were most
frequently identified in Latin America, with all isolates of ST233 testing C/T-NS and ST111

TABLE 1 In vitro activity of anti-pseudomonal B-lactams against all P. aeruginosa isolates collected in
2020-2021 (n = 16,104)°

Drug MICsq MiCgq %S % 1/SDD % R
Cefepime 4 32 78.1 8.4 13.4
CZA 2 16 89.7 0.0 10.3
C/T 1 8 88.7 2.2 9.1

Imipenem 2 >8 62.7 9.9 27.4
Meropenem 0.5 16 74.2 6.0 19.8
Piperacillin-tazobactam 8 >64 72.8 6.9 20.2

9, intermediate; R, resistant; SDD, susceptible, dose dependent (for piperacillin-tazobactam only).
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FIG 1 Proportion of collected P. aeruginosa isolates, by resistance phenotype (n = 16,104).

predominantly NS to both agents (6/7 isolates). Finally, ST309 (n = 7), ST381 (n = 6),
and ST155 (n = 6) were also identified from various regions and with various resistance
phenotypes.

A phylogenetic tree of CZA-NS and C/T-S isolates with molecular characteristics and
antibiogram is presented in Fig. 3. In this population (n = 98), the most frequently
identified resistance genotypes were regulatory mutations for MexAB-OprM (35%) or
PDC (33%). Most of these isolates did not carry an acquired -lactamase, with one
notable exception carrying VEB-1 (1%). Most of these isolates carried the type llI
secretion effector exoS, and a notable number of isolates have a loss-of-function
mutation in exoY. Two isolates, collected in Africa/Middle East and Europe with sequence
types ST1978 and ST705, respectively, have complete absence of exoS, exoU, exoT, and

TABLE 2 Hierarchical presentation of molecular characteristics of each phenotypic population®

Resistance N Resistance genotype (percentage of resistance phenotype)

phenotype Non-intrinsic B-lactamases Only intrinsic B-lactamases

MBL+ Serine ESBL* Other MexAB-OprMT AmpCt  AmpC?; MexCD- MexEF-OprNT  MexEF-OprNf;  MexXYT None

ESBL+ cpase* other fla + other MexXYt  OprJ? MexXY? identified
other ESBL+ pla mechanisms
Bla other
Bla
CZA-NS C/T-NS 57 64.9 1.8 15.8 1.8 35 35 1.8 1.8 0.0 0.0 1.8 35
CZA-S C/T-NS 145 55 17.9 26.2 83 2.8 13.8 2.8 0.0 2.8 0.7 4.1 15.2
CZA-NS C/T-S 98 0.0 0.0 1.0 8.2 32.7 184 3.1 0.0 0.0 0.0 7.1 29.6

“[protein name]?, a genetic marker indicating the increased production of this protein was identified, no direct gene expression assay was performed. Indicators used were:
MexAB-OprM1: nalC, nalD, mexR; MexXY1: mexZ; MexCD-OprJ1: nfxB; MexEF-OprNT: mexS, mexT; AmpC1: ampD, ampDh2, ampDh3, ampR, dacB, mpl. Predicted loss of function
mutations (except within ampR or mexT) as well as previously characterized alleles are reported.

bCpase, carbapenemase; S, susceptible; Bla, B-lactamase.
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FIG 2 Phylogenetic analysis of all characterized isolates, by region and antimicrobial susceptibility. AFME, Africa/Middle East; APAC, Asia/Pacific; EUR, Europe;
LATAM, Latin America, ST, sequence type; CZA, ceftazidime-avibactam; C/T, ceftolozane-tazobactam.

exoY. These two isolates are also those that are most distantly related from the rest of the
isolates in this population.

A phylogenetic tree of CZA-S and C/T-NS isolates with molecular characteristics and
antibiogram is presented in Fig. 4. It is noted that the breakpoints for CZA and C/T differ
from one another, and isolates that test with MICs of 8 pug/mL to both agents are
categorized as CZA-S and C/T-NS, 30/145 isolates in this population demonstrated this
phenotype. Acquired B-lactamases were commonly identified in this population. ESBL
genes (not co-carried with MBLs or serine-carbapenemases) were present in 26% of the
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tested was NS or susceptible, dose dependent (piperacillin-tazobactam only) to the named agent. Filled circles indicate that the named genotype was

identified in that isolate. Colors are used to separate: antimicrobial susceptibility data (red), enzymatic resistance mechanisms (purple), non-enzymatic resistance

mechanisms [blue, (left to right: permeability, ampC upregulation, mexAB-oprM, mexCD-opr), mexEF-oprN, mexXY, target mutation, and metabolism)], and

genes associated with hypermutation (pink).

population, with the majority carrying GES ESBLs. Serine carbapenemase genes were
identified in 18% of the isolates and comprised KPC-2, GES-5, and GES-6 carbapenema-
ses. The globally disseminated high-risk clone ST235 was prevalent in this population
and most frequently carried ESBLs (24/49 isolates) or serine carbapenemases (17/49
isolates). Approximately, half of the isolates in this population had indicators for upregu-
lation in one or more efflux pumps (n = 74) (Fig. S2). One isolate carried both type IlI
secretion effectors exoS and exoU. A distinct clade was identified containing eight
isolates from the region of Africa/Middle East (ST1978, ST2211, ST4445, and ST4451) that
do not encode any of exoS, exoT, exoU, or exoY virulence genes.

A phylogenetic tree of CZA-NS and C/T-NS isolates with molecular characteristics and
antibiogram is presented in Fig. 5. This population of 57 isolates contained those that
were NS to 10/10 agents tested (n = 36) and 9/10 agents tested (n = 14). MBLs were
commonly identified in this subset (n = 37, 65%) and included genes encoding VIM, IMP,
and NDM. Nearly half of these isolates contained mutations or disruptions in genes that
lead to the upregulation of an efflux pump (n = 27). Prevalent clones in this group
include ST111, ST357, and ST773. Three isolates carried the variants of PBP3 with F533L;
two of which also carried an MBL.

DISCUSSION

In accordance with the in vitro activity, CZA and C/T remain as important options for the
treatment of infections caused by P. aeruginosa. Overall, more isolates were susceptible
to CZA than C/T by 1% of those tested. Some resistance mechanisms predominated in
isolates susceptible to one agent but not the other. Acquired B-lactamases were
identified in a greater proportion of CZA-S and C/T-NS isolates (57.9%) than isolates that
were CZA-NS and C/T-S (9.2%), which may be due to a better potentiation of ceftazidime
by avibactam relative to the potentiation of ceftolozane by tazobactam. The isolates in
this population primarily carried ESBLs (26.2%) or serine-carbapenemases (17.9%), which
further supports the role of avibactam, which has the strong inhibitory activity of these
B-lactamases. Additionally, more isolates that were CZA-NS and C/T-S carried indicators
for MexAB-OprM upregulation and lacked acquired B-lactamases (33%) than isolates that
were CZA-S and C/T-NS (2.8%). This is an expected result as ceftazidime is a substrate of
MexAB-OprM (39, 40). In addition to MBL carriage, resistance to CZA is found to be
mediated by increased efflux via MexAB-OprM upregulation. Regarding other efflux
pumps, a greater proportion of isolates that were C/T-NS and CZA-S carried indicators for
MexXY upregulation (Fig. S2). Ceftolozane is not known to be a substrate of MexXY, but
upregulation is linked to decreased susceptibility to cefepime (41), and 80.6% of isolates
in this population were NS to cefepime (Fig. 4). Of the isolates that carried indicators for
MexXY upregulation in this population, 82.2% also carried an acquired -lactamase. As
seen in this study, a significant contributor to C/T-resistance is the presence of MBLs,
serine carbapenemases, and ESBLs (42). Although not commonly found in the popula-
tions in this study, structural variations in PDC are also known to increase hydrolysis of
ceftolozane (17-20, 42). It is notable that the (22) breakpoints used in analysis differ for
CZA and C/T, and the MICs for both of these agents against this population were similar
among a subset of isolates (Table S2). It was also an expected result that MBL-positivity
was highest in the population of isolates NS to both agents (64.9%) compared to either
other population (<6%) as neither agent is active against MBL-producing isolates (4, 43).
This study has limitations. Primarily that no population of isolates susceptible to both
agents was included. This prevents a comparative analysis on the impact that individual
resistance mechanisms have on the agents investigated. For example, there could be
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FIG 4 (Continued)

EUR, Europe; LATAM, Latin America; LoF, loss of function. Filled boxes indicate that the isolate tested NS or susceptible, dose
dependent (piperacillin-tazobactam only) to the named agent. Filled circles indicate that the named genotype was identified
in that isolate. Colors are used to separate antimicrobial susceptibility data (red), enzymatic resistance mechanisms (purple),
non-enzymatic resistance mechanisms [blue, (left to right: permeability, ampC upregulation, mexAB-oprM, mexCD-oprJ,
mexEF-oprN, mexXY, target mutation, and metabolism)], and genes associated with hypermutation (pink).

isolates that carry ESBLs or hyperproduce MexAB-OprM that are susceptible to both
agents, but this study would not identify those. Additionally, this study did not directly
measure gene expression, which could be of particular importance with regards to efflux
pumps and AmpC. This likely contributed to the lack of any detected resistance mecha-
nism among 30% of isolates that were CZA-NS and C/T-S. As these are surveillance data
of non-consecutive isolates, information pertaining to antimicrobial therapy on patients
or emergence of resistance over the course of treatment was not available.

This study corroborates that resistance mechanisms for C/T and CZA in P. aeruginosa
do not completely overlap. It also shows the frequency of resistance mechanisms in
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FIG 5 Molecular characteristics and antibiogram of CZA-NS and C/T-NS. CZA, ceftazidime-avibactam; C/T, ceftolozane-tazobactam; IPM, imipenem; MEM,
meropenem; CAZ, ceftazidime; FEP, cefepime; ATM, aztreonam; TZP, piperacillin-tazobactam; LVX, levofloxacin; CIP, ciprofloxacin; AMK, amikacin; CST-R,
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globally collected populations of resistant isolates. Noting the differences underlying
resistance to these two agents underscores the importance of continuous surveillance
for changes in the prevalence of resistance mechanisms such as ESBLs and MBLs at
both the global and regional levels to help predict the continued viability of important
antipseudomonal agents and to the guide the future development of novel antimicrobial
agents.
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