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TBnet and RESIST-TB networks

Abstract

Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based 

methods being considered the gold standard for drug susceptibility testing, molecular methods 

provide rapid information about the Mycobacterium tuberculosis mutations associated with 

resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of 

a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting 

standards for the clinical use of molecular drug susceptibility testing. Review and the search 

for evidence included hand-searching journals and searching electronic databases. The panel 

identified studies that linked mutations in genomic regions of M tuberculosis with treatment 

outcome data. Implementation of molecular testing for the prediction of drug resistance in M 
tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical 

management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially 

in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary 
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team including clinicians, microbiologists, and laboratory scientists reached a consensus on key 

questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, 
and their implications for clinical practice. This consensus document should help clinicians in 

the management of patients with tuberculosis, providing guidance for the design of treatment 

regimens and optimising outcomes.

Introduction

According to the latest estimates by WHO1, tuberculosis affected 10·6 million people 

and caused 1·6 million deaths in 2021. That these deaths continue to occur despite the 

availability of curative antimicrobial regimens is a testimony to the difficulty of diagnosing 

disease and designing, administering, and monitoring tuberculosis treatment. The rise of 

tuberculosis resistance to isoniazid and rifampicin has seriously complicated treatment for 

the estimated 450 000 people each year who develop disease resistance to these first-line 

antimycobacterial agents.1 Definitions of resistance, including multidrug-resistant (MDR) 

and extensively drug-resistant (XDR) tuberculosis are shown in table 1.

Development of three essential capacities regarding tuberculosis treatment will be needed 

to bring the disease under control while minimising the emergence of resistance to 

currently available agents: optimising regimen composition, optimising regimen duration, 

and minimising toxicity from the components of the regimen. This consensus statement is 

directed at advancing the understanding of the first of these, namely optimising regimen 

composition.

Despite the attractiveness of a one-size-fits-all regimen strategy, having a single regimen 

that can be used for all patients with drug-resistant tuberculosis is difficult for several 

reasons. First, there will always be patients who cannot tolerate the usual agents and will 

need to have individualised regimens that address their intolerance. Second, development 

of resistance to the new agents, although hopefully minimised, can never be completely 

prevented; thus, some patients will require treatment with regimens that do not contain 

some of the more effective agents as the organisms causing their disease will be resistant 

to these agents. Third, in some patients, the use of concomitant medications, such as 

antiretroviral agents, will preclude the use of certain antimycobacterial compounds because 

of drug–drug interactions. Finally, compensatory mutations and epistasis render resistant 

clinical strains differentially susceptible to different second-line agents. Thus, prompt and 

accurate identification of the susceptibility pattern of a patient’s Mycobacterium tuberculosis 
infecting strain is essential.

For many decades, M tuberculosis susceptibility testing has been done in specialised 

laboratories with culture-based methods. These methods are limited by the slow growth 

of the organisms, such that results are not available for many weeks after disease 

detection. This delay leads to uncertainty for clinicians during the first weeks of 

treatment, a crucial time period for getting the disease under control and preventing 

further tuberculosis transmission. Fortunately, some developments in rapid sequencing and 

molecular identification of critical resistance mutations have led to the ability to predict 
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drug susceptibility or resistance within hours to days after diagnosis with high diagnostic 

accuracy.4,5

We summarise progress made in developing tools to enable rapid identification of resistance 

to the agents used in tuberculosis treatment. As such, we update our consensus statement on 

this topic from 2016, with the substantial progress that has been made since publication.6 

Taken together, we believe that this updated consensus provides important and clinically 

useful guidance to aid the design of effective tuberculosis treatment regimens and to ensure 

optimal therapy outcomes.

Methods

This document has been produced by physicians, microbiologists, molecular biologists, 

and clinical epidemiologists of the TBnet (http://www.tbnet.eu) and RESIST-TB (http://

www.resisttb.org) networks to reach a consensus in reporting standards in the clinical use of 

M tuberculosis molecular drug susceptibility testing (DST) results. Chapter leaders reviewed 

the available literature, and the targeted search for evidence included hand-searching 

journals and searching electronic databases including MEDLINE and PubMed. The search 

targeted articles published in English, before June 1, 2022, related to the evolution of drug 

resistance in clinical isolates, principles of phenotypic and genotypic drug resistance testing, 

and the impact of mutations detected by genotypic tests on phenotypic DST and clinical 

outcomes. In addition, relevant documents published by WHO were included. Consensus 

statements were developed in a stepwise approach, as previously described (panel 1).6–10

Evolution of drug resistance in clinical M tuberculosis isolates

M tuberculosis bacteria are continuing to develop resistance to both old and new drugs 

via spontaneous mutations of the bacterial chromosome.11 Mutations include mostly single-

nucleotide polymorphisms, but insertions and deletions can also occur. Horizontal gene 

transfer (eg, mediated by plasmids) has no role in the evolution of drug resistance in M 
tuberculosis.12 The most common drug resistance mechanisms comprise the modification of 

the drug target itself, increased expression of the drug target, downregulation or abrogation 

of prodrug-activating enzymes, upregulation of drug efflux pumps, altered permeability, 

and phase variation.12,13 The probability of acquiring drug resistance through spontaneous 

mutations and selection depends on the antibiotic (eg, the estimated frequency for rifampicin 

is 10−8, and 10−6 for isoniazid).14 Moreover, studies suggest that mutation rates can differ 

between strains of different M tuberculosis lineages, which influences the probability of 

acquiring drug-resistant mutations.15–17

When suboptimal treatment regimens are used, drug-resistant M tuberculosis subpopulations 

can be selected in a patient.18–21 The main reasons for ineffective therapy include improper 

intake of drug regimens, addition of single drugs to ineffective treatment regimens, 

inadequate drug supplies, quality of the anti-tuberculosis drugs, individual differences in 

pharmacokinetics and pharmacodynamics,22 intrinsic strain differences, drug tolerance, 

and low-level resistance.23,24 Some research highlights the heterogeneity of antibiotic 

concentrations within the tuberculous granuloma.25 A lack of granuloma vascularisation and 
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diffusion barriers towards necrotic foci can lead to drastically altered pharmacodynamics 

and pharmacokinetic correlations of individual antibiotics as compared with blood plasma 

measurements.25,26 The resulting heterogeneity of granuloma micro-environments in a 

single patient probably drives the microevolution of M tuberculosis subpopulations, which 

can harbour different drug resistance mutations and can coexist in separate lesions.27–29 

This intrapatient M tuberculosis diversity also influences the performance of drug resistance 

assays, and should therefore be considered in routine diagnostics and treatment.29–31

Diagnostic delays and misdiagnosis of patients with MDR tuberculosis can further amplify 

the evolution of resistance and virulence determinants in M tuberculosis strains.32–34 

Outbreaks of drug-resistant strains have been observed in different settings globally,35–37 

suggesting that these strains have few or no fitness costs, challenging the previous dogma 

of a transmission detriment of MDR M tuberculosis strains. However, no-cost or low-cost 

resistance mutations dearly exist, and secondary mutations can occur that compensate for 

the initial fitness defect of resistant mutants.38–40 This molecular interaction is an example 

of epistasis, and might also influence antibiotic resistance and compensatory evolution 

in strains of different M tuberculosis lineages.41,42 In multiple studies, compensatory 

mechanisms were suggested to be associated with an increased transmission risk, eventually 

leading to the expansion of MDR clones in different areas worldwide.35–37,43

Principles of phenotypic drug resistance testing

Mycobacterial phenotypic DST assesses the ability of the organism to grow in the presence 

of the antibiotic. The various phenotypic DST methods are detailed elsewhere.44–46 The 

commonly used proportion method relies on the premise that if more than 1% of the 

organisms in a given population is resistant to the critical concentration of a drug, 

the population is defined as being resistant. These critical concentrations separate the 

susceptible populations from resistant ones, and are specific to the phenotypic DST method 

and media.

Mycobacterial phenotypic DST is technically difficult, and its interpretation is challenged 

by the molecular assays’ detection of resistance mutations. Laboratory errors occur, and 

appropriate quality-management systems and proficiency testing are vital.46–48 Phenotypic 

DST accuracy is also influenced by the prevalence of resistant strains and the level of 

this resistance. In settings where low-level resistant strains prevail, phenotypic DST can 

correlate less well with clinical outcomes, in contrast to settings where high-level resistance 

is common.49 In isolates with low-level resistance, high doses of drugs such as rifampicin, 

isoniazid, and fluoroquinolones can be clinically effective.50

Two systematic reviews of the evidence supporting critical concentrations in phenotypic 

DST testing were done by WHO.51,52 Although many of the current critical concentrations 

were reaffirmed, important changes were proposed, most notably that the critical 

concentration of rifampicin for testing on solid 7H10 medium and in Mycobacteria Growth 

Indicator Tube medium (Becton Dickinson, Franklin Lakes, NJ, USA) be lowered from 1 

mg/L to 0·5 mg/L. WHO also introduced clinical breakpoints for moxifloxacin. Clinical 

breakpoints are the concentrations delineating strains that might still respond to therapy 
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with higher doses of the agent. The Clinical and Laboratory Standards Institute also defined 

clinical breakpoints for isoniazid.45 Other important observations include few exploitable 

published data for critical concentrations of newer drugs such as bedaquiline;53–55 and 

scarce data about reproducibility for these newer drugs. As more data become available, 

critical concentrations will need to be re-evaluated.

The reduced critical concentration of rifampicin could enable the detection of borderline 

mutations in the rpoB gene, which are considered to be of clinical relevance but only result 

in modest minimum inhibitory concentration increase. This reduced critical concentration 

of rifampicin would only reduce rather than eliminate the discordance between genotype 

and phenotype. Minimum inhibitory concentration distributions of bacterial populations with 

low-level resistance phenotypes might overlap with the minimum inhibitory concentration 

distributions of wild-type isolates, resulting in poor reproducibility of categorical phenotypic 

DST. This overlap could be also the case for other drugs like bedaquiline and levofloxadn 

(see section on molecular testing).

Although the use of critical concentrations to distinguish susceptible isolates from non-

susceptible isolates is appealing as it is well standardised, more granular phenotypic 

DST data (such as minimum inhibitory concentrations with broth microdilution) could 

facilitate better understanding of the correlation between phenotypic DST, genotype, and 

treatment outcome—especially if associated with pharmacokinetic and pharmacodynamics 

data. Hence, quantitative drug susceptibility measures need to be implemented in diagnostic 

mycobacteriology.56,57 The first objective of the newly formed European Committee 

on Antimicrobial Susceptibility Testing subcommittee on antimycobacterial susceptibility 

testing (EUCAST-AMST) was to set a reference method for minimum inhibitory 

concentration determination of M tuberculosis. This standardised method58,59 will be 

used for both new and old anti-tuberculosis drugs to assess epidemiological cutoffs. This 

method will allow new compounds to be evaluated and compared, and will offer a basis 

for calibrating phenotypic DST methods used in the field, commertial or not, against 

a standard reference method.60 In addition, the CRyPTIC Consortium61 presented the 

epidemiological cutoffs for 13 anti-tuberculosis compounds, including bedaquiline and 

delamanid, from clinical isolates collected worldwide, for a more widespread adoption 

of the broth microdilution test. Finally, a 2022 WHO document provided a standardised 

methodology to facilitate the improvement of the broth microdilution plate method for 

clinical use, which represents a promising solution for comprehensive and quality-assured 

phenotypic DST.62

Principles of genotypic DST

The fundamental principle of genotypic DST is to predict phenotypic resistance on the basis 

of genotype (ie, the genetic variants detected). Drug resistance in M tuberculosis strains is 

due to variations of their genome (either single-nucleotide polymorphisms or insertions and 

deletions) mapping to spedfic genetic loci.63 Silent mutations are usually not responsible 

for resistance, with few documented exceptions.64 Importantly, not all mutations found at 

the genetic loci involved in drug resistance are responsible for a resistant phenotype, as 

phylogenetic markers and neutral polymorphisms can also be located in these regions.65–69 
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Whereas for several anti-tuberculosis drugs the association between sequence variations and 

phenotypic resistance development is well documented, our knowledge remains incomplete 

for others.63 The frequency of resistance mutations observed in clinical M tuberculosis 
strains varies by resistance genes, local epidemiology, and M tuberculosis population 

structure in different geographical settings.70,71 Generally, drug resistance in M tuberculosis 
is emerging at strain level, but there are a few exceptions where intrinsic resistance is found 

in strains of a specific phylogenetic clade.65,72,73

In the past 15 years, rapid commercial genotypic DST assays have become available 

to detect drug resistance in clinical M tuberculosis strains by interrogating the presence 

of known resistance-conferring variants (table 2).5,75–80 Performance of these genotypic 

DST tests, and implications for their use in different application scenarios are outlined 

in WHO guidelines.81,82 The line probe assay GenoType MTBDRsl VER 2.0 (HAIN 

Lifescience/Bruker, Nehren, Germany) and the cartridge-based Xpert MTB/XDR (Cepheid, 

Sunnyvale, CA, USA) are the only assays currently endorsed for the detection of resistance 

to fluoroquinolones, thus allowing the identification of pre-extensively drug-resistant (pre-

XDR) tuberculosis according to the updated definition.3,82,83 Of note, the line probe assay 

Nipro Genoscholar PZA-TB II (Nipro Corporation, Osaka, Japan) is able to detect pncA 
mutations associated with pyrazinamide resistance.82,84,85

Knowledge about the genetic basis of resistance to new or repurposed drugs such as 

bedaquiline, linezolid, clofazimine, and delamanid remains poor, as is our capability for 

phenotypic DST.86–88 No rapid molecular commercial assay exists for these drugs, and 

genotypic DST can be done by sequencing technologies only. In this context, the targeted 

sequencing assay Deeplex Myc-TB (Genoscreen, Lille, France) is able to provide genotypic 

DST for 13 drugs, including linezolid, bedaquiline, and clofazimine, by targeting the 

full sequences of 18 loci associated with drug resistance.89,90 Preliminary studies show 

that, directly from clinical specimens, Deeplex Myc-TB can frequently be successful, 

reporting complete resistance predictions in sputum samples with acid-fast bacilli visible 

on microscopy.89–91 Similar targeted next-generation sequencing approaches exist; however, 

they are not yet targeting new or repurposed drugs (Next Gen-RDST,92 AmpliSeq TB93). 

Compared with whole-genome sequencing, targeted next-generation sequencing has the 

potential to decentralise sequencing-based genotypic DST for individual patient care, 

especially if coupled with versatile technological and bioinformatic platforms.31,91,94–96 The 

different genotypic DST assays have varied turnaround times, ranging from 1 working day 

for Xpert and line probe assay under optimal conditions, to 7–10 working days for targeted 

next-generation sequencing under operational conditions, when applied to clinical specimens 

(table 3).

Notably, the technical success with a specimen depends on the number of bacilli, as a low 

inoculum increases the risk of technical failure. When genotypic DST assays are applied to 

a positive culture, the probability of obtaining a result increases, but so does the turnaround 

time.

Current genotypic DST assays cannot be used for treatment monitoring as they detect DNA 

from both live and dead bacteria, thus a positive result does not imply the viability of the 
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pathogen.97 Similarly, the detection of heteroresistance in clinical specimens by the use 

of WHO-endorsed rapid molecular tests vary from below 10% to above 75%, depending 

on the assay and target considered.83,98,99 By contrast, targeted next-generation sequencing 

assays allow for the detection of even minor subpopulations due to the high coverage 

they provide.89,100,101 A cost evaluation of the workflow of whole-genome sequencing in 

eight laboratories in Europe and North America calculated the costs to be 7% cheaper 

than phenotypic DST.102 In settings with a low tuberculosis burden, the routine use of 

Xpert shortened the time to tuberculosis diagnosis and treatment, whereas whole-genome 

sequencing shortened the time to DST and treatment modification when necessary, reducing 

treatment and hospitalisation costs. The combined use of these two methods was the most 

cost-effective option and allowed for faster appropriate treatment, and this subsequently 

reduces transmission, benefiting health, and reducing future treatment costs.103 In India, 

molecular tests used in the diagnosis of MDR-tuberculosis, such as line probe assays and 

Xpert, were reported to have considerable advantages for the programmatic management 

of drug-resistant tuberculosis, including speed, standardisation of testing, potentially high 

throughput, and reduced laboratory biosafety requirements. They also appeared to be cost 

effective and helped in detecting missing cases.104 Cost-effectiveness studies of sequencing 

tests in low-income settings with high tuberculosis burden are needed.

In 2022, a budget impact analysis was done to estimate the costs of introduction and 

routine use of next-generation sequencing in the National Tuberculosis Programme of 

Moldova, a country with a high burden of MDR tuberculosis.105 According to the model, 

next-generation sequencing adoption would require expanded resources compared with 

conventional phenotypic DST. We are convinced that despite these initial investments, DST 

strategies using next-generation sequencing will also prove to be cost-effective. However, 

much needs to be done for the implementation of molecular DST, especially in countries 

of high tuberculosis burden. A recent study by the TBnet106 documented substantial gaps 

in the availability of genotypic DST for anti-tuberculosis drugs in the European Region of 

WHO. These results are especially worrisome in view of the roll-out of the BPaLM regimen 

(a combination of bedaquiline, pretomanid, linezolid, and moxifloxacin), as many countries 

currently have no capacity for DST of key components of this regimen.

Relationship between results of genotypic and phenotypic drug resistance 

testing and clinical outcomes

There are different ways to study the clinical implications of drug resistance mutations. 

The simplest one is to show that in a case of treatment failure, there is associated 

drug resistance either phenotypically (ie, minimum inhibitory concentration increase) or 

genotypically (ie, appearance of a mutation) at the time of tuberculosis diagnosis. This 

technique was used in the 1960s to show that the phenotypic proportion method correctly 

identified strains associated with treatment failure.107 It was also initially used to show that 

rifampicin resistance was associated with rpoB mutations.108 For some genes (table 4), such 

a correlation has been shown.
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However, for clinical use, the question is not only whether the mutation correctly identifies 

a strain with an elevated minimum inhibitory concentration, but also whether this mutation 

is associated with treatment failure, thus prompting the clinician to consider a change in 

the treatment regimen. Given that tuberculosis treatment relies on drug combinations, this 

second demonstration requires that the antibiotic showing a resistant phenotype associated 

with the mutation has an important impact on the outcome of the drug combination. This 

second demonstration is true for both drug-susceptible tuberculosis treatment regimens and 

MDR or rifampicin-resistant tuberculosis regimens, as shown in WHO’s meta-analysis that 

indicated not all second-line drugs have the same impact on treatment outcome.136 Hence, 

the drug resistance mutations that will have a strong effect on treatment outcome are those 

modulating the most effective antibiotics. Another factor to consider is the differential 

impact of mutations on the minimum inhibitory concentration as highlighted previously. 

Again, the probability of showing a differential impact on treatment outcome will depend 

on both the mutation-specific minimum inhibitory concentration effect and on the intrinsic 

activity of the drug. The more effective or mycobactericidal the drug, and the higher the 

impact of the mutation on the minimum inhibitory concentration, the more likely the effect 

on treatment outcome. We have reviewed studies linking the treatment outcome with the 

presence of a drug mutation (table 4). Of note, the lack of a clinical impact is by no means 

conclusive; it might only mean that although the mutation reduces the activity of the drug, 

other drugs in the regimen could facilitate clinical cure. The relationship between mutations 

and their clinical implications are discussed within the context of each drug type or class.

Another notable benefit of the use of molecular DST is proper initial distinguishing of 

patients with tuberculosis according to detected resistance patterns. This benefit is extremely 

important in countries with high MDR and XDR tuberculosis burden, with poor capacity 

for airborne infection isolation in single-occupant hospital rooms. Taking into consideration 

molecular DST results can facilitate an optimal distribution of isolation wards and prevent 

nosocomial transmission of drug-resistant M tuberculosis strains, even when it has low 

relevance in treatment decisions.

For isoniazid, katG 315 mutations have a higher negative impact on first-line treatment 

outcome than inhA mutations. Although not analysed in the meta-analysis of individual 

patient data due to low numbers in the dataset,137 and not listed as a group C drug 

in recent WHO guidance138, high-dose isoniazid is still used in children, in patients in 

whom an effective regimen cannot otherwise be constructed (due to lack of drug access, 

adverse events, resistance to other agents, etc), and in patients with low-level resistance 

predicted by inhA mutations and other mutations in katG.118,139 Although high-dose 

isoniazid is still being used as part of an all-oral 9-month bedaquiline-based MDR or 

rifampicin-resistant tuberculosis regimen in countries like South Africa, and as part of the 

9–11-month injectable-based regimen140,141 previously endorsed by WHO in 2019 and 2020 

guidance,80,138 this regimen will soon be replaced by alternative 6-month pan-oral regimens 

like BPaLM.142

For rifampicin, more than 20 mutations in rpoB could have a negative effect on first-line 

treatment outcome, such as the Ile491Phe mutation found in Eswatini. As approximately 

5% of mutations fall outside of the rpoB gene hotspot region, repeat genotypic or 
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phenotypic susceptibility testing should be considered in patients with genotypically 

rifampicin-susceptible tuberculosis who do not respond to rifampicin-based treatment at 2–3 

months. It is also important to consider nonadherence and the possibility of heteroresistance, 

and to check the adequacy ofblood rifampicin concentrations.143,144

For fluoroquinolones, the gyrA mutations Asp94Asn, Asp94Gly, Ala90Val, and Asp94Ala 

have a negative effect on MDR or rifampicin-resistant tuberculosis treatment outcome, 

and that effect is closely linked to the minimum inhibitory concentration generated by the 

associated mutation.119,126–130 Fluoroquinolone resistance implies pre-XDR tuberculosis. 

Results from the ZeNix trial145 suggest that successful treatment of MDR or rifampicin-

resistant tuberculosis can also be achieved in approximately 90% of patients treated for 

6 months with bedaquiline (200 mg twice per day for 14 days, and 200 mg thrice per 

week thereafter), pretomanid (200 mg once per day), and linezolid (600 mg once per day), 

without fluoroquinolones. With a conventional treatment regimen that does not include all of 

the three BPaL drugs, fluoroquinolone resistance is associated with a poorer prognosis.146 

Treatment outcomes in fluoroquinolone-resistant MDR or rifampicin-resistant tuberculosis 

can possibly (but presently unclearly) be improved without these three medicines, if 

additional group C medicines are added to have at least five active drugs in the treatment 

regimen. For ethionamide, multiple ethA mutations throughout the gene have a negative 

effect on MDR tuberculosis treatment outcome.119,126

For bedaquiline, data are scarce about primary or acquired resistance in clinical cohorts 

and its effect on outcomes. In South Africa, the proportion of patients with a successful 

outcome was 72% (794/1103) among those with bedaquiline susceptibility compared with 

57% (21/37) among those with bedaquiline resistance.123 However, we know that addition 

of bedaquiline to a background regimen, or when used in combination with other drugs, 

is associated with a reduction in mortality and improved outcomes.141,147 Thus, clinically 

significant resistance to bedaquiline would be expected to imply a worse prognosis. There 

are discrepant results regarding Rv0678 mutations and treatment outcome, probably due 

to the low minimum inhibitory concentration increase. Unfortunately, phenotypic testing is 

required to ascertain the presence of bedaquiline resistance, as high-confidence mutations 

in the atpE and Rv0678 genes are likely to predict less than 10% of phenotypically defined 

resistance.148 After considering phenotypical cross-resistance with clofazimine86,149 (which 

is quite frequent), a regimen containing four or five effective drugs would need to be 

constructed in patients with isolates resistant to bedaquiline.

For linezolid, rrl mutations 2814 g/t and 2270 g/t, and rplC mutation Cysl54Arg 

are associated with treatment failure. The high-confidence mutations currently predict 

approximately 75% of phenotypically defined resistance.86 Thus, the addition of such 

mutations to standardised molecular testing platforms would be useful. When linezolid 

resistance occurs in combination with fluoroquinolone resistance, it defines XDR 

tuberculosis, and the design of an appropriate individualised regimen is required.

Although the phase 3 delamanid trial150 did not show improved treatment outcomes, many 

authorities consider the drug useful for the treatment of patients with resistance beyond 

MDR or rifampicin-resistant tuberculosis. Mutations encoding drug resistance that predict 
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almost 90% of delamanid resistance involve six genes, and there is emerging evidence 

of acquired delamanid resistance.151 Incorporation of genotypic testing into standardised 

molecular platforms would be useful. Pretomanid is now part of recommended 6-month 

pan-oral regimens, but there are no clear cutoffs, and critical concentration is not yet 

defined for performing phenotypic DST.55 Nonetheless, a low proportion of phenotypically 

XDR tuberculosis isolates were found to be genotypically resistant to delamanid and 

pretomanid.149

For pyrazinamide, there are many mutations in pncA that can confer drug resistance. 

Mutations in pncA have been related to delayed sputum culture conversion; however, 

the effect on MDR or rifampicin-resistant tuberculosis treatment outcome has been 

variable.119,129,135 For ethambutol, embB mutations do not appear to have an effect on 

treatment outcomes for MDR or rifampicin-resistant tuberculosis.119

For injectables such as amikacin, kanamycin, and capreomycin, the most commonly 

detected mutations are rrs 1401 a/g, 1402 c/t, 1484 a/t, and eis −14 c/t. No mutations 

have been shown to have an effect on treatment outcomes for MDR or rifampicin-resistant 

tuberculosis, which is consistent with the meta-analysis that showed these drugs have 

poor activity against MDR or rifampicin-resistant tuberculosis.152 Nowadays, amikacin has 

little applicability but can still be widely used when access to bedaquiline and linezolid 

is restricted. It can also form part of the regimen in patients with XDR tuberculosis, or 

resistance beyond XDR tuberculosis when treatment options are scarce. Although an all-oral 

regimen is recommended by WHO,142 many patients in tuberculosis-endemic countries do 

not yet have access to such regimens, making such recommendations unrealistic.1,11

Thus, some mutations that compromise the activity of major drugs have an impact 

on treatment outcome. In this sense, a classification to stratify mutations in order of 

importance for regimen design and choice of drugs would be useful. For this, the CRyPTIC 

Consortium, ReSeqTB, contributors to WHO’s surveillance programme, multinational 

tuberculosis researchers, and public health bodies provided whole-genome sequencing 

and associated anonymised metadata. Algorithms for identifying variants associated and 

not associated with resistant phenotypes were adapted from approaches developed by the 

multinational CRyPTIC Consortium, and the confidence-grading method developed the 

Seq&Treat project153. The consortium concluded that for levofloxacin, moxifloxacin, and 

ethambutol, the mutations’ pooled sensitivity was more than 80%. Specificity was over 95% 

for all drugs except ethionamide (91·4%), moxifloxacin (91·6%), and ethambutol (93·3%). 

Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and 

linezolid as prevalence of phenotypic resistance was low for these drugs. Finally, the WHO 

catalogue of mutations in M tuberculosis and their associations with drug resistance were 

published.154 Based on the evidence presented in this review, we developed consensus 

recommendations that should help clinicans in the management of patients with TB, through 

the optimised use of molecular drug resistance testing for M tuberculosis. Consensus 

recommendations are shown in panel 2.
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Conclusions

Molecular prediction of M tuberculosis drug susceptibility and resistance is currently 

revolutionising the management of patients with tuberculosis, especially in settings with 

a high burden of MDR or rifampicin-resistant tuberculosis. For the first time, in 2021, 

WHO issued a catalogue of mutations and their associations with antimicrobial resistance, 

to individualise and mirror the path taken almost two decades ago in the field of 

HIV infection. New technologies allow for targeted sequencing directly from sputum90 

or stool155 specimens, providing the prospect of a much faster turnaround time for 

DST than for conventional bacteriological methods, but still allowing for the design of 

accurate MDR or rifampicin-resistant tuberculosis treatment regimens.31 As new drugs 

are now being marketed, it is essential to ensure that M tuberculosis does not acquire 

resistance against these new compounds shortly after they become available. In tandem 

with the roll-out of reliable diagnostic technologies that meet WHO target product 

profiles156 to comprehensively predict drug susceptibility and resistance, global availability 

of antimicrobial susceptibility testing157 is equally important. Ideally, severe mutations in 

the M tuberculosis genome should already be known before marketing newer drugs, thus 

enabling the identification of emerging drug resistance early on. The tools are becoming 

available—now is the time to bring them to the places where they are needed most.
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Panel 1:

Stepwise consensus statements

• Step 1: preliminary proposals for key recommendations were drafted by the 

coordinating authors (JD, CL, CRHJr). All coauthors were asked to provide 

alternative statements

• Step 2: alternative statements were collected from coauthors

• Step 3: coauthors were asked to select one preferred statement among the 

alternative statements. The coauthors were masked to the vote

• Step 4: for each recommendation, the statement that received the most votes 

was selected for inclusion in the manuscript

• Step 5: all coauthors were asked to indicate their agreement, disagreement, or 

whether they preferred to abstain from a decision
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Panel 2:

Consensus recommendations

1. Should rapid molecular testing for Mycobacterium tuberculosis drug 

resistance be the gold standard for detection of rifampicin resistance? When 

should it be done? Should it always be accompanied by phenotypic drug 

susceptibility testing (DST)?

Rapid molecular testing for the prediction of rifampicin resistance in M 
tuberculosis (by WHO-endorsed methods) should be done as part of the initial 

evaluations in the diagnosis of active tuberculosis. Of note, current routinely 

available rapid molecular testing methods for the prediction of rifampicin 

resistance in M tuberculosis are not covering all mutations in the rpoB gene 

that result in M tuberculosis drug resistance. Although not all detections 

of mutations in the rpoB gene have important implications for regions like 

Eswatini, these exceptions are of low clinical relevance in other geographical 

regions. Confirmatory culture-based DST for rifampicin should be done for 

genotypically susceptible isolates. Resistance inferred by the presence of 

unidentified mutations (eg, no wild type on rapid molecular testing) should 

be confirmed by culture-based DST. Identification of mutations recognised as 

markers of resistance (such as those listed in WHO’s catalogue of mutations) 

should not be further confirmed by conventional culture-based DST.

19 (76%) agree, five (20%) disagree, and one (4%) abstain.

2. Should rapid molecular testing for M tuberculosis drug resistance be the 

gold standard for detection of isoniazid resistance? When should it be done? 

Should it always be accompanied by phenotypic DST?

Isoniazid resistance is the most common drug resistance of M tuberculosis. 
Rapid molecular testing for the prediction of isoniazid resistance in M 
tuberculosis (by WHO-endorsed methods) should be done as part of the initial 

evaluations in the diagnosis of active tuberculosis. Confirmatory culture-

based DST for isoniazid should be done for genotypically susceptible isolates. 

Resistance inferred by the presence of unidentified mutations (eg, no wild 

type on rapid molecular testing) should be confirmed by culture-based DST. 

Identification of mutations recognised as markers of resistance (such as those 

listed in WHO’s catalogue of mutations) should not be further confirmed by 

conventional culture-based DST.

19 (76%) agree, five (20%) disagree, and one (4%) abstain.

3. When is prediction of M tuberculosis drug resistance towards ethambutol and 

pyrazinamide recommended, and if so, by which methods?

Rapid molecular testing for the prediction of ethambutol and pyrazinamide 

resistance in M tuberculosis is not recommended as part of the initial 

evaluations in the diagnosis of active tuberculosis. However, due to the 

inherent limitations of culture-based DST for ethambutol and pyrazinamide, 
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the identification of mutations recognised as markers of resistance (such as 

those listed in WHO’s catalogue of mutations) should rule out the need for 

further conventional culture-based DST.

20 (80%) agree, two (8%) disagree, and three (12%) abstain.

4. Which molecular methods are available for the prediction of second-line drug 

resistance to WHO group A, group B, and group C medicines?

The only molecular method available for prediction of resistance to all 

second-line drugs of WHO group A, group B, and group C is whole-genome 

sequencing. Amplicon sequencing (Deeplex [Genoscreen, Lille, France]) 

is available for prediction of resistance to fluoroquinolones, bedaquiline, 

linezolid, clofazimine, ethambutol, pyrazinamide, amikacin, streptomycin, 

and ethionamide. Line probe assays are available for prediction of resistance 

to fluoroquinolones, ethambutol, pyrazinamide, amikacin, and streptomycin. 

The Xpert MTB/XDR assay (Cepheid, Sunnyvale, CA, USA) can be used 

for prediction of resistance to isoniazid, fluoroquinolones, amikacin, and 

ethionamide.

23 (92%) agree, one (4%) disagree, and one (4%) abstain.

5. In which patients, on which specimens, and at which time after diagnosis 

of tuberculosis should molecular testing for the prediction of resistance to 

second-line anti-tuberculosis medicines be done?

Additional molecular testing for the prediction of drug resistance to second-

line anti-tuberculosis medicines in M tuberculosis should be done as part of 

the evaluations in the diagnosis of active tuberculosis, as soon as resistance 

to rifampicin has been suggested by molecular methods, or when rifampicin 

resistance has been identified by phenotypic DST, on the earliest available 

specimen. This timing is especially important in patients from countries 

with a high burden of multidrug-resistant or rifampicin-resistant tuberculosis. 

Since phenotypic DST for several key second-line anti-tuberculosis medicines 

is not universally available, implementation of molecular testing for the 

prediction of drug resistance to second-line anti-tuberculosis medicines in 

M tuberculosis has high priority for the control of drug-resistant tuberculosis.

25 (100%) agree.

6. How fast can results of molecular drug susceptibility prediction be provided?

Under ideal circumstances, results that predict susceptibility or resistance 

of M tuberculosis towards rifampicin, isoniazid, fluoroquinolones, amikacin, 

and ethambutol can be obtained within 1 working day. Results of amplicon 

sequencing and whole-genome sequencing to predict resistance against 

second-line anti-tuberculosis medicines can be obtained within 2–3 working 

days. Under operational conditions, once a sample has arrived at the 

laboratory, rapid molecular testing results can be obtained within 1–2 working 

days, line probe assay results within 2–4 working days, and amplicon 
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sequencing (Deeplex) and whole-genome sequencing results within 7–10 

working days.

23 (92%) agree, one (4%) disagree, and one (4%) abstain.

7. How should the results of molecular DST be reported by the laboratory to the 

clinicians?

Results of molecular DST should be reported on standardised forms by the 

laboratory to the clinicians, including interpretation on the confidence of drug 

resistance prediction and on the level of drug resistance, when agreed-upon 

definitions for high-level or low-level resistance are available.

25 (100%) agree.

8. After starting a patient on treatment for tuberculosis based on molecular 

results, should the treatment regimen be changed if phenotypic DST provides 

a discrepant result?

In case of discrepant results between the genotypic prediction and phenotypic 

testing of M tuberculosis drug resistance, results should be discussed between 

the clinician and microbiologist to identify the cause of the discrepancy and 

the relevance for clinical decision making. Low-level drug resistance that is 

not identified by routine phenotypic DST might be identified by genotypic 

testing. At the same time, genotypic analysis might identify mutations that 

confer drug resistance, which leads to a low level of phenotypic drug 

resistance that could potentially be overcome by high dosages of medicines in 

clinical practice. By contrast, phenotypic DST might identify drug resistance 

caused by other, yet unknown, mechanisms not detected by genotypic 

analysis.

25 (100%) agree.
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Table 1:

WHO definitions of drug resistance in tuberculosis

2006 WHO definitions2 2021 WHO definitions3

RR tuberculosis Rifampicin Rifampicin

MDR tuberculosis Rifampicin; isoniazid Rifampicin; isoniazid

Pre-extensively drug-resistant 
tuberculosis

Not defined MDR or RR tuberculosis; fluoroquinolone*

Extensively drug-resistant 
tuberculosis

MDR or RR tuberculosis; a fluoroquinolone*; 

second-line injectable drugs†
MDR or RR tuberculosis; a fluoroquinolone*; and 
bedaquiline or linezolid, or both

RR=rifampicin-resistant. MDR=multidrug-resistant.

*
Fluoroquinolone (ie, levofloxacin or moxifloxacin).

†
Second-line injectable drugs (ie, amikacin, capreomycin, and kanamycin).
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Table 3:

Time-to-result of different genotypic tests under optimal and operational conditions

Under optimal conditions Under operational conditions*

Xpert (Cepheid, Sunnyvale, CA, USA) 1 working day 1–2 working days

Line probe assay 1 working day 2–4 working days

Amplicon sequencing (Deeplex, [Genoscreen, Lille, France]) 2–3 working days 7–10 working days

Whole-genome sequencing 2–3 working days 7–10 working days

*
Once sample has arrived at the laboratory.
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