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Abstract

Purpose: Coronavirus Disease 2019 (COVID‐19) and sepsis are closely related.

This study aims to identify pivotal diagnostic candidate genes in COVID‐19
patients with sepsis.

Patients and Methods: We obtained a COVID‐19 data set and a sepsis data

set from the Gene Expression Omnibus (GEO) database. Identification of

differentially expressed genes (DEGs) and module genes using the Linear

Models for Microarray Data (LIMMA) and weighted gene co‐expression net-

work analysis (WGCNA), functional enrichment analysis, protein–protein
interaction (PPI) network construction, and machine learning algorithms

(least absolute shrinkage and selection operator (LASSO) regression and

Random Forest (RF)) were used to identify candidate hub genes for the

diagnosis of COVID‐19 patients with sepsis. Receiver operating characteristic

(ROC) curves were developed to assess the diagnostic value. Finally, the data

set GSE28750 was used to verify the core genes and analyze the immune

infiltration.

Results: The COVID‐19 data set contained 3,438 DEGs， and 595 common

genes were screened in sepsis. sepsis DEGs were mainly enriched in immune

regulation. The intersection of DEGs for COVID‐19 and core genes for sepsis

was 329, which were also mainly enriched in the immune system. After

developing the PPI network, 17 node genes were filtered and thirteen candi-

date hub genes were selected for diagnostic value evaluation using machine

learning. All thirteen candidate hub genes have diagnostic value, and 8 genes

with an Area Under the Curve (AUC) greater than 0.9 were selected as

diagnostic genes.

Conclusion: Five core genes (CD3D, IL2RB, KLRC, CD5, and HLA‐DQA1)
associated with immune infiltration were identified to evaluate their diag-

nostic utility COVID‐19 patients with sepsis. This finding contributes to the

identification of potential peripheral blood diagnostic candidate genes for

COVID‐19 patients with sepsis.
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1 | INTRODUCTION

Sepsis is a severe and potentially fatal clinical syndrome
and the leading cause of infection‐associated death.
Based on data from seven high‐income countries, it is
estimated that 31.5 million cases of sepsis occur globally
each year, with a mortality rate of 17% for hospitalized
sepsis and 26% for severe sepsis.1 The COVID‐19 pan-
demic has caused a sudden and significant increase in
hospital admissions for pneumonia worldwide with more
than 100 million confirmed COVID‐19 cases and more
than 2 million associated deaths counted worldwide by
the end of January 2021.2 According to a large body of
clinical data, the leading causes of death in COVID‐19
are respiratory failure and sepsis. In fact, sepsis has been
observed in almost all COVID‐19 deaths.3–5 It is well
known that the prognosis of COVID‐19 is poor after it
has progressed to sepsis, so it is important to find a
sensitive and specific diagnostic tool for the early detec-
tion of sepsis in COVID‐19, which will help to limit
internal tissue and organ damage.6,7

Patients with severe COVID‐19 infections, as previ-
ously reported for sepsis, exhibit excessive inflammation
and cytokine storms.6,8 Immune inflammation serves as
a crucial link between COVID‐19 and sepsis.9,10 Proteo-
mics and sequencing tools offer the potential to identify
novel biomarkers and their role in various diseases.11 As
machine learning matures in bioinformatics applications,
it can unravel underlying mechanisms, potential bio-
markers, and therapeutic targets for a multitude of
diseases.12–14

Limited research exists on identifying diagnostic can-
didates and machine learning for COVID‐19 patients with
sepsis.14 Prior efforts have primarily focused on identifying
diagnostic biomarkers for sepsis or COVID‐19.15 However,
it remains unclear which patients will develop sepsis upon
detection of COVID‐19, making it imperative to investi-
gate early peripheral diagnostic biomarkers in COVID‐19
patients for prompt intervention.16 This study may
contribute to the identification of potential diagnostic
markers for sepsis in COVID‐19 patients.17 The datasets
of COVID‐19 and sepsis were retrieved from the GEO
database.18 DEGs were identified using LIMMA, fol-
lowed by the selection of module genes using
WGCNA.19 Subsequently, functional enrichment anal-
ysis, PPI network construction, machine learning

(RF and LASSO), ROC curve evaluation, validation of
external datasets, and immune infiltration were per-
formed to identify the key immune‐related diagnostic
biomarkers of COVID‐19 with sepsis.20,21

2 | MATERIAL AND METHODS

2.1 | Data source

Figure 1 shows the study flowchart. We downloaded two
datasets from the GEO (https://www.ncbi.nlm.nih.gov/
geo/) database: the COVID‐19 data set GSE171110 and
the sepsis data set GSE57065. Table 1 provides the
information, including microarray platform, sample
groups and numbers.

2.2 | Data processing and differentially
expressed gene screening

We generate the representation matrix, eliminate rows
containing more than 50% NA values, and columns with
more than 50% NA values, and then employ the R
package impute to fill in missing data via log2 transfor-
mation. Next, we set the criteria for identifying DEGs
using the Limma package, which involves |log2 Fold
change (FC)| > 1 and p‐value < .05.

2.3 | Weighted gene co‐expression key
gene and module selection

To identify potential genes associated with sepsis, we
employed WGCNA to investigate gene associations in 82
peripheral blood samples from sepsis patients and 25
peripheral blood samples from healthy controls. Firstly,
we determined the median absolute deviation (MAD) for
each gene and eliminated 50% of the genes with the
smallest MAD. Secondly, we filtered the DEGs expres-
sion matrix using the goodSamplesGenes function to
exclude unqualified genes and samples, followed by
constructing a scale‐free co‐expression network. Thirdly,
we calculated adjacency using a “soft” threshold (β)
derived from co‐expression similarity. Subsequently, we
converted adjacency into a topological overlap matrix
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(TOM) and assessed gene ratio and dissimilarity. The
fourth step involved detecting modules through hierar-
chical clustering and dynamic tree‐cutting functions.
Genes exhibiting similar expression profiles were
grouped into gene modules based on average linkage
hierarchical clustering with TOM‐based dissimilarity
metric, where a minimum gene group size of n = 300 was
applied for the gene dendrogram. Fifthly, module ei-
gengene dissimilarity was computed to select a cut line
for module dendrogram and merge several modules for

FIGURE 1 Flowchart of the study.

TABLE 1 Basic information on the GEO datasets used in the
study. (GSE171110 includes severe COVID‐19 patients, and
GSE57065 comprises 28 sepsis patients with three time points of
blood collection (30 min, 24 h, and 48 h post septic shock),
resulting in 82 samples).

GSE series Type Control COVID‐19 Platform

GSE171110 mRNA 10 44 GPL16791

Control Sepsis

GSE57065 mRNA 25 82 GPL570
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further investigation. Finally, the target genes were
subsequently identified by intersecting the key genes
identified through WGCNA screening with the DEGs.

2.4 | Functional enrichment analysis

The R package clusterProfiler was employed for con-
ducting GO analysis and KEGG analysis, with a signifi-
cance threshold of p< .05 to determine statistically
significant differences.22 The enrichment analysis results
were then visualized using the Sangerbox platform
(http://sangerbox.com/).

2.5 | PPI network construction and
gene screening

The interactions between protein‐coding genes were ex-
plored by constructing a PPI network using the String
database(https://cn.string-db.org/), with a minimum
interaction score threshold set at 0.400{Fang, 2023 #404}.
The images obtained from String were further refined
using Cytoscape software, and significant interacting
genes were identified utilizing the MCODE plug‐in.

2.6 | Machine learning

The LASSO regression technique was employed as a variable
selection and regularization method to enhance the predic-
tive accuracy and interpretability of statistical models,
thereby facilitating the screening of candidate genes for
sepsis diagnosis. Additionally, the RF method, which com-
bines ensemble learning algorithms with machine learning
techniques, was utilized due to its ability to predict contin-
uous variables without being constrained by variational
conditions or requiring significance testing.23 In this study,
we performed LASSO regression analysis using the R
package. Additionally, RF analysis was conducted using the
publicly available platform Wekemo Bioincloud (https://
bioincloud.tech/).23 The intersection of genes identified by
both LASSO and RF approaches were considered as poten-
tial hub genes in sepsis diagnosis.

2.7 | Receiver operating characteristic
evaluation

We utilized the R package pROC (version 1.17.0.1) to
establish the ROC for evaluating the diagnostic efficacy
of candidate genes, and quantitatively measured its value

by calculating the area under the curve (AUC) along with
its 95% confidence interval (CI). The AUC greater than
0.9 was considered as the optimal diagnostic index.

2.8 | Validation of hub gene expression

The GSE28750 data set, that contains 10 sepsis patients
and 20 healthy control samples, was used to verify the
expression levels of the key genes in this study. Wilcoxon
test was used to compare the data between the two
groups. A comparison between the two datasets was
conducted using the Wilcoxon test. A p value < .05 was
deemed significant.

2.9 | Immune infiltration analysis

Immune cell infiltration analysis was conducted using
the “Cibersort” R package, and Spearman correlation
analysis was employed to determine the correlation
between the five hub genes and immune cells, unveiling
the interrelation between these genes and immune cells.

3 | RESULTS

3.1 | Identification of differentially
expressed genes

A total of 3,438 DEGs were identified in the COVID‐19
data set using the Limma method, with 1,872 were up-
regulated and 1,566 downregulated DEGs. The DEGs
from the COVID‐19 datasets were utilized to generate a
heatmap and volcano map (Figure 2A, B). In the sepsis
data set, we screened 769 DEGs (351 upregulated and 418
downregulated) (Figure 3A, B).

3.2 | WGCNA and key module
identification

The most correlated module in sepsis was identified
using WGCNA. A “soft” threshold of β= 6 (scale‐free
R2 = 0.88) was chosen based on scale independence and
average connectivity. In Figure 3C with different colors
to describe different gene expression of the tree. The
correlation between sepsis and gene co‐expression mod-
ules is illustrated in Figure 3D, and the turquoise module
(consisting of 3,289 genes) exhibiting the highest corre-
lation with sepsis (correlation coefficient =−0.88, p = 2.0
* 10−36), thus considered as the central module for
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further analysis. Furthermore, a strong correlation
(r = .94) between module membership and gene signifi-
cance within the turquoise module for sepsis was cal-
culated, indicating that the genes most significantly
associated with sepsis were located within this particular
module.

3.3 | Analysis of the functional
enrichment of sepsis

To assess the relevance of the GSE57065 data set in
representing sepsis, we conducted functional enrichment
analysis by intersecting genes identified through LIMMA
and WGCNA module genes. Through this intersection, a
total of 595 common genes were identified from the
overlap between 769 DEGs and 3,289 genes in the tur-
quoise module (Figure 4A).

The KEGG analysis revealed that the common genes
were predominantly enriched in the “Hematopoietic cell
lineage” and “Th1 and Th2 cell differentiation” pathways
(Figure 4B). GO analysis demonstrated that for BP, these
genes were primarily enriched in “immune system pro-
cess” and “immune response” (Figure 4C). In terms of
CC, the genes were mainly enriched in the “en-
domembrane system” and “vesicle” (Figure 4D). Fur-
thermore, for MF, the genes were mostly enriched in
“molecular transducer activity” and “signaling receptor
activity” (Figure 4E).

Enrichment analysis revealed that the genes
associated with sepsis were predominantly linked to
immune and inflammatory responses, indicating a
strong correlation between these processes and the
processes and the pathogenesis of sepsis. These find-
ings establish a reliable foundation for subsequent
analysis of COVID‐19.

FIGURE 2 (A) Heatmap of DEGs in GSE171110. (B) Volcanic plot of DEGs in GSE171110.
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FIGURE 3 The DEGs in sepsis were identified using the Limma, while the module genes were identified through WGCNA. The
heatmap (A) and volcano (B) presented the expression of DEGs in GSE57065.β= 6 is selected as the soft threshold with the combined
analysis of scale independence and average connectivity. (C) The gene tree depicts distinct gene co‐expression modules, each represented by
a unique color. (D) Heatmap of the association between modules and sepsis. Turquoise modules were significantly associated with sepsis.
(E) The correlation plot depicts the relationship between module membership and gene significance of genes that are encompassed within
the turquoise module.
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3.4 | Enrichment analysis of COVID‐19
patients with sepsis, construction of PPI
network and identification of key genes

To further investigate the potential relationship between
sepsis‐associated key genes and COVID‐19, we identified
329 genes from the intersection of DEGs in COVID‐19
and sepsis candidate genes (CGs), as visualized by a
Venn diagram (Figure 5A). The KEGG enrichment
analysis revealed that these 329 genes were primarily
enriched in pathways related to “Hematopoietic cell
lineage,” “Th1 and Th2 cell differentiation,” and “Th17
cell differentiation”; all of which are closely associated

with immune system function (Figure 5D). Furthermore,
GO analysis demonstrated enrichment in BP such as
“immune system process,” “immune response，” and
“cell activation” (BP); CC including “cytoplasmic vesi-
cle,” “intracellular vesicle,” and “cytoplasmic vesicle
part” (CC); as well as MF like “signaling receptor activ-
ity,” “molecular transducer activity,” and “transmem-
brane signaling receptor activity” (MF) (Figure 5E‐G).

After establishing the intimate association of the
screened genes with immunity, we constructed a PPI
network to identify interacting node genes for subse-
quent machine learning‐based filtration. Figure 5B
depicts the presence of 33 interacting genes in the PPI

FIGURE 4 Enrichment analysis of the intersection of genes in sepsis. (A) A Venn diagram illustrating the overlap between DEGs and
genes belonging to the turquoise module in WGCNA for sepsis. (B) KEGG pathway analysis of the intersection of genes. (C–E) GO analysis
of the intersection of genes, including biological process (BP), cellular component (CC), and molecular function (MF), respectively.
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network, while Figure 5C hierarchically ranks these
genes based on their node numbers.

3.5 | Machine learning identification of
candidate hub genes

LASSO regression machine learning algorithm was used
to screen 33 interacting genes in the PPI network for
diagnostic value evaluation. Eight candidate genes with
potential were identified by the LASSO, as depicted in
Figure 6A and B. Subsequently, the RF algorithm ranked
the genes based on their respective importance levels
(Figure 6C).23 By utilizing a Venn diagram, we observed
an overlap between the top 10 most important genes
identified by RF and the 8 potential candidate genes
identified by LASSO. Consequently, six genes (CD3D,
GZMA, IL2RB, KLRC1, CD5 and HLA‐DQA1) were

selected for further validation. Additionally, it was noted
that these six genes exhibit interactions with each other
through intermediate molecules.

3.6 | Diagnostic value assessment

ROC curves were constructed based on six candidate
central genes to assess diagnostic specificity and
sensitivity for each gene. We calculated the AUC and
95% confidence interval for each project. The results
are as follows: CD3D (AUC 0.90, CI 0.85 ‐−0.96),
GZMA (AUC 0.88, CI 0.81 ‐−0.95), IL2RB (AUC 1.0,
CI 0.99 ‐−1.00), KLRC1 (AUC 0.96, CI 0.92–0.99),
CD5 (AUC 1.00, CI 1.00–1.00), and HLA‐DQA1 (AUC
0.96, CI 0.93–1.000) (Figure 7A‐F). The candidate
genes exhibit high diagnostic potential for COVID‐19
in conjunction with sepsis.

FIGURE 5 Enrichment analysis was performed to identify CGs between COVID‐19 and sepsis, followed by the identification of key
node genes from the PPI network. (A) Venn diagram. (B) The most prominent modules in the PPI network are visualized using the MCODE
plug‐in. (C) The column presents the gene nodes of 33 genes in PPI network. (D) KEGG analysis of 329 CGs. (E–G) GO analysis (BP, CC
and MF).
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3.7 | Hub gene validation

We utilized the external data set GSE28750 to further
validate genes potentially associated with the concurrent
presence of COVID‐19 and sepsis. Subsequently, we
selected five genes (CD3D, IL2RB, KLRC1，CD5 and
HLA‐DQA1) with an AUC exceeding 0.9 for subsequent
validation. The expression levels of five hub genes were
found to be lower in sepsis patients compared to healthy
controls (Figure 8).

3.8 | Immune infiltration analysis

In our study, we noted that the genes associated with
COVID‐19 may be associated with the immune regula-
tion of sepsis. Thus, immune cell infiltration analysis
could better elucidate the relationship between the five
key genes and immune cells.

A detailed analysis of the relationship between five
key genes and immune cells was conducted using the
“Cibersort” R package and Spearman correlation analy-
sis. As depicted in Figure 9A, the five hub genes were
predominantly associated with CD8T cells, NK‐resting
cells, and M0 macrophages in the sepsis sample
GSE57065. Compared to healthy controls, in COVID‐19,
the core gene CD3D demonstrated a positive correlation
with CD8T cells, IL2RB exhibited a positive correlation
with NK resting cells, KLRC1 exhibited a negative

correlation with M0 macrophages, CD5 revealed a posi-
tive correlation with CD4T cells, and HLA‐DQA1 dis-
played a negative correlation with M0 macrophages.

4 | DISCUSSION

Sepsis is a grave public health challenge and the pri-
mary cause of mortality in intensive care units.
Recent investigations have unearthed several novel
biomarkers for the diagnosis of sepsis, including
Urokinase plasminogen activator receptor, Pro‐
adrenomedullin, and CD64. However, few studies
have investigated the interaction between sepsis and
COVID‐19. In this research, we implemented an array
of integrated bioinformatics analyses and machine‐
learning techniques to assess the diagnostic potential
of sepsis in COVID‐19 patients. Five key candidate
genes (CD3D, IL2RB, KLRC1，CD5 and HLA‐DQA1)
were validated using external datasets.

All data samples utilized in this study were derived
from peripheral blood specimens. Hence, by specifically
procuring peripheral blood samples from COVID‐19 pa-
tients and evaluating the expression of five immune‐
related genes, we can effectively infer the probability of
sepsis in these individuals. The utilization of peripheral
blood assays for diagnosing various diseases has gained
widespread acceptance, exemplifying a pragmatic and
efficient clinical approach.

FIGURE 6 Machine learning LASSO screening was employed to identify candidate diagnostic genes for COVID‐19 with sepsis (A, B).
The Random Forest algorithm was then utilized based on importance score ranking (C). Additionally, a Venn diagram demonstrated that
the two algorithms collectively identified six potential diagnostic genes (D).
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T lymphocytes execute a vital function in the adaptive
immune response by acknowledging antigens derived
from pathogens. CD3D encodes proteins involved in
T‐cell development and signaling. The results of gene

expression profiling studies conducted on 74 patients
undergoing sepsis surgery revealed a negative correlation
between CD3D and both Sepsis‐related Organ Failure
scores and sepsis mortality.24 Deficiency of CD3D may

FIGURE 7 ROC curves for each candidate gene.

FIGURE 8 Hub Gene Validation. The boxplot analysis revealed that the expression levels of CD3D, IL2RB, KLRC1，CD5 and HLA‐
DQA1 exhibited a significant decrease in GSE28750.

10 of 14 | LI ET AL.



contribute to immune damage.25 In a case‐control study
examining 23 inflammation‐related genes, the combina-
tion of CD3D, TNF, and IL1B demonstrated notable
specificity, yielding a negative predictive value of 98.1%.26

IL2RB is involved in T cell‐mediated immune
response as a protein‐coding gene. RNA sequencing
findings demonstrated a downregulation of IL2RB ex-
pression in sepsis, which was significantly associated

FIGURE 9 Association between the hub genes and immune infiltration. (A) In GSE57065, a positive correlation between the hub gene
and the level of immune cell infiltration is observed in the red group, while a negative correlation is noted in the blue group. (B) Correlation
results between the hub gene and GSE171110 immune cell infiltration are presented.
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with the prognosis of the condition.24,27,28 The cell
transfection experiment demonstrated that IL2RB has
the potential to enhance the balance between Th1 and
Th2 responses in sepsis‐induced immune dysfunction.28

The inhibition of IL2RB has been demonstrated to miti-
gate acute lung injury in septic mice.29 Potential thera-
peutic targeting of IL2RB appears to offer a promising
approach for sepsis treatment.

KLRC1, as a family of killer cell lectin‐like receptors,
is a transmembrane protein predominantly expressed
in NK cells, mediating lysis of certain tumor cells and
virus‐infected cells. KLRC1 is primarily engaged in cell
depletion and functions as an immunosuppressive
checkpoint within the tumor microenvironment, poten-
tially leading to the impairment of NK cell and tumor‐
specific T cell functionality.30 To date, there is limited
research on sepsis, necessitating further investigation to
elucidate.

CD5 is extensively expressed on the surface of thy-
mocytes, T lymphocytes, and B lymphocyte subsets, and
it is implicated in the regulation of T cell activation, as
well as modulating TCR signaling. The level of soluble
CD5 lymphocyte surface receptor is positively correlated
with the SOFA score, and a higher mortality rate is
observed in ICU patients when the concentration of
soluble CD5 lymphocyte surface receptor exceeds
1500 ng/ml.31 Another study found that a soluble form of
the CD5 lymphocyte surface receptor not only binds but
aggregates fungal cells, which may prevent pathogen
transmission and facilitate pathogen clearance.32 In
consequence, the soluble form of the CD5 lymphocyte
surface receptor appears to hold greater relevance in
fungal infection.32

HLA‐DQA1 performs a crucial function in the
immune system by presenting extracellular protein pep-
tides.33 In the analysis of multiple gene expression
profiles, HLA‐DQA1 demonstrated a high predictive
performance with an AUC> 0.95, and the HLA classifier
emerged as an independent prognostic predictor. The
results from qRT‐PCR also confirmed a lower expression
level of HLA‐DQA1 in sepsis.34 Previous studies have
demonstrated that low‐risk HLA subgroups exhibit rel-
atively preserved immune function and reduced mortal-
ity, whereas high‐risk HLA subgroups exhibit impaired
immune function and elevated mortality. The application
of HLA classifier‐based treatment guidelines may
potentially yield benefits for sepsis patients.35 As a
member of the HLA class II, mHLA‐DQ has emerged as a
robust biomarker for evaluating immune suppression,
and it is extensively employed to orientate im-
munomodulatory treatment.36 HLA‐DQA1 can effec-
tively respond to immunity and is expected to be a
diagnostic target for sepsis in COVID‐19.

Our study has certain limitations. Firstly, although
additional datasets were incorporated to validate the
diagnostic value, there is a lack of subsequent experi-
mental validation. Secondly, one limitation of this study
is the lack of a specific data set of COVID‐19 patients
who progressed to sepsis versus those who did not. As a
result, the findings are based on the intersection of sig-
nificantly expressed genes in independently analyzed
sepsis and COVID‐19 datasets, which limits our ability
to make direct conclusions about sepsis progression in
COVID‐19 patients. Another limitation is that while we
independently analyzed sepsis and COVID‐19 datasets to
identify common immune dysregulation pathways, this
approach does not directly predict COVID‐19 patients at
risk of sepsis. Additionally, the validation cohort used
was specific to sepsis and not COVID‐19, which may
limit the applicability of the findings to COVID‐
19‐related sepsis. Moreover, we did not explore whether
the incidence of sepsis‐related deaths in COVID‐19 has
plateaued or decreased over time. This is a crucial area of
investigation that was outside the scope of this study but
would provide valuable insight into the current state of
sepsis in COVID‐19. Lastly, it is crucial to emphasize the
significance of exploring causality and integrating
machine learning for accurate biomarker prediction.37,38

5 | CONCLUSION

CD3D, CD5, HLA‐DQA1, IL2RB, and KLRC1 were
diagnostic candidate genes for Covid‐19 patients with
sepsis.
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