TABLE 1.
Bacteria | Cancer | Cargo | Function | Signalling | References |
---|---|---|---|---|---|
Helicobacter pylori | Gastric cancers | VacA |
1. Induce intracellular vacuoles, accompanied by altered iron metabolism and glutathione loss 2. Induce inflammatory responses |
|
(Chitcholtan et al., 2008; Choi et al., 2017) |
CagA | 1. Induce inflammatory responses | 1. N.D. | (Choi et al., 2017) | ||
N.D. |
1. Induce the burst of anti‐inflammatory cytokines 2. Impede human T cell responses 3. Induce Th2 and M2‐biased immune responses |
|
(Ahmed et al., 2021; Hock et al., 2017; Liu et al., 2019b) | ||
sRNA (sR‐2509025, sR‐989262) | Reduce IL‐8 cytokine secretion | N.D. | (Zhang et al., 2020) | ||
OSM | Promote the development of gastric cancer | JAK/STAT | (Zoaiter et al., 2021) | ||
Liver cancer | N.D. | Induce expression of hepatic fibrosis markers | N.D. | (Bolori et al., 2023) | |
Fusobacterium nucleatum | Colorectal cancer | N.D. |
|
|
(Engevik et al., 2021, Lamprinaki et al., 2021, Lin et al., 2021, Liu et al., 2021, Wei et al., 2023, Wu et al., 2023) |
Breast cancer | N.D. | Promotes the proliferation, migration, and invasion | TLR4 | (Li, Sun et al., 2023) | |
FomA | Trigger innate immunity of intestinal epithelial cells | Tlr2‐dependent NF‐κB pathway | (Martin‐Gallausiaux et al., 2020) | ||
Oral cancer | N.D. | Alter expression levels of EMT‐related proteins | N.D. | (Chen et al., 2023a) | |
Escherichia coli | Colorectal cancer | N.D. |
|
|
(Alvarez et al., 2019, Marzoog et al., 2023, Tyrer et al., 2014) |
Liver cancer | N.D. |
|
|
(Natsui et al., 2023, Shi et al., 2023) | |
Breast/Leukaemia cancer | N.D. | Induce a broad inflammatory response | N.D. | (Firth et al., 2023) | |
Neuroblastoma | N.D. |
|
|
(Jin et al., 2022, Tang et al., 2018) | |
Bacteroides fragilis | Colorectal cancer | Virulence factors | 1. Promote colon cancer development | N.D. | (Zakharzhevskaya et al., 2017) |
N.D. | 2. Increase NPC1L1 gene expression | N.D. | (Ahmadi Badi et al., 2020, Badi et al., 2020) | ||
Bacteroides thetaiotaomicron | Colorectal cancer | N.D. | Increase NPC1L1 gene expression | N.D. | (Ahmadi Badi et al., 2020, Badi et al., 2020) |
Lacticaseibacillus paracase | Colorectal cancer | N.D. |
|
|
(An & Ha, 2022; Choi et al., 2020; Shi et al., 2021) |
Limosilactobacillus johnsoni and Limosilactobacillus mucosae | Colorectal cancer | N.D. |
|
ZO‐1 and occludin | (Li, Feng, et al., 2023) |
Lacticaseibacillus rhamnosus GG | Colorectal cancer | N.D. |
|
|
(Pang et al., 2022) |
Liver cancer | N.D. |
|
|
(Behzadi et al., 2017) | |
Limosilactobacillus reuteri | Colorectal cancer | N.D. | Protect the integrity of intestinal barrier |
|
(Pang et al., 2022) |
Lentilactobacillus buchneri | Colorectal cancer and Gastric cancers | N.D. |
|
|
(Abedi et al., 2024) |
Lactobacillus plantarum | Colorectal cancer | N.D. |
|
|
(An & Han, 2022) |
Lactobacillus crispatus | Gastric cancers | N.D. |
|
|
(Fakharian et al., 2024) |
Porphyromonas gingivalis | Oral cancer | sRNA45033 | Target CBX5 to regulates apoptosis through the methylation of p53 DNA | p53/Bcl‐2 | (Fan et al., 2023) |
sRNA23392 | Promote the invasion and migration of Cancer cells by targeting DSC2 | N.D. | (Liu et al., 2021a) | ||
PG | Induce PD‐L1 expression | NOD1‐RIP2 | (Groeger et al., 2020) | ||
Clostridioides difficile | Liver cancer | N.D. | Induce mitochondrial dysfunction and increased intracellular ROS | N.D. | (Caballano‐Infantes et al., 2023) |
Akkermansia muciniphila | Prostate cancer | N.D. | Inhibit the development and metastasis of cancer | N.D. | (Luo et al., 2021) |
Colorectal cancer | N.D. |
|
N.D. | (Chelakkot et al., 2018, Kang et al., 2013, Wang et al., 2023) | |
Amuc_2172 | Promote CTL‐related immune response | Hsp70 | (Jiang, Xu, et al., 2023) | ||
Bifidobacterium longum | Breast cancer | N.D. | Induce apoptosis | Bax/Bcl‐2 | (Jiang, Wang, et al., 2023) |
Staphylococcus aureus | Breast cancer | N.D. | Enhance tamoxifen efficacy | AKT ‐ERK | (An, Kwon, et al., 2022) |
Bacillus licheniformis | Breast/lung cancer | N.D. | Inhibited cell viability and proliferation by increasing ROS and decreasing glutathione | p53, p21, caspase‐9/3, Bax, Bcl‐2 | (Gurunathan et al., 2023) |
Abbreviations: 5‐FU, 5‐flu‐orouracil; CagA; cytotoxin‐associated gene A; CBX5, chromobox 5; Clec4e, C‐type lectin domain family 4 member E; COX‐2, cyclo‐oxygenase‐2; CTL, cytotoxic T lymphocyte; DSC2, Desmocollin‐2; EMT, epithelial‐mesenchymal transition; LPS, lipopolysaccharide; MET, mesenchymal‐epithelial transition factor; N.D., not determined; NO, nitric oxide; NPC1L1, niemann‐Pick C1‐Like 1; OSM, Oncostatin M; PD‐L1, Programmed death‐ligand 1; PG, peptidoglycan; RIP2, receptor‐interacting serine/threonine‐protein kinase 2; ROS, reactive oxygen species; Siglec‐7, sialic acid‐binding immunoglobulin‐like lectins‐7; TLR4, toll‐like receptor 4; VacA, vacuolar cytotoxin A.