Skip to main content
. 2024 Oct 8;13(10):e12521. doi: 10.1002/jev2.12521

TABLE 1.

The role of bacterial‐derived extracellular vesicles in human cancers.

Bacteria Cancer Cargo Function Signalling References
Helicobacter pylori Gastric cancers VacA

1. Induce intracellular vacuoles, accompanied by altered iron metabolism and glutathione loss

2. Induce inflammatory responses

  1. N.D.

  2. N.D.

(Chitcholtan et al., 2008; Choi et al., 2017)
CagA 1. Induce inflammatory responses 1. N.D. (Choi et al., 2017)
N.D.

1. Induce the burst of anti‐inflammatory cytokines

2. Impede human T cell responses

3. Induce Th2 and M2‐biased immune responses

  1. N.D.

  2. COX‐2

  3. N.D.

(Ahmed et al., 2021; Hock et al., 2017; Liu et al., 2019b)
sRNA (sR‐2509025, sR‐989262) Reduce IL‐8 cytokine secretion N.D. (Zhang et al., 2020)
OSM Promote the development of gastric cancer JAK/STAT (Zoaiter et al., 2021)
Liver cancer N.D. Induce expression of hepatic fibrosis markers N.D. (Bolori et al., 2023)
Fusobacterium nucleatum Colorectal cancer N.D.
  1. Promote colon cancer development

  2. Destroy intestinal epithelial barrier by reducing ZO‐1 and Claudin‐1

  3. Induce the burst of pro‐inflammatory cytokines4. Regulate of immune response

  1. 1.N.D.

  2. FADD‐RIPK1‐caspase3; mir‐574‐5p/CARD3

  3. mir‐574‐5p/CARD3

  4. Siglec‐7

(Engevik et al., 2021, Lamprinaki et al., 2021, Lin et al., 2021, Liu et al., 2021, Wei et al., 2023, Wu et al., 2023)
Breast cancer N.D. Promotes the proliferation, migration, and invasion TLR4 (Li, Sun et al., 2023)
FomA Trigger innate immunity of intestinal epithelial cells Tlr2‐dependent NF‐κB pathway (Martin‐Gallausiaux et al., 2020)
Oral cancer N.D. Alter expression levels of EMT‐related proteins N.D. (Chen et al., 2023a)
Escherichia coli Colorectal cancer N.D.
  1. Increase ROS production causing oxidative stress and mitophag

  2. Protect intestinal epithelial barrier

  1. Akt/mTOR

  2. ZO‐1, occludin, claudin

(Alvarez et al., 2019, Marzoog et al., 2023, Tyrer et al., 2014)
Liver cancer N.D.
  1. Induce inflammatory responses

  2. Increase liver inflammation, worsened fibrosis and suppressed albumin production

  3. Modulate gut‐liver metabolism

  1. Clec4e

  2. N.D.

  3. N.D.

(Natsui et al., 2023, Shi et al., 2023)
Breast/Leukaemia cancer N.D. Induce a broad inflammatory response N.D. (Firth et al., 2023)
Neuroblastoma N.D.
  1. Possess apoptosis

  2. Reduce migration

  1. P53, Bcl‐2, Bax

  2. N.D.

(Jin et al., 2022, Tang et al., 2018)
Bacteroides fragilis Colorectal cancer Virulence factors 1. Promote colon cancer development N.D. (Zakharzhevskaya et al., 2017)
N.D. 2. Increase NPC1L1 gene expression N.D. (Ahmadi Badi et al., 2020, Badi et al., 2020)
Bacteroides thetaiotaomicron Colorectal cancer N.D. Increase NPC1L1 gene expression N.D. (Ahmadi Badi et al., 2020, Badi et al., 2020)
Lacticaseibacillus paracase Colorectal cancer N.D.
  1. Reduce the production of pro‐inflammatory factors and increase the anti‐inflammatory cytokines

  2. Inhibit cancer development

  1. COX‐2, iNOS, NF‐κB.

  2. PDK1/AKT/Bcl‐2

(An & Ha, 2022; Choi et al., 2020; Shi et al., 2021)
Limosilactobacillus johnsoni and Limosilactobacillus mucosae Colorectal cancer N.D.
  • Improve intestinal barrier function

ZO‐1 and occludin (Li, Feng, et al., 2023)
Lacticaseibacillus rhamnosus GG Colorectal cancer N.D.
  1. Inhibit cancer development

  2. Reduce various pro‐inflammatory factors

  3. Enhance the efficacy of anti‐PD‐1 immunotherapy

  1. N.D.

  2. TLR4/NF‐κB/NLRP3

  3. N.D.

(Pang et al., 2022)
Liver cancer N.D.
  • Promote apoptosis of hepatic cancer cells

  • N.D.

(Behzadi et al., 2017)
Limosilactobacillus reuteri Colorectal cancer N.D. Protect the integrity of intestinal barrier
  • N.D.

(Pang et al., 2022)
Lentilactobacillus buchneri Colorectal cancer and Gastric cancers N.D.
  1. Increase the apoptosis rate in CRC and gastric cancer

  2. Reduce the migration

  1. Bax, caspase‐9 genes

  2. N.D.

(Abedi et al., 2024)
Lactobacillus plantarum Colorectal cancer N.D.
  • Reduce the chemical resistance of 5‐FU

  • p53‐p21 glycolysis

(An & Han, 2022)
Lactobacillus crispatus Gastric cancers N.D.
  • Reverse the inflammatory environment

  • N.D.

(Fakharian et al., 2024)
Porphyromonas gingivalis Oral cancer sRNA45033 Target CBX5 to regulates apoptosis through the methylation of p53 DNA p53/Bcl‐2 (Fan et al., 2023)
sRNA23392 Promote the invasion and migration of Cancer cells by targeting DSC2 N.D. (Liu et al., 2021a)
PG Induce PD‐L1 expression NOD1‐RIP2 (Groeger et al., 2020)
Clostridioides difficile Liver cancer N.D. Induce mitochondrial dysfunction and increased intracellular ROS N.D. (Caballano‐Infantes et al., 2023)
Akkermansia muciniphila Prostate cancer N.D. Inhibit the development and metastasis of cancer N.D. (Luo et al., 2021)
Colorectal cancer N.D.
  1. Increase the expression of tight junction protein occludin

  2. Improvement of intestinal barrier integrity

  3. Regulate the pro‐inflammatory cytokine

  4. Enhance the efficacy of anti‐PD‐1 immunotherapy

N.D. (Chelakkot et al., 2018, Kang et al., 2013, Wang et al., 2023)
Amuc_2172 Promote CTL‐related immune response Hsp70 (Jiang, Xu, et al., 2023)
Bifidobacterium longum Breast cancer N.D. Induce apoptosis Bax/Bcl‐2 (Jiang, Wang, et al., 2023)
Staphylococcus aureus Breast cancer N.D. Enhance tamoxifen efficacy AKT ‐ERK (An, Kwon, et al., 2022)
Bacillus licheniformis Breast/lung cancer N.D. Inhibited cell viability and proliferation by increasing ROS and decreasing glutathione p53, p21, caspase‐9/3, Bax, Bcl‐2 (Gurunathan et al., 2023)

Abbreviations: 5‐FU, 5‐flu‐orouracil; CagA; cytotoxin‐associated gene A; CBX5, chromobox 5; Clec4e, C‐type lectin domain family 4 member E; COX‐2, cyclo‐oxygenase‐2; CTL, cytotoxic T lymphocyte; DSC2, Desmocollin‐2; EMT, epithelial‐mesenchymal transition; LPS, lipopolysaccharide; MET, mesenchymal‐epithelial transition factor; N.D., not determined; NO, nitric oxide; NPC1L1, niemann‐Pick C1‐Like 1; OSM, Oncostatin M; PD‐L1, Programmed death‐ligand 1; PG, peptidoglycan; RIP2, receptor‐interacting serine/threonine‐protein kinase 2; ROS, reactive oxygen species; Siglec‐7, sialic acid‐binding immunoglobulin‐like lectins‐7; TLR4, toll‐like receptor 4; VacA, vacuolar cytotoxin A.