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TBnet and RESIST-TB networks

Abstract

Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based
methods being considered the gold standard for drug susceptibility testing, molecular methods
provide rapid information about the Mycobacterium tuberculosis mutations associated with
resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of

a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting
standards for the clinical use of molecular drug susceptibility testing. Review and the search
for evidence included hand-searching journals and searching electronic databases. The panel
identified studies that linked mutations in genomic regions of M tuberculosis with treatment
outcome data. Implementation of molecular testing for the prediction of drug resistance in M/
tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical
management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially
in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary
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team including clinicians, microbiologists, and laboratory scientists reached a consensus on key
questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis,
and their implications for clinical practice. This consensus document should help clinicians in
the management of patients with tuberculosis, providing guidance for the design of treatment
regimens and optimising outcomes.

Introduction

According to the latest estimates by WHO1, tuberculosis affected 10-6 million people

and caused 1-6 million deaths in 2021. That these deaths continue to occur despite the
availability of curative antimicrobial regimens is a testimony to the difficulty of diagnosing
disease and designing, administering, and monitoring tuberculosis treatment. The rise of
tuberculosis resistance to isoniazid and rifampicin has seriously complicated treatment for
the estimated 450 000 people each year who develop disease resistance to these first-line
antimycobacterial agents.! Definitions of resistance, including multidrug-resistant (MIDR)
and extensively drug-resistant (XDR) tuberculosis are shown in table 1.

Development of three essential capacities regarding tuberculosis treatment will be needed
to bring the disease under control while minimising the emergence of resistance to
currently available agents: optimising regimen composition, optimising regimen duration,
and minimising toxicity from the components of the regimen. This consensus statement is
directed at advancing the understanding of the first of these, namely optimising regimen
composition.

Despite the attractiveness of a one-size-fits-all regimen strategy, having a single regimen
that can be used for all patients with drug-resistant tuberculosis is difficult for several
reasons. First, there will always be patients who cannot tolerate the usual agents and will
need to have individualised regimens that address their intolerance. Second, development
of resistance to the new agents, although hopefully minimised, can never be completely
prevented; thus, some patients will require treatment with regimens that do not contain
some of the more effective agents as the organisms causing their disease will be resistant

to these agents. Third, in some patients, the use of concomitant medications, such as
antiretroviral agents, will preclude the use of certain antimycobacterial compounds because
of drug-drug interactions. Finally, compensatory mutations and epistasis render resistant
clinical strains differentially susceptible to different second-line agents. Thus, prompt and
accurate identification of the susceptibility pattern of a patient’s Mycobacterium tuberculosis
infecting strain is essential.

For many decades, M tuberculosis susceptibility testing has been done in specialised
laboratories with culture-based methods. These methods are limited by the slow growth

of the organisms, such that results are not available for many weeks after disease
detection. This delay leads to uncertainty for clinicians during the first weeks of

treatment, a crucial time period for getting the disease under control and preventing
further tuberculosis transmission. Fortunately, some developments in rapid sequencing and
molecular identification of critical resistance mutations have led to the ability to predict
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drug susceptibility or resistance within hours to days after diagnosis with high diagnostic
accuracy.*®

We summarise progress made in developing tools to enable rapid identification of resistance
to the agents used in tuberculosis treatment. As such, we update our consensus statement on
this topic from 2016, with the substantial progress that has been made since publication.®
Taken together, we believe that this updated consensus provides important and clinically
useful guidance to aid the design of effective tuberculosis treatment regimens and to ensure
optimal therapy outcomes.

This document has been produced by physicians, microbiologists, molecular biologists,

and clinical epidemiologists of the TBnet (http://www.tbnet.eu) and RESIST-TB (http://
www.resistth.org) networks to reach a consensus in reporting standards in the clinical use of
M tuberculosis molecular drug susceptibility testing (DST) results. Chapter leaders reviewed
the available literature, and the targeted search for evidence included hand-searching
journals and searching electronic databases including MEDLINE and PubMed. The search
targeted articles published in English, before June 1, 2022, related to the evolution of drug
resistance in clinical isolates, principles of phenotypic and genotypic drug resistance testing,
and the impact of mutations detected by genotypic tests on phenotypic DST and clinical
outcomes. In addition, relevant documents published by WHO were included. Consensus
statements were developed in a stepwise approach, as previously described (panel 1).6-10

Evolution of drug resistance in clinical M tuberculosis isolates

M tuberculosis bacteria are continuing to develop resistance to both old and new drugs

via spontaneous mutations of the bacterial chromosome.! Mutations include mostly single-
nucleotide polymorphisms, but insertions and deletions can also occur. Horizontal gene
transfer (eg, mediated by plasmids) has no role in the evolution of drug resistance in M
tuberculosis.1? The most common drug resistance mechanisms comprise the modification of
the drug target itself, increased expression of the drug target, downregulation or abrogation
of prodrug-activating enzymes, upregulation of drug efflux pumps, altered permeability,

and phase variation.1213 The probability of acquiring drug resistance through spontaneous
mutations and selection depends on the antibiotic (eg, the estimated frequency for rifampicin
is 1078, and 1076 for isoniazid).1* Moreover, studies suggest that mutation rates can differ
between strains of different M tuberculosis lineages, which influences the probability of
acquiring drug-resistant mutations.15-17

When suboptimal treatment regimens are used, drug-resistant M fuberculosis subpopulations
can be selected in a patient.18-21 The main reasons for ineffective therapy include improper
intake of drug regimens, addition of single drugs to ineffective treatment regimens,
inadequate drug supplies, quality of the anti-tuberculosis drugs, individual differences in
pharmacokinetics and pharmacodynamics,22 intrinsic strain differences, drug tolerance,

and low-level resistance.2324 Some research highlights the heterogeneity of antibiotic
concentrations within the tuberculous granuloma.2> A lack of granuloma vascularisation and
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diffusion barriers towards necrotic foci can lead to drastically altered pharmacodynamics
and pharmacokinetic correlations of individual antibiotics as compared with blood plasma
measurements.2%26 The resulting heterogeneity of granuloma micro-environments in a
single patient probably drives the microevolution of M tuberculosis subpopulations, which
can harbour different drug resistance mutations and can coexist in separate lesions.27-2°
This intrapatient M tuberculosis diversity also influences the performance of drug resistance
assays, and should therefore be considered in routine diagnostics and treatment.29-31

Diagnostic delays and misdiagnosis of patients with MDR tuberculosis can further amplify
the evolution of resistance and virulence determinants in M tuberculosis strains.32-34
Outbreaks of drug-resistant strains have been observed in different settings globally,35-37
suggesting that these strains have few or no fitness costs, challenging the previous dogma
of a transmission detriment of MDR M tuberculosis strains. However, no-cost or low-cost
resistance mutations dearly exist, and secondary mutations can occur that compensate for
the initial fitness defect of resistant mutants.38-40 This molecular interaction is an example
of epistasis, and might also influence antibiotic resistance and compensatory evolution

in strains of different M tuberculosis lineages.*142 In multiple studies, compensatory
mechanisms were suggested to be associated with an increased transmission risk, eventually
leading to the expansion of MDR clones in different areas worldwide.35-37:43

Principles of phenotypic drug resistance testing

Mycobacterial phenotypic DST assesses the ability of the organism to grow in the presence
of the antibiotic. The various phenotypic DST methods are detailed elsewhere.4-46 The
commonly used proportion method relies on the premise that if more than 1% of the
organisms in a given population is resistant to the critical concentration of a drug,

the population is defined as being resistant. These critical concentrations separate the
susceptible populations from resistant ones, and are specific to the phenotypic DST method
and media.

Mycobacterial phenotypic DST is technically difficult, and its interpretation is challenged
by the molecular assays’ detection of resistance mutations. Laboratory errors occur, and
appropriate quality-management systems and proficiency testing are vital.#6-48 Phenotypic
DST accuracy is also influenced by the prevalence of resistant strains and the level of

this resistance. In settings where low-level resistant strains prevail, phenotypic DST can
correlate less well with clinical outcomes, in contrast to settings where high-level resistance
is common.#? In isolates with low-level resistance, high doses of drugs such as rifampicin,
isoniazid, and fluoroquinolones can be clinically effective.50

Two systematic reviews of the evidence supporting critical concentrations in phenotypic
DST testing were done by WHO.51:52 Although many of the current critical concentrations
were reaffirmed, important changes were proposed, most notably that the critical
concentration of rifampicin for testing on solid 7H10 medium and in Mycobacteria Growth
Indicator Tube medium (Becton Dickinson, Franklin Lakes, NJ, USA) be lowered from 1
mg/L to 0-5 mg/L. WHO also introduced clinical breakpoints for moxifloxacin. Clinical
breakpoints are the concentrations delineating strains that might still respond to therapy

Lancet Infect Dis. Author manuscript; available in PMC 2024 October 08.
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with higher doses of the agent. The Clinical and Laboratory Standards Institute also defined
clinical breakpoints for isoniazid.*> Other important observations include few exploitable
published data for critical concentrations of newer drugs such as bedaquiline;>3-5% and
scarce data about reproducibility for these newer drugs. As more data become available,
critical concentrations will need to be re-evaluated.

The reduced critical concentration of rifampicin could enable the detection of borderline
mutations in the rpoB gene, which are considered to be of clinical relevance but only result
in modest minimum inhibitory concentration increase. This reduced critical concentration

of rifampicin would only reduce rather than eliminate the discordance between genotype

and phenotype. Minimum inhibitory concentration distributions of bacterial populations with
low-level resistance phenotypes might overlap with the minimum inhibitory concentration
distributions of wild-type isolates, resulting in poor reproducibility of categorical phenotypic
DST. This overlap could be also the case for other drugs like bedaquiline and levofloxadn
(see section on molecular testing).

Although the use of critical concentrations to distinguish susceptible isolates from non-
susceptible isolates is appealing as it is well standardised, more granular phenotypic

DST data (such as minimum inhibitory concentrations with broth microdilution) could
facilitate better understanding of the correlation between phenotypic DST, genotype, and
treatment outcome—especially if associated with pharmacokinetic and pharmacodynamics
data. Hence, quantitative drug susceptibility measures need to be implemented in diagnostic
mycobacteriology.>6:57 The first objective of the newly formed European Committee

on Antimicrobial Susceptibility Testing subcommittee on antimycobacterial susceptibility
testing (EUCAST-AMST) was to set a reference method for minimum inhibitory
concentration determination of M tuberculosis. This standardised method>8:59 will be

used for both new and old anti-tuberculosis drugs to assess epidemiological cutoffs. This
method will allow new compounds to be evaluated and compared, and will offer a basis
for calibrating phenotypic DST methods used in the field, commertial or not, against

a standard reference method.50 In addition, the CRyPTIC Consortium®® presented the
epidemiological cutoffs for 13 anti-tuberculosis compounds, including bedaquiline and
delamanid, from clinical isolates collected worldwide, for a more widespread adoption

of the broth microdilution test. Finally, a 2022 WHO document provided a standardised
methodology to facilitate the improvement of the broth microdilution plate method for
clinical use, which represents a promising solution for comprehensive and quality-assured
phenotypic DST.82

Principles of genotypic DST

The fundamental principle of genotypic DST is to predict phenotypic resistance on the basis
of genotype (ie, the genetic variants detected). Drug resistance in M tuberculosis strains is
due to variations of their genome (either single-nucleotide polymorphisms or insertions and
deletions) mapping to spedfic genetic loci.53 Silent mutations are usually not responsible
for resistance, with few documented exceptions.84 Importantly, not all mutations found at
the genetic loci involved in drug resistance are responsible for a resistant phenotype, as
phylogenetic markers and neutral polymorphisms can also be located in these regions.55-69
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Whereas for several anti-tuberculosis drugs the association between sequence variations and
phenotypic resistance development is well documented, our knowledge remains incomplete
for others.53 The frequency of resistance mutations observed in clinical M tuberculosis
strains varies by resistance genes, local epidemiology, and M tuberculosis population
structure in different geographical settings.”%71 Generally, drug resistance in M tuberculosis
is emerging at strain level, but there are a few exceptions where intrinsic resistance is found
in strains of a specific phylogenetic clade.6%72.73

In the past 15 years, rapid commercial genotypic DST assays have become available

to detect drug resistance in clinical M tuberculosis strains by interrogating the presence

of known resistance-conferring variants (table 2).%:7>-80 performance of these genotypic
DST tests, and implications for their use in different application scenarios are outlined

in WHO guidelines.81:82 The line probe assay GenoType MTBDRs/VER 2.0 (HAIN
Lifescience/Bruker, Nehren, Germany) and the cartridge-based Xpert MTB/XDR (Cepheid,
Sunnyvale, CA, USA) are the only assays currently endorsed for the detection of resistance
to fluoroquinolones, thus allowing the identification of pre-extensively drug-resistant (pre-
XDR) tuberculosis according to the updated definition.3:82:83 Of note, the line probe assay
Nipro Genoscholar PZA-TB 1l (Nipro Corporation, Osaka, Japan) is able to detect prncA
mutations associated with pyrazinamide resistance.82:84.85

Knowledge about the genetic basis of resistance to new or repurposed drugs such as
bedaquiline, linezolid, clofazimine, and delamanid remains poor, as is our capability for
phenotypic DST.86-88 No rapid molecular commercial assay exists for these drugs, and
genotypic DST can be done by sequencing technologies only. In this context, the targeted
sequencing assay Deeplex Myc-TB (Genoscreen, Lille, France) is able to provide genotypic
DST for 13 drugs, including linezolid, bedaquiline, and clofazimine, by targeting the

full sequences of 18 loci associated with drug resistance.8%90 Preliminary studies show

that, directly from clinical specimens, Deeplex Myc-TB can frequently be successful,
reporting complete resistance predictions in sputum samples with acid-fast bacilli visible

on microscopy.89-91 Similar targeted next-generation sequencing approaches exist; however,
they are not yet targeting new or repurposed drugs (Next Gen-RDST,%2 AmpliSeq TB%).
Compared with whole-genome sequencing, targeted next-generation sequencing has the
potential to decentralise sequencing-based genotypic DST for individual patient care,
especially if coupled with versatile technological and bioinformatic platforms.31:91,94-96 The
different genotypic DST assays have varied turnaround times, ranging from 1 working day
for Xpert and line probe assay under optimal conditions, to 7-10 working days for targeted
next-generation sequencing under operational conditions, when applied to clinical specimens
(table 3).

Notably, the technical success with a specimen depends on the number of bacilli, as a low
inoculum increases the risk of technical failure. When genotypic DST assays are applied to
a positive culture, the probability of obtaining a result increases, but so does the turnaround
time.

Current genotypic DST assays cannot be used for treatment monitoring as they detect DNA
from both live and dead bacteria, thus a positive result does not imply the viability of the
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pathogen.9” Similarly, the detection of heteroresistance in clinical specimens by the use

of WHO-endorsed rapid molecular tests vary from below 10% to above 75%, depending

on the assay and target considered.83:98.99 By contrast, targeted next-generation sequencing
assays allow for the detection of even minor subpopulations due to the high coverage

they provide.89:100.101 A cost evaluation of the workflow of whole-genome sequencing in
eight laboratories in Europe and North America calculated the costs to be 7% cheaper

than phenotypic DST.192 In settings with a low tuberculosis burden, the routine use of
Xpert shortened the time to tuberculosis diagnosis and treatment, whereas whole-genome
sequencing shortened the time to DST and treatment modification when necessary, reducing
treatment and hospitalisation costs. The combined use of these two methods was the most
cost-effective option and allowed for faster appropriate treatment, and this subsequently
reduces transmission, benefiting health, and reducing future treatment costs.193 In India,
molecular tests used in the diagnosis of MDR-tuberculosis, such as line probe assays and
Xpert, were reported to have considerable advantages for the programmatic management
of drug-resistant tuberculosis, including speed, standardisation of testing, potentially high
throughput, and reduced laboratory biosafety requirements. They also appeared to be cost
effective and helped in detecting missing cases.104 Cost-effectiveness studies of sequencing
tests in low-income settings with high tuberculosis burden are needed.

In 2022, a budget impact analysis was done to estimate the costs of introduction and

routine use of next-generation sequencing in the National Tuberculosis Programme of
Moldova, a country with a high burden of MDR tuberculosis.1%® According to the model,
next-generation sequencing adoption would require expanded resources compared with
conventional phenotypic DST. We are convinced that despite these initial investments, DST
strategies using next-generation sequencing will also prove to be cost-effective. However,
much needs to be done for the implementation of molecular DST, especially in countries

of high tuberculosis burden. A recent study by the TBnet106 documented substantial gaps

in the availability of genotypic DST for anti-tuberculosis drugs in the European Region of
WHO. These results are especially worrisome in view of the roll-out of the BPaLM regimen
(a combination of bedaquiline, pretomanid, linezolid, and moxifloxacin), as many countries
currently have no capacity for DST of key components of this regimen.

Relationship between results of genotypic and phenotypic drug resistance

testing and clinical outcomes

There are different ways to study the clinical implications of drug resistance mutations.

The simplest one is to show that in a case of treatment failure, there is associated

drug resistance either phenotypically (ie, minimum inhibitory concentration increase) or
genotypically (ie, appearance of a mutation) at the time of tuberculosis diagnosis. This
technique was used in the 1960s to show that the phenotypic proportion method correctly
identified strains associated with treatment failure.107 It was also initially used to show that
rifampicin resistance was associated with 7poB8 mutations.1%8 For some genes (table 4), such
a correlation has been shown.
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However, for clinical use, the question is not only whether the mutation correctly identifies
a strain with an elevated minimum inhibitory concentration, but also whether this mutation
is associated with treatment failure, thus prompting the clinician to consider a change in
the treatment regimen. Given that tuberculosis treatment relies on drug combinations, this
second demonstration requires that the antibiotic showing a resistant phenotype associated
with the mutation has an important impact on the outcome of the drug combination. This
second demonstration is true for both drug-susceptible tuberculosis treatment regimens and
MDR or rifampicin-resistant tuberculosis regimens, as shown in WHO’s meta-analysis that
indicated not all second-line drugs have the same impact on treatment outcome.136 Hence,
the drug resistance mutations that will have a strong effect on treatment outcome are those
modulating the most effective antibiotics. Another factor to consider is the differential
impact of mutations on the minimum inhibitory concentration as highlighted previously.
Again, the probability of showing a differential impact on treatment outcome will depend
on both the mutation-specific minimum inhibitory concentration effect and on the intrinsic
activity of the drug. The more effective or mycobactericidal the drug, and the higher the
impact of the mutation on the minimum inhibitory concentration, the more likely the effect
on treatment outcome. We have reviewed studies linking the treatment outcome with the
presence of a drug mutation (table 4). Of note, the lack of a clinical impact is by no means
conclusive; it might only mean that although the mutation reduces the activity of the drug,
other drugs in the regimen could facilitate clinical cure. The relationship between mutations
and their clinical implications are discussed within the context of each drug type or class.

Another notable benefit of the use of molecular DST is proper initial distinguishing of
patients with tuberculosis according to detected resistance patterns. This benefit is extremely
important in countries with high MDR and XDR tuberculosis burden, with poor capacity

for airborne infection isolation in single-occupant hospital rooms. Taking into consideration
molecular DST results can facilitate an optimal distribution of isolation wards and prevent
nosocomial transmission of drug-resistant M tuberculosis strains, even when it has low
relevance in treatment decisions.

For isoniazid, katG 315 mutations have a higher negative impact on first-line treatment
outcome than /nhA mutations. Although not analysed in the meta-analysis of individual
patient data due to low numbers in the dataset,137 and not listed as a group C drug

in recent WHO guidance®38, high-dose isoniazid is still used in children, in patients in
whom an effective regimen cannot otherwise be constructed (due to lack of drug access,
adverse events, resistance to other agents, etc), and in patients with low-level resistance
predicted by /nhA mutations and other mutations in karG.118:139 Although high-dose
isoniazid is still being used as part of an all-oral 9-month bedaquiline-based MDR or
rifampicin-resistant tuberculosis regimen in countries like South Africa, and as part of the
9-11-month injectable-based regimen40:141 previously endorsed by WHO in 2019 and 2020
guidance,80:138 this regimen will soon be replaced by alternative 6-month pan-oral regimens
like BPaLM.142

For rifampicin, more than 20 mutations in 7poB could have a negative effect on first-line
treatment outcome, such as the 1le491Phe mutation found in Eswatini. As approximately
5% of mutations fall outside of the rpoB gene hotspot region, repeat genotypic or
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phenotypic susceptibility testing should be considered in patients with genotypically
rifampicin-susceptible tuberculosis who do not respond to rifampicin-based treatment at 2-3
months. It is also important to consider nonadherence and the possibility of heteroresistance,
and to check the adequacy ofblood rifampicin concentrations.143.144

For fluoroquinolones, the gyrA mutations Asp94Asn, Asp94Gly, Alad90Val, and Asp94Ala
have a negative effect on MDR or rifampicin-resistant tuberculosis treatment outcome,

and that effect is closely linked to the minimum inhibitory concentration generated by the
associated mutation.119:126-130 Elyoroquinolone resistance implies pre-XDR tuberculosis.
Results from the ZeNix trialt4° suggest that successful treatment of MDR or rifampicin-
resistant tuberculosis can also be achieved in approximately 90% of patients treated for

6 months with bedaquiline (200 mg twice per day for 14 days, and 200 mg thrice per
week thereafter), pretomanid (200 mg once per day), and linezolid (600 mg once per day),
without fluoroquinolones. With a conventional treatment regimen that does not include all of
the three BPaL drugs, fluoroquinolone resistance is associated with a poorer prognosis.146
Treatment outcomes in fluoroquinolone-resistant MDR or rifampicin-resistant tuberculosis
can possibly (but presently unclearly) be improved without these three medicines, if
additional group C medicines are added to have at least five active drugs in the treatment
regimen. For ethionamide, multiple et#A mutations throughout the gene have a negative
effect on MDR tuberculosis treatment outcome, 119126

For bedaquiline, data are scarce about primary or acquired resistance in clinical cohorts
and its effect on outcomes. In South Africa, the proportion of patients with a successful
outcome was 72% (794/1103) among those with bedaquiline susceptibility compared with
57% (21/37) among those with bedaquiline resistance.123 However, we know that addition
of bedaquiline to a background regimen, or when used in combination with other drugs,

is associated with a reduction in mortality and improved outcomes.141:147 Thus, clinically
significant resistance to bedaquiline would be expected to imply a worse prognosis. There
are discrepant results regarding Rv0678 mutations and treatment outcome, probably due

to the low minimum inhibitory concentration increase. Unfortunately, phenotypic testing is
required to ascertain the presence of bedaquiline resistance, as high-confidence mutations
in the afpE and Rv0678 genes are likely to predict less than 10% of phenotypically defined
resistance.148 After considering phenotypical cross-resistance with clofazimine®:149 (which
is quite frequent), a regimen containing four or five effective drugs would need to be
constructed in patients with isolates resistant to bedaquiline.

For linezolid, rr/mutations 2814 g/t and 2270 g/t, and rp/C mutation CysI54Arg

are associated with treatment failure. The high-confidence mutations currently predict
approximately 75% of phenotypically defined resistance.86 Thus, the addition of such
mutations to standardised molecular testing platforms would be useful. When linezolid
resistance occurs in combination with fluoroquinolone resistance, it defines XDR
tuberculosis, and the design of an appropriate individualised regimen is required.

Although the phase 3 delamanid trial>0 did not show improved treatment outcomes, many
authorities consider the drug useful for the treatment of patients with resistance beyond
MDR or rifampicin-resistant tuberculosis. Mutations encoding drug resistance that predict
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almost 90% of delamanid resistance involve six genes, and there is emerging evidence

of acquired delamanid resistance.1®! Incorporation of genotypic testing into standardised
molecular platforms would be useful. Pretomanid is now part of recommended 6-month
pan-oral regimens, but there are no clear cutoffs, and critical concentration is not yet
defined for performing phenotypic DST.5° Nonetheless, a low proportion of phenotypically
XDR tuberculosis isolates were found to be genotypically resistant to delamanid and
pretomanid.149

For pyrazinamide, there are many mutations in pncA that can confer drug resistance.
Mutations in pncA have been related to delayed sputum culture conversion; however,
the effect on MDR or rifampicin-resistant tuberculosis treatment outcome has been
variable.119.129.135 For ethambutol, embB mutations do not appear to have an effect on
treatment outcomes for MDR or rifampicin-resistant tuberculosis.119

For injectables such as amikacin, kanamycin, and capreomycin, the most commonly
detected mutations are rrs 1401 a/g, 1402 c/t, 1484 a/t, and eis—14 c/t. No mutations

have been shown to have an effect on treatment outcomes for MDR or rifampicin-resistant
tuberculosis, which is consistent with the meta-analysis that showed these drugs have

poor activity against MDR or rifampicin-resistant tuberculosis.1>2 Nowadays, amikacin has
little applicability but can still be widely used when access to bedaquiline and linezolid

is restricted. It can also form part of the regimen in patients with XDR tuberculosis, or
resistance beyond XDR tuberculosis when treatment options are scarce. Although an all-oral
regimen is recommended by WHO,142 many patients in tuberculosis-endemic countries do
not yet have access to such regimens, making such recommendations unrealistic.1:11

Thus, some mutations that compromise the activity of major drugs have an impact

on treatment outcome. In this sense, a classification to stratify mutations in order of
importance for regimen design and choice of drugs would be useful. For this, the CRyPTIC
Consortium, ReSeqTB, contributors to WHO’s surveillance programme, multinational
tuberculosis researchers, and public health bodies provided whole-genome sequencing

and associated anonymised metadata. Algorithms for identifying variants associated and

not associated with resistant phenotypes were adapted from approaches developed by the
multinational CRyPTIC Consortium, and the confidence-grading method developed the
Seq&Treat project!®3, The consortium concluded that for levofloxacin, moxifloxacin, and
ethambutol, the mutations’ pooled sensitivity was more than 80%. Specificity was over 95%
for all drugs except ethionamide (91-4%), moxifloxacin (91.6%), and ethambutol (93-3%).
Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and
linezolid as prevalence of phenotypic resistance was low for these drugs. Finally, the WHO
catalogue of mutations in M tuberculosis and their associations with drug resistance were
published.154 Based on the evidence presented in this review, we developed consensus
recommendations that should help clinicans in the management of patients with TB, through
the optimised use of molecular drug resistance testing for M tuberculosis. Consensus
recommendations are shown in panel 2.
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Conclusions

Molecular prediction of M tuberculosis drug susceptibility and resistance is currently
revolutionising the management of patients with tuberculosis, especially in settings with

a high burden of MDR or rifampicin-resistant tuberculosis. For the first time, in 2021,
WHO issued a catalogue of mutations and their associations with antimicrobial resistance,
to individualise and mirror the path taken almost two decades ago in the field of

HIV infection. New technologies allow for targeted sequencing directly from sputum0

or stool®5 specimens, providing the prospect of a much faster turnaround time for

DST than for conventional bacteriological methods, but still allowing for the design of
accurate MDR or rifampicin-resistant tuberculosis treatment regimens.3! As new drugs
are now being marketed, it is essential to ensure that M tuberculosis does not acquire
resistance against these new compounds shortly after they become available. In tandem
with the roll-out of reliable diagnostic technologies that meet WHO target product
profiles®8 to comprehensively predict drug susceptibility and resistance, global availability
of antimicrobial susceptibility testing?®” is equally important. Ideally, severe mutations in
the M tuberculosis genome should already be known before marketing newer drugs, thus
enabling the identification of emerging drug resistance early on. The tools are becoming
available—now is the time to bring them to the places where they are needed most.
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Panel 1:

Stepwise consensus statements

Step 1: preliminary proposals for key recommendations were drafted by the
coordinating authors (JD, CL, CRHJr). All coauthors were asked to provide
alternative statements

Step 2: alternative statements were collected from coauthors

Step 3: coauthors were asked to select one preferred statement among the
alternative statements. The coauthors were masked to the vote

Step 4: for each recommendation, the statement that received the most votes
was selected for inclusion in the manuscript

Step 5: all coauthors were asked to indicate their agreement, disagreement, or
whether they preferred to abstain from a decision

Lancet Infect Dis. Author manuscript; available in PMC 2024 October 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Dominguez et al.

Page 24

Panel 2:
Consensus recommendations

1. Should rapid molecular testing for Mycobacterium tuberculosis drug
resistance be the gold standard for detection of rifampicin resistance? When
should it be done? Should it always be accompanied by phenotypic drug
susceptibility testing (DST)?

Rapid molecular testing for the prediction of rifampicin resistance in M
tuberculosis (by WHO-endorsed methods) should be done as part of the initial
evaluations in the diagnosis of active tuberculosis. Of note, current routinely
available rapid molecular testing methods for the prediction of rifampicin
resistance in M tuberculosis are not covering all mutations in the 7008 gene
that result in M tuberculosis drug resistance. Although not all detections

of mutations in the rpoB gene have important implications for regions like
Eswatini, these exceptions are of low clinical relevance in other geographical
regions. Confirmatory culture-based DST for rifampicin should be done for
genotypically susceptible isolates. Resistance inferred by the presence of
unidentified mutations (eg, no wild type on rapid molecular testing) should
be confirmed by culture-based DST. Identification of mutations recognised as
markers of resistance (such as those listed in WHQO’s catalogue of mutations)
should not be further confirmed by conventional culture-based DST.

19 (76%) agree, five (20%) disagree, and one (4%) abstain.

2. Should rapid molecular testing for M tuberculosis drug resistance be the
gold standard for detection of isoniazid resistance? When should it be done?
Should it always be accompanied by phenotypic DST?

Isoniazid resistance is the most common drug resistance of M tuberculosis.
Rapid molecular testing for the prediction of isoniazid resistance in M
tuberculosis (by WHO-endorsed methods) should be done as part of the initial
evaluations in the diagnosis of active tuberculosis. Confirmatory culture-
based DST for isoniazid should be done for genotypically susceptible isolates.
Resistance inferred by the presence of unidentified mutations (eg, no wild
type on rapid molecular testing) should be confirmed by culture-based DST.
Identification of mutations recognised as markers of resistance (such as those
listed in WHO’s catalogue of mutations) should not be further confirmed by
conventional culture-based DST.

19 (76%) agree, five (20%) disagree, and one (4%) abstain.

3. When is prediction of M tuberculosis drug resistance towards ethambutol and
pyrazinamide recommended, and if so, by which methods?

Rapid molecular testing for the prediction of ethambutol and pyrazinamide
resistance in M tuberculosis is not recommended as part of the initial
evaluations in the diagnosis of active tuberculosis. However, due to the
inherent limitations of culture-based DST for ethambutol and pyrazinamide,
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the identification of mutations recognised as markers of resistance (such as
those listed in WHO’s catalogue of mutations) should rule out the need for
further conventional culture-based DST.

20 (80%) agree, two (8%) disagree, and three (12%) abstain.

Which molecular methods are available for the prediction of second-line drug
resistance to WHO group A, group B, and group C medicines?

The only molecular method available for prediction of resistance to all
second-line drugs of WHO group A, group B, and group C is whole-genome
sequencing. Amplicon sequencing (Deeplex [Genoscreen, Lille, France])

is available for prediction of resistance to fluoroquinolones, bedaquiline,
linezolid, clofazimine, ethambutol, pyrazinamide, amikacin, streptomycin,
and ethionamide. Line probe assays are available for prediction of resistance
to fluoroquinolones, ethambutol, pyrazinamide, amikacin, and streptomycin.
The Xpert MTB/XDR assay (Cepheid, Sunnyvale, CA, USA) can be used
for prediction of resistance to isoniazid, fluoroquinolones, amikacin, and
ethionamide.

23 (92%) agree, one (4%) disagree, and one (4%) abstain.

In which patients, on which specimens, and at which time after diagnosis
of tuberculosis should molecular testing for the prediction of resistance to
second-line anti-tuberculosis medicines be done?

Additional molecular testing for the prediction of drug resistance to second-
line anti-tuberculosis medicines in M tuberculosis should be done as part of
the evaluations in the diagnosis of active tuberculosis, as soon as resistance
to rifampicin has been suggested by molecular methods, or when rifampicin
resistance has been identified by phenotypic DST, on the earliest available
specimen. This timing is especially important in patients from countries

with a high burden of multidrug-resistant or rifampicin-resistant tuberculosis.
Since phenotypic DST for several key second-line anti-tuberculosis medicines
is not universally available, implementation of molecular testing for the
prediction of drug resistance to second-line anti-tuberculosis medicines in

M tuberculosis has high priority for the control of drug-resistant tuberculosis.

25 (100%) agree.
How fast can results of molecular drug susceptibility prediction be provided?

Under ideal circumstances, results that predict susceptibility or resistance

of M tuberculosis towards rifampicin, isoniazid, fluoroquinolones, amikacin,
and ethambutol can be obtained within 1 working day. Results of amplicon
sequencing and whole-genome sequencing to predict resistance against
second-line anti-tuberculosis medicines can be obtained within 2—3 working
days. Under operational conditions, once a sample has arrived at the
laboratory, rapid molecular testing results can be obtained within 1-2 working
days, line probe assay results within 2—4 working days, and amplicon
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sequencing (Deeplex) and whole-genome sequencing results within 7-10
working days.

23 (92%) agree, one (4%) disagree, and one (4%) abstain.

How should the results of molecular DST be reported by the laboratory to the
clinicians?

Results of molecular DST should be reported on standardised forms by the
laboratory to the clinicians, including interpretation on the confidence of drug
resistance prediction and on the level of drug resistance, when agreed-upon
definitions for high-level or low-level resistance are available.

25 (100%) agree.

After starting a patient on treatment for tuberculosis based on molecular
results, should the treatment regimen be changed if phenotypic DST provides
a discrepant result?

In case of discrepant results between the genotypic prediction and phenotypic
testing of M tuberculosis drug resistance, results should be discussed between
the clinician and microbiologist to identify the cause of the discrepancy and
the relevance for clinical decision making. Low-level drug resistance that is
not identified by routine phenotypic DST might be identified by genotypic
testing. At the same time, genotypic analysis might identify mutations that
confer drug resistance, which leads to a low level of phenotypic drug
resistance that could potentially be overcome by high dosages of medicines in
clinical practice. By contrast, phenotypic DST might identify drug resistance
caused by other, yet unknown, mechanisms not detected by genotypic
analysis.

25 (100%) agree.
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Table 1:
WHO definitions of drug resistance in tuberculosis
2006 WHO definitions? 2021 WHO definitions?
RR tuberculosis Rifampicin Rifampicin
MDR tuberculosis Rifampicin; isoniazid Rifampicin; isoniazid
Pre-extensively drug-resistant Not defined MDR or RR tuberculosis; fluoroguinolone *

tuberculosis

Extensively drug-resistant
tuberculosis

MDR or RR tuberculosis; a fluoroquinolone*; MDR or RR tuberculosis; a fluoroquinolone * and
second-line injectable drugsf bedaquiline or linezolid, or both

RR=rifampicin-resistant. M

DR=multidrug-resistant.

*
Fluoroquinolone (ie, levofloxacin or moxifloxacin).

fSecond-Iine injectable drugs (ie, amikacin, capreomycin, and kanamycin).
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Table 3:

Time-to-result of different genotypic tests under optimal and operational conditions

Under optimal conditions

Under operational conditions”

Xpert (Cepheid, Sunnyvale, CA, USA) 1 working day
Line probe assay 1 working day
Amplicon sequencing (Deeplex, [Genoscreen, Lille, France])  2-3 working days

Whole-genome sequencing 2-3 working days

1-2 working days
2-4 working days
7-10 working days
7-10 working days

*
Once sample has arrived at the laboratory.
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