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Abstract

Heart sounds have been widely studied and have been demonstrated to have value for detecting 

pathologies in clinical applications. Over the last few decades, the use of heart sound signals 

has become increasingly uncommon and its practice in modern medicine somewhat diminished, 

although research into automated analysis has continued. Unfortunately, a comparative analyses of 

algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, 

and standardized open databases of heart sound recordings. The 2016 PhysioNet/Computing in 

Cardiology (CinC) Challenge addressed this issue by assembling the largest public heart sound 

database, aggregated from eight sources obtained by seven independent research groups around 

the world. The database comprises a total of 4,430 recordings collected from 1,072 healthy 

subjects and patients with a variety of conditions, including heart valve disease and coronary 

artery disease.

This editorial reviews the background issues for this Challenge, the design of the Challenge 

itself, the key achievements, and the follow-up research generated as a result of the Challenge, 

published in the concurrent special issue of Physiological Measurement. Additionally we make 

some recommendations for future changes in this the field of heart sound signal processing as a 

result of the Challenge.

In the Challenge, participants were asked to classify recordings as normal, abnormal, or unsure. 

The overall score for an entry was based on a weighted sensitivity and specificity score 

with respect to manual expert annotations. To aid researchers, we provided a simple baseline 

classification method and a complex open source code base for segmenting the heart sounds, based 

on a hidden semi-Markov model.

During the official phase of the Challenge, a total of 48 teams submitted 348 open source 

entries, with a highest score of 0.860 (Se=0.942, Sp=0.778). Subsequently, for this special issue, 

researchers reported the new highest score of 0.855 (Se=0.890, Sp=0.816) in the follow-up phase 
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of the Challenge, indicating that the Challenge entrants achieved exceptional results which were 

extremely dicult to improve (even when there is a trade-off between Sp and Se) upon in the 

4 months available post-Challenge. We expect that future researchers will be able to use the 

extensive database generated for the Challenge to significantly improve on the approaches detailed 

here.

1. Introduction

Auscultation of heart sound recordings or the phonocardiogram (PCG) has been shown to 

be valuable for the detection of disease and pathologies (Leatham (1975); Raghu et al. 

(2015)). The automated classification of pathology in heart sounds has been studied for over 

50 years. Typical methods can be grouped into: artificial neural network-based approaches 

(Uguz (2012)), support vector machines (Ari et al. (2010)), hidden Markov model-based 

approaches (Saracoglu (2012)) and clustering-based approaches (Quiceno-Manrique et al. 

(2010)). However, accurate automated classification still remains a significant challenge due 

to the lack of high-quality, rigorously validated, and standardized open databases of heart 

sound recordings.

The 2016 PhysioNet/Computing in Cardiology (CinC) Challenge sought to create a large 

database to facilitate this, by assembling recordings from multiple research groups across 

the world, acquired in different real-world clinical and nonclinical environments (such 

as in-home visits), to encourage the development of algorithms to accurately identify, 

from a single short recording (10-60s), as normal, abnormal or poor signal quality, and 

thus to further identify whether the subject of the recording should be referred on for 

an expert diagnosis (Liu et al. (2016)). Until this Challenge, no significant open-access 

heart sound database was available for researchers to train and evaluate the automated 

diagnostics algorithms upon (Clifford et al. (2016)). Moreover, no open source heart sound 

segmentation and classification algorithms were available. The Challenge changed this 

situation significantly.

This editorial reviews the follow-up research generated as a result of the Challenge, 

published in the concurrent special issue of Physiological Measurement. Additionally we 

make some recommendations for promising research avenues in the field of heart sound 

signal processing and classification as a result of the Challenge.

2. Challenge data

Data for the Challenge consisted of heart sound recordings from eight independent databases 

(labelled alphabetically, a to i, excluding h, which was a fetal PCG database) sourced from 

seven contributing research groups. We refer the reader to Liu et al. (2016) for a detailed 

description of the data collection, as well as the division of training and test data sets. 

We should note that both training and test sets are unbalanced, i.e., the number of normal 

recordings does not equal that of abnormal ones. Challengers therefore had to consider this 

when they trained and test their algorithms. Figure 1 details the exact distribution of data 

across all the constituent databases.
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3. Example algorithms and scoring

3.1. Benchmark classifier algorithm

We provided a benchmark classifier that relied on relatively obvious parameters extracted 

from the heart sound segmentation code. For the detailed description of this benchmark 

classifier, challengers can refer to Liu et al. (2016); Clifford et al. (2016). Here we briefly 

describe how the benchmark classifier is constructed and how it works. First, a balanced 

database from training set was selected. Then, Springers segmentation code (Springer, 

Tarassenko and Clifford (2016)) was used to segment heart sound recording. Twenty 

features were extracted according to the position and waveform amplitude information of the 

segmented signals. A forward likelihood ratio selection was used to train the binary logistic 

regression (BLR) model. Finally, seven features were identified as the predictable features, 

and a derived BLR prediction formula was constructed for normal/abnormal heart sound 

recordings classification. In a 10 fold cross validation, the constructed BLR model provided 

a sensitivity of 0.66, a specificity of 0.77 and a Challenge score of 0.71 on the training data. 

It should be noted that this was not intended to be a good classifier, or properly trained, but 

merely an example set of code to enable a researcher to understand the mechanics of the 

submission process, and to provide a simple baseline for Challenge entrants to beat in the 

early stages of the Challenge.

3.2. Voting algorithm

We also implemented a voting approach to combine together varying numbers of the 

submitted algorithms (Clifford et al. (2016)). A simple unweighted voting of using the N 
best performing final entries from the Challenge, ranked by their score on the training data 

(to prevent over-fitting on the test scores), was implemented. N was varied from 1 to 48 with 

tied, absent or no vote was treated as ‘normal’ type.

3.3. Scoring

A modified accuracy MAcc  with the combination of sensitivity Se  and specificity Sp
for scoring as:

MAcc = Se + Sp
2

The score on the complete test set determines the ranking of the entries. For details on the 

scoring mechanism please see Liu et al. (2016); Clifford et al. (2016).

4. Results of the Challenge

A total of 348 open-source entries were submitted in the Challenge by 48 teams. Table 

1 provides a detailed summary for the top official scoring entries published in the CinC 

conference proceedings, ranked by the MAcc index. Please note that we did not include the 

unofficial entries here. We reported the best Challenge scores (Se, Sp and MAcc) for each 

team from the complete hidden test data. We also summarized the methods the challengers 

used, mainly focusing on the following:
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A total of 348 open-source entries were submitted in the Challenge by 48 teams. Table 

1 provides a detailed summary for the top official scoring entries published in the CinC 

conference proceedings, ranked by the MAcc index. We reported the best Challenge scores 

(Se, Sp and MAcc) for each team from the complete hidden test data. We also summarized 

the methods the challengers used, mainly focusing on the following:

1. The type of segmentation procedure, if any, employed.

2. Types of features used.

3. Number of features used.

4. How features selection was performed, if at all.

5. What and how many features remained after feature selection, if applicable.

6. What classifier was used.

7. For training the classifier, how the training data were split.

8. How the researchers adjusted for class imbalances during training.

From Table 1, it can be seen that there was very little performance difference between the 

top three entries. The highest scoring entry by Potes et al. had a MAcc of 0.8602, with a 

highest Se (0.9424) and a modest Sp in the list. The second highest Se was as low as 0.8848, 

ranking 5th in the Challenge. Rubin et al. produced the highest Sp (0.9521), but with a 

relatively low Se of 0.7278 and ranked a 7th place. For an application which is forwarding 

subjects for further screening, as long as the resources can cope with the false positive rate, 

a higher sensitivity is perhaps best. However, the 2nd, 3rd, 4th and 5th contestants provide a 

good balance between Se and Sp. A 2% spread exists between the top six entrants.

The sample entry generated a Se of 0.6545 and a Sp of 0.7569, resulting in a MAcc of 

0.7051. To test if the results could be improved by combining multiple approaches, we 

designed a “voting” algorithm as follows. We calculated the performance of each of the 

348 official entries, using a set of 600 records that were selected randomly from the public 

training data, but disjoint from the validation subset that competitors used for self-scoring. 

We then ranked entries according to their modified accuracy on this subset, and discarded 

all but the top entry from each participating team. The “voting” algorithm VN (for N = 2 … 

48), is then defined as the output given by a plurality of the top N entries from that list (or 0, 

“uncertain”, if no plurality exists.) The voting algorithm did not show any improvement over 

the best individual submissions; the best result was N = 3, with Se = 0.7173, Sp = 0.9309, 

and MAcc = 0.8241.

5. Review of Articles in the Special Issue

A total of 8 articles were reviewed and revised in time to be accepted for this special issue. 

Most authors had originally entered the Challenge, and submitted updated versions of their 

algorithms, which should be made available by the authors through open source licenses. 

Each algorithm published in this issue is reviewed below according to the eight aspects 

summarized in section Results of the Challenge. The purpose of this summary is to allow the 

reader to quickly identify both the commonalities and the originality of all the approaches. 
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Finally, the last article in this special issue and review (Liu et al. (2017)) involves the 

systematic evaluation for the open source code for heart sound segmentation proposed in 

Springer, Tarassenko and Clifford (2016), which was also the heart sound segmentation 

method made available for the Challenge.

5.1.  Abdollahpur et al. (2017) 

The algorithm proposed by Abdollahpur et al. (2017) used a novel cycle quality assessment 

(CQA) method for assessing the signal quality of the segmented cardiac cycle. Features were 

extracted only on the cycles which higher signal quality and superior segmentation. The 

method achieved a MAcc of 0.8263 in the last phase of the Challenge (Abdollahpur et al. 

(2016)).

The authors note that the recordings were down sampled to 1 kHz and filtered by the 

fourth order Butterworth high pass (25 Hz) and low pass (600 Hz) filters. Spikes were 

removed using the algorithm proposed by Schmidt et al. (2010). Then, after the heart sound 

segmentation with Springer’s HSMM model (Springer, Tarassenko and Clifford (2016)), 

correctly segmented heart cycles without excessive noise or spikes were selected for further 

feature extraction process using a novel CQA method detailed in Abdollahpur et al. (2016). 

Frequency and amplitude criteria were applied for detecting correctly segmented heart 

sound cycles. A total of 90 features were calculated from the time domain, time-frequency, 

perceptual and mel-frequency cepstral coefficient (MFCC) analysis. Before starting the main 

classification process, the derived 90 dimensional feature vector was mapped to a new 

feature space by applying a Fishers discriminant analysis. The main classification procedure 

was then performed using three feed-forward NNs and a voting system among classifiers. A 

final MAcc score of 0.826 was achieved on the hidden test data.

5.2.  Homsi and Warrick (2017) 

The algorithm proposed by Homsi and Warrick (2017) used an ensemble based classification 

with a special consideration for outliers and achieved a MAcc score of 0.801 for the hidden 

test data in the Challenge.

In this paper, a total of 131 features in time, frequency, wavelet and statistical domains were 

extracted from the heart sound signals. Outlier signals were detected and separated from 

those with a standard range using an interquartile range threshold. Then, feature extreme 

values were given special consideration, and finally features were reduced to the most 

significant ones using a feature reduction technique. In the classification stage, the selected 

features either for standard or outlier signals were fed separately into an ensemble of 20 two-

step classifiers. The first step of the classifier included a nested set of ensemble algorithms 

which was cross validated on the training data, while the second step used a voting rule of 

the class label. The results showed that the proposed method achieved an overall score of 

0.9630 for standard signals and 0.9018 for outlier signals on a cross-validated experiment 

using the training data. This method achieved an overall score of 0.801 on the hidden test set 

(0.796 sensitivity and 0.806 specificity).
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5.3.  Kay and Agarwal (2017) 

Kay and Agarwal (2017) proposed an algorithm that employed DropConnected neural 

networks trained on time-frequency and inter-beat features for heart sound classification. 

This algorithm achieved a MAcc of 0.8520 on the test data, and ranked third in the 

Challenge (Kay and Agarwa (2016)). This paper provides an extensive analysis concerning 

the profile differences of the open training data, including the recording numbers, recording 

sensors, unbalanced data and the specific pathology of the recordings.

In this paper, first, the heart sounds were segmented using Springer’s the open-source 

segmentation algorithm based on a hidden semi-Markov model (HSMM) (Springer, 

Tarassenko and Clifford (2016)). Then, a total of 675 features were extracted from the 

analysis of continuous wavelet transform (220), MFCC (400), inter-beat behaviour (20 

and complexity measures (35). Then, the extracted features were normalized and the 

dimensionality was reduced to 50 using principal component analysis (PCA). Subsequently, 

the features were used as the input to a fully-connected, two-hidden-layer neural network, 

trained by error backpropagation, and regularized with DropConnect. When the algorithm 

was submitted to be evaluated on the test data, a number of different networks were 

trained with a range of hyper-parameters and different training sets. The networks are then 

ensembled based on their scores. The best result obtained by the ensemble of networks, on 

the test data, was 0.8520, which is the third best performance in the Challenge. The authors 

also updated their algorithm by excluding the training-e set for training since the recording 

sensor type for training-e set is different from others. However, a significantly worse score 

of 0.580 was obtained because 69% of recordings in the test set are from dataset-e indicating 

that the algorithm is sensitive to the recording type and struggles to generalize from one 

dataset to another.

5.4.  Langley and Murray (2017) 

Most algorithms for automated analysis of heart sound require segmentation of the signal 

into the characteristic heart sounds. Langley and Murray (2017) aimed to assess the 

feasibility for accurate classification of heart sounds on short, unsegmented recordings.

At the first step, initially the 5 second segment (seg 1) at the start of each heart sound 

recording was analyzed. For some recordings with considerable noise at the start of 

the recordings, so a repeated 5 s segments (seg 2) with lowest noise was extracted 

for each recording. Segments were zero-mean but otherwise had no prepossessing or 

segmentation. Then normalized spectral amplitude was determined by FFT and wavelet 

entropy was calculated by wavelet analysis (‘Gaus4’ mother wavelet). For each of these a 

simple single feature threshold based classifier was implemented and the frequency/scale 

and thresholds for optimum classification accuracy determined. The analysis was then 

repeated using relatively noise free 5 s segments (seg 2) of each recording by applying 

a Wavelet entropy measure for signal noise assessment. Spectral amplitude and wavelet 

entropy features were then combined in a classification tree (Langley and Murray (2016)). 

Detailed results were reported as follows. There were significant differences between normal 

and abnormal recordings for both wavelet entropy and spectral amplitude across scales 

and frequency. In the wavelet domain the differences between groups were greatest at 
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highest frequencies whereas in the frequency domain the differences were greatest at 

low frequencies (12 Hz). Abnormal recordings had significantly reduced high frequency 

wavelet entropy, suggesting the presence of discrete high frequency components in these 

recordings. Abnormal recordings exhibited significantly greater low frequency (12 Hz) 

spectral. Classification accuracy was greatest for wavelet entropy and was further improved 

by selecting the lowest noise segment (seg 2). Classification tree with the combined features 

gave an accuracy (not MAcc) of 0.79 (Sp = 0.80, Se = 0.77). The study demonstrated the 

feasibility of accurate classification without segmentation of the characteristic heart sounds.

5.5.  Maknickas and Maknickas (2017) 

Maknickas and Maknickas (2017) describe the use of mel-frequency spectral coefficients 

(MFSC) fed to a CNN, and which achieved a MAcc of 0.8415 in the last phase of the 

Challenge, ranked sixth overall with an unofficial entry. There are existing studies which 

leverage MFCC analysis for heart sound classification Chauhan et al. (2008). However, the 

authors claimed that MFSC analysis could outperform MFCC since during the calculation 

of the MFCC, the discrete cosine transform (DCT) projects the spectral energies into a new 

basis that may not maintain locality. However, MFSC uses the log-energy computed directly 

and can avoid this situation.

In this paper the authors describe a process which first splits the training heart sound files 

into equal numbers of normal and abnormal data files. Then MFSC (i.e., MFCC with no 

DCT) was calculated for each file, and was cut into frames with width and height of both 

128 samples. The difference and second-order difference of the MFSC were also calculated 

as second and third dimensions of the frame. All frames were normalised. Then CNN was 

trained to predict the normal/abnormal label for each frame in the file, and used the average 

of all predicted frame labels as the final label of the file. Finally, the model with best 

performance was selected during the training phase. Testing on the separate validation set 

achieved the highest score when using 256 hidden layers for the deep CNN, although the 

score slightly improved on the selected training data when increasing the number of hidden 

layers from 128 to 2048. Therefore, the Challenge results were achieved by weights and 

topology of 256 hidden layers and the final score was 0.842, just 0.018 below the highest 

score of 0.860. This impressive result indicates the potential of CNNs for future use, but 

also illustrates how enormous volumes of data are likely to be required to out-perform well 

chosen features and standard classification approaches.

5.6.  Plesinger et al. (2017) 

Plesinger et al. (2017) proposed an algorithm based on fuzzy logic which they termed 

‘probability assessment’ for normal/abnormal heart sound classification, which achieved a 

MAcc of 0.8411 in the last phase of the challenge, and was ranked 7th highest (Plesinger 

et al. (2016)). The presented solution produced different results in specific databases. For 

database-c, it gave 100% sensitivity and specificity in both training and testing. Database-e 

also provided an extremely high score. However, the method failed to accurately classify 

database-g and database-i (not present in the training set), where it reported nearly all 

records as normal. This poor performance with these completely hidden databases indicates 

the method also struggles to generalize to unseen data.
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In their methods, they first derived amplitude envelopes in five frequency bands low 

frequency (LF, 15-90 Hz), middle frequency (MF, 15-90 Hz), high frequency (HF, 100-250 

Hz), super frequency (SF, 200-450 Hz) and ultra frequency (UF, 400-800 Hz) were 

computed using an FFT band-pass filter and Hilbert transformation. Then invalid time 

segments were checked for each 1 s window. Then heart sounds S1 and S2 were detected 

using amplitude envelopes in the LF band. The averaged shapes of the S1/S2 pair were 

computed from amplitude envelopes in all five bands (15-90 Hz; 55-150 Hz; 100-250 

Hz; 200-450 Hz; 400-800 Hz). A total of 228 features were extracted from the statistical 

properties and the symmetry of the averaged shapes, and the independent of S1 and S2 

detection. Then the features are processed using logical rules and probability assessment 

based on histograms, and a fuzzy logic like approach, which they termed ‘PROBAfind’. This 

software contains a function suggesting a feature with the best impact on the sum of final 

sensitivity and specificity, and can be used as a semi-automatic feature selection method. 

The authors found 53 features were selected as the normal/abnormal/unsure classification. A 

final score MAcc of 0.8411 achieved on the hidden test data (7th place in the Challenge), 

indicating that the performance of probability assessment is comparable to other machine-

learning approaches. However, it the human oversight required and long training time 

required for this approach is a significant limitation and may have led to the lack of 

generalization.

5.7.  Whitaker et al. (2017) 

Whitaker et al. (2017) proposed an algorithm combining sparse coding and time domain 

features for normal/abnormal heart sound classification, which achieved a MAcc of 0.807 

in the Challenge (Whitaker and Anderson (2016)). This study introduced sparse coding as a 

tool for unsupervised feature extraction in heart sound classification, and was also the first to 

use matrix norm sparse coding in a practical classification setting for Heart Sounds. Previous 

work by Da Poian et al. (2017) has demonstrated the utility of this technique, using on 

compressed sensing for Atrial Fibrillation detection in the ECG. As the first step, Whitaker 

et al. used Springer’s HSMM segmentation code (Springer, Tarassenko and Clifford (2016)) 

to separate each audio file into five arrays of smaller audio segments. The first four arrays 

contained a list of all S1, systole, S2 and diastole sounds respectively. The fifth array 

contained copies of the full heart cycles, starting at the start of the S1 state and ending at 

the last sample in diastole. Each state or sound segment was converted to the frequency 

domain with an N-point FFT and sparse coding was applied on the aforementioned five data 

matrices as a form of unsupervised feature extraction. In sparse coding, frequency-domain 

data is decomposed into a dictionary matrix and a sparse coefficient matrix. The dictionary 

matrix represents statistically important features of the audio segments and becomes fixed 

after training. In effect it represents the basis functions. The sparse coefficient matrix is a 

mapping that represents which features are useful in each segment. Working in the sparse 

domain, the authors trained SVMs for each audio segment, as well as the full cardiac 

cycle. Then a sixth SVM was trained to combine the results from the preliminary SVMs 

into a single binary label for the entire heart sound recording. Compared with the CinC 

paper in Whitaker and Anderson (2016), this paper presented two novel modifications. 

The first modification involved a matrix norm in the dictionary update step of sparse 

coding to encourage the dictionary to learn discriminating features from the abnormal heart 
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recordings. The second combined the sparse coding features with twenty time domain 

features described in Liu et al. (2016) in the final SVM classification stage. The authors 

demonstrated an improved cross-validated MAcc of 0.893 (Se = 0.901 and Sp = 0.885). 

However, improved version did not generate a higher score on the hidden test data than their 

challenge’s score. A new score MAcc of 0.803 (0.801 sensitivity and 0.806 specificity) in 

this follow-up phase was achieved.

This study showed that sparse coding is an effective way to define spectral features of the 

cardiac cycle and its sub-cycles for the purpose of classification. In addition, it demonstrated 

that sparse coding can be combined with additional feature extraction methods to improve 

classification accuracy. Further work may incorporate additional features to improve the 

classification accuracy or robustness to novel data and noise.

5.8.  Liu et al. (2017) 

A Hidden Markov model (HMM)-based approach has received increased interest for heart 

sound segmentation due to its robustness on processing noisy recordings, particularly 

when incorporating physiological models. The focus of this article was on evaluating 

the performance of the recently published logistic regression based HSMM heart sound 

segmentation method Springer, Tarassenko and Clifford (2016), which was open sourced 

for the Challenge. By using a wider variety of heart sound data in the PhysioNet/CinC 

Challenge 2016. The HSMM-based model was trained on the training-a dataset only (per 

the original work) and was tested on all other separate test datasets, which comprised 

102,306 heart sounds. The results confirm the high accuracy of the HSMM-based algorithm 

with an average F1 score of 98.5% for segmenting S1 and systole intervals and 97.2% 

for segmenting S2 and diastole intervals. The described evaluation framework, combined 

with the largest collection of open access heart sound data, provides essential resources 

for researchers who need to test their algorithms with realistic data and share reproducible 

results.

6. Discussion and Conclusions

In summary, the PhysioNet/Computing in Cardiology Challenge 2016 provided several key 

additions to the field of normal/abnormal heart sound classification.

First, the public release of the large, open assess and free heart sound database gives 

potential benefits to a wide range of users, especially for those who lack access to well-

characterized real clinical signals.

Second, we note that even for the top performing entrants, the classification results differ 

significantly between each of the eight databases. The test sets g and i are two new databases 

and did not appear in the training data. For those two hidden databases, the challenger 

results are not as good as other databases, indicating that the algorithm generalization ability 

is sensitive to the recording source and requires improvement, or should always be retrained 

for specific recording scenarios and/or recording modalities/devices.
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Third, there is very little performance difference between the top three entries, and only 

a 2% spread exists between the top six entrants, although these Challenge entrants used 

different classifier methods. This shows that there is not a ”best” classifier for this special 

normal/abnormal heart sound classification task. However, the ensemble method, i.e., 

combining two or more of the common classification methods, such as SVM, CNN, LR, 

RF and others, can create improved classification performances. We note however, that a 

naive approach of simple weighted voting between the top N algorithms ranked by training 

performance does not improve the modified accuracy and a more intelligent voting approach 

is needed - see below. Notably, the feature extraction stage in any classification related work 

can be the most crucial and important part. Although there are no widely accepted optimal 

features in heart sound classification, from this Challenge we can identify the MFCC, 

wavelet and time-frequency features as likely candidates.

Fourth, we note that voting method can produce superior results to even the best algorithm. 

Such an approach can also lead to a more robust implementation, although it may be 

significantly more computationally intensive. It is also important to note that too many naive 

voters can reduce the classification accuracy, as we have observed in earlier challenges, 

although not in this one. This may be due to the common use of a strong feature extractor 

provided for all entrants. In Zhu et al. (2014) and Zhu et al. (2015) a voting system for 

algorithms (and human) annotations of physiological data was described, which incorporates 

both the physiology and the individual annotator’s accuracy as a function of objective 

features (such as signal quality) to produce a weighted voting scheme to guarantee that 

all voters added extra information. Such approaches may become ever more important as 

computational power becomes increasingly less expensive. We also note that this means that 

all competitors in the Challenge added something to the final answer!

Fifth, the current approach in this Challenge classifies any input signal as normal or 

abnormal although “unsure” class was permitted. However, an efficient algorithm is needed 

for recognizing a good quality recording from a poor quality one. Due to the audio 

processing capabilities, mobile phones have the potential to facilitate the diagnosis of heart 

disease through automated auscultation. However, such a platform is likely to be used by 

non-experts, and hence, it is essential that such a device is able to automatically differentiate 

poor quality from diagnostically useful recordings since non-experts are more likely to 

make poor-quality recordings. In Springer, Brennan, Ntusi, Abdelrahman, Zuhlke, Mayosi, 

Tarassenko and Clifford (2016), an automated signal quality assessment of heart sound 

recordings was developed, which includes the first systematic evaluation of a heart sound 

signal quality classification algorithm (using a separate test dataset) and assessment of 

the quality of heart sound recordings captured by non-experts. This approach indicates a 

promising use case for low resource cardiac screening.

Sixth, we provided a state-of-the-art open source heart sound segmentation algorithm for 

this Challenge. This was utilized by the top entrants and indicates that it was fundamental to 

high performing classification algorithms. We note however that no researcher attempted 

to improve on the algorithm in either the Challenge or the subsequent special issue. 

The marginal increase in performance in this special issue indicates that improving the 

segmentation approach may be the best point of entry for any future researchers attempting 
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to improve classification performance. The inability of more complex classifiers (such 

as CNNs) to beat carefully chosen features and standard classifiers, indicates that it is 

more important to focus on the labelling and preprocessing than on the classifier. That is 

not to say that a superior classifier can provide an increase in performance, but that the 

feature extraction step provides more marginal improvement. We also note that despite 

our databases representing the largest public dataset of heart sound by many orders of 

magnitude, the databases may require a significant increase in size before deep learning is 

able to show any significant performance gains.

Finally we note some limitations of the Challenge. Although we have collated and provided 

all collected information from the data contributors, more detailed pathological information 

is needed for the heart sound recordings. Detection and properly identification of mitral 

stenosis, aortic stenosis and mitral insufficiency among others is still a challenge. We intend 

to work with industry and researchers alike to enhance the Challenge database in all these 

areas and would be grateful for continued contributions of data and source code, which we 

will post together with all the open source algorithms and annotated data from the 2016 

PhysioNet/Computing in Cardiology Challenge. The latter can be found on PhysioNet’s 

website at http://physionet.org/challenge/2016.
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Figure 1: 
Unbalanced data distribution for both training and test sets. Please note that the training and 

test databases with the same letter are related and are from the same data contributor, such as 

training-b and test-b.
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Figure 2: 
Performance of voting algorithms as a function of number of algorithms. Algorithms were 

chosen by ranking them in descending order of score on the randomly selected 600 training 

recordings, and the test data score was reported (to prevent overestimation of the score).

Clifford et al. Page 15

Physiol Meas. Author manuscript; available in PMC 2024 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Clifford et al. Page 16

Ta
b

le
 1

:

Fi
na

l s
co

re
s 

fo
r 

th
e 

to
p 

20
 o

f 
48

 o
ff

ic
ia

l e
nt

ra
nt

s,
 th

e 
ex

am
pl

e 
al

go
ri

th
m

 p
ro

vi
de

d 
an

d 
a 

si
m

pl
e 

vo
tin

g 
ap

pr
oa

ch
. B

es
t p

er
fo

rm
an

ce
s 

of
 C

ha
lle

ng
e 

en
tr

an
ts

 

ar
e 

un
de

rl
in

ed
. M

FC
C

 =
 m

el
-f

re
qu

en
cy

 c
ep

st
ra

l c
oe

ff
ic

ie
nt

s.
 D

T
W

 =
 d

yn
am

ic
 ti

m
e 

w
ar

pi
ng

. P
C

A
 =

 p
ri

nc
ip

al
 c

om
po

ne
nt

 a
na

ly
si

s.
 F

D
A

 =
 f

is
he

r 

di
sc

ri
m

in
an

t a
na

ly
si

s.
 N

N
 =

 n
eu

ra
l n

et
w

or
k.

 L
R

 =
 lo

gi
st

ic
 r

eg
re

ss
io

n.
 S

V
M

 =
 s

up
po

rt
 v

ec
to

r 
m

ac
hi

ne
. R

F 
=

 r
an

do
m

 f
or

es
t. 

E
L

M
 =

 e
xt

re
m

e 
le

ar
ni

ng
 

m
ac

hi
ne

. C
N

N
 =

 c
on

vo
lu

tio
na

l N
N

. R
N

N
 =

 r
ec

ur
re

nt

R
an

k
E

nt
ra

nt
Se

Sp
M

A
cc

Se
gm

en
t

F
ea

tu
re

 m
et

ho
d

# 
fe

at
ur

es
F

ea
tu

re
 

se
le

ct
io

n
# 

se
le

ct
ed

 
fe

at
ur

es
C

la
ss

if
ie

r
T

ra
in

in
g 

da
ta

 
di

vi
si

on
B

al
an

ci
ng

 
da

ta

1
Po

te
s 

et
 a

l. 
(2

01
6)

0.
94

24
0.

77
81

0.
86

02
Y

es
T

im
e-

fr
eq

ue
nc

y
12

4
N

o
12

4
A

da
B

oo
st

 &
 C

N
N

80
%

/2
0%

 tr
ai

n/
te

st
N

o

2
Z

ab
ih

i a
nd

 R
ad

 
(2

01
6)

0.
86

91
0.

84
90

0.
85

90
N

o
T

im
e,

 f
re

qu
en

cy
 

an
d 

tim
e-

fr
eq

ue
nc

y

40
Y

es
 (

w
ra

pp
er

)
18

E
ns

em
bl

e 
of

 N
N

s
20

-f
ol

d 
C

V
Y

es

3
K

ay
 a

nd
 A

ga
rw

a 
(2

01
6)

0.
87

43
0.

82
97

0.
85

20
Y

es
W

av
el

et
, M

FC
C

 
an

d 
co

m
pl

ex
ity

67
5

Y
es

 (
PC

A
)

70
D

ro
pC

on
ne

ct
ed

 
N

N
10

-f
ol

d 
C

V
N

o

4
B

ob
ill

o 
(2

01
6)

0.
86

39
0.

82
69

0.
84

54
Y

es
T

im
e-

fr
eq

ue
nc

y,
 

M
FC

C
s 

an
d 

w
av

el
et

s

14
2×

4 
×

 
17

2t
en

so
r

Y
es

 (
fi

sh
er

 
sc

or
e)

10
00

:1
 

re
du

ct
io

n
L

R
, S

V
M

 &
 K

N
N

10
-f

ol
d 

C
V

N
o

5
H

om
si

 e
t a

l. 
(2

01
6)

0.
88

48
0.

80
48

0.
84

48
Y

es
T

im
e,

 f
re

qu
en

cy
, 

w
av

el
et

, s
ta

tis
tic

al
13

1
N

o
13

1
E

ns
em

bl
e 

of
 

cl
as

si
fi

er
s

10
-f

ol
d 

C
V

N
o

6
Pl

es
in

ge
r 

et
 a

l. 
(2

01
6)

0.
76

96
0.

91
25

0.
84

11
Y

es
Fr

eq
ue

nc
y,

 
st

at
is

tic
al

31
5

Y
es

 
(P

R
O

B
A

fi
nd

)
51

Pr
ob

ab
ili

ty
 

as
se

ss
m

en
t

N
o

N
o

7
R

ub
in

 e
t a

l. 
(2

01
6)

0.
72

78
0.

95
21

0.
83

99
Y

es
M

FC
C

13
Y

es
 (

un
kn

ow
n)

6
C

N
N

80
%

/2
0%

 tr
ai

n/
te

st
N

o

8
A

bd
ol

la
hp

ur
 e

t a
l. 

(2
01

6)
0.

76
96

0.
88

31
0.

82
63

Y
es

T
im

e,
 ti

m
e-

fr
eq

ue
nc

y,
 

pe
rc

ep
tu

al

89
Y

es
 (

FD
A

)
un

kn
ow

n
N

N
s 

vo
tin

g
N

o
N

o

9
Ta

ng
 e

t a
l. 

(2
01

6)
0.

82
20

0.
81

49
0.

81
85

Y
es

M
ul

ti-
do

m
ai

n 
fe

at
ur

es
32

4
N

o
32

4
B

PN
N

V
ar

ie
d 

tr
ai

n/
te

st
 

di
vi

si
on

N
o

10
T

sc
ha

nn
en

 e
t a

l. 
(2

01
6)

0.
84

82
0.

77
62

0.
81

22
Y

es
D

ee
p 

C
N

N
-b

as
ed

 
fe

at
ur

es
12

,1
60

Y
es

 (
PC

A
)

40
0

SV
M

5-
fo

ld
 C

V
N

o

11
N

ila
no

n 
et

 a
l. 

(2
01

6)
0.

76
96

0.
85

27
0.

81
11

Y
es

Sp
ec

tr
og

ra
m

, 
M

FC
C

un
kn

ow
n

N
o

un
kn

ow
n

L
R

, S
V

M
, R

F 
an

d 
C

N
N

5-
fo

ld
 C

V
N

o

12
W

hi
ta

ke
r 

an
d 

A
nd

er
so

n 
(2

01
6)

0.
84

29
0.

77
16

0.
80

73
Y

es
Fr

eq
ue

nc
y,

 s
pa

rs
e 

co
di

ng
un

kn
ow

n
N

o
un

kn
ow

n
SV

M
10

00
/2

15
3 

tr
ai

n/
te

st
N

o

13
Y

an
g 

an
d 

H
si

eh
 

(2
01

6)
0.

77
49

0.
82

87
0.

80
18

N
o

A
ug

m
en

te
d 

fe
at

ur
es

un
kn

ow
n

N
o

un
kn

ow
n

R
N

N
1/

5 
da

ta
 f

or
 C

V
N

o

14
Y

az
da

ni
 e

t a
l. 

(2
01

6)
0.

74
87

0.
85

08
0.

79
98

Y
es

H
ea

rt
be

at
, t

ap
e-

lo
ng

un
kn

ow
n

N
o

un
kn

ow
n

E
ns

em
bl

e 
of

 
cl

as
si

fi
er

s
10

-f
ol

d 
C

V
Y

es

15
B

an
er

je
e 

et
 a

l. 
(2

01
6)

0.
80

10
0.

79
01

0.
79

56
Y

es
T

im
e-

fr
eq

ue
nc

y
88

Y
es

 (
M

IC
)

31
/8

8
R

F
5-

fo
ld

 C
V

Y
es

Physiol Meas. Author manuscript; available in PMC 2024 October 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Clifford et al. Page 17

R
an

k
E

nt
ra

nt
Se

Sp
M

A
cc

Se
gm

en
t

F
ea

tu
re

 m
et

ho
d

# 
fe

at
ur

es
F

ea
tu

re
 

se
le

ct
io

n
# 

se
le

ct
ed

 
fe

at
ur

es
C

la
ss

if
ie

r
T

ra
in

in
g 

da
ta

 
di

vi
si

on
B

al
an

ci
ng

 
da

ta

16
Si

ng
h-

M
ill

er
 a

nd
 

Si
ng

h-
M

ill
er

 
(2

01
6)

0.
73

82
0.

84
99

0.
79

41
N

o
Sp

ec
tr

al
un

kn
ow

n
Y

es
25

R
F

10
-f

ol
d 

C
V

N
o

17
R

yu
 e

t a
l. 

(2
01

6)
0.

66
63

0.
87

75
0.

78
69

Y
es

C
N

N
-b

as
ed

 
fe

at
ur

es
un

kn
ow

n
N

o
un

kn
ow

n
C

N
N

31
26

/3
00

 tr
ai

n/
te

st
N

o

18
Y

an
g 

et
 a

l. 
(2

01
6)

0.
66

49
0.

90
88

0.
78

69
Y

es
A

ud
io

 s
ig

na
l 

an
al

ys
is

un
kn

ow
n

Y
es

 (
R

FE
)

un
kn

ow
n

SV
M

 &
 E

L
M

10
-f

ol
d 

C
V

N
o

19
B

ou
ri

l e
t a

l. 
(2

01
6)

0.
73

30
0.

83
98

0.
78

64
Y

es
T

im
e,

 f
re

qu
en

cy
74

Y
es

 (
un

kn
ow

n)
un

kn
ow

n
SV

M
N

o
N

o

20
O

rt
iz

 e
t a

l. 
(2

01
6)

0.
78

53
0.

78
55

0.
78

54
Y

es
T

im
e,

 M
FC

C
, 

D
T

W
un

kn
ow

n
N

o
un

kn
ow

n
SV

M
V

ar
ie

d 
tr

ai
n/

te
st

 
di

vi
si

on
N

o

–
Sa

m
pl

e 
en

tr
y

0.
65

45
0.

75
69

0.
70

51
Y

es
T

im
e,

 a
m

pl
itu

de
20

Y
es

 (
lik

el
ih

oo
d 

ra
tio

)
7

L
R

10
-f

ol
d 

C
V

Y
es

–
V

ot
in

g 
re

su
lts

 
(b

es
t)

0.
71

73
0.

93
09

0.
82

41
–

–
–

–
–

–
–

–

Physiol Meas. Author manuscript; available in PMC 2024 October 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Clifford et al. Page 18

Ta
b

le
 2

:

Su
m

m
ar

y 
of

 th
e 

pa
pe

rs
 in

cl
ud

ed
 in

 th
is

 s
pe

ci
al

 is
su

e.

W
or

k 
in

 t
hi

s 
sp

ec
ia

l 
is

su
e

Se
Sp

M
A

cc
Se

gm
en

t
F

ea
tu

re
 m

et
ho

d
# 

fe
at

ur
es

F
ea

tu
re

 
se

le
ct

io
n

# 
se

le
ct

ed
 

fe
at

ur
es

C
la

ss
if

ie
r

T
ra

in
in

g 
da

ta
 

di
vi

si
on

B
al

an
ci

ng
 

da
ta

A
bd

ol
la

hp
ur

 e
t a

l. 
(2

01
7)

0.
76

96
0.

88
31

0.
82

63
 *

Y
es

T
im

e,
 ti

m
e-

fr
eq

ue
nc

y,
 

pe
rc

ep
tu

al

90
Y

es
 (

FD
A

)
un

kn
ow

n
N

N
s 

vo
tin

g
tr

ai
n/

te
st

 
di

vi
si

on
N

o

H
om

si
 a

nd
 W

ar
ri

ck
 

(2
01

7)
0.

79
60

0.
80

60
0.

80
10

Y
es

T
im

e,
 f

re
qu

en
cy

, 
w

av
el

et
, s

ta
tis

tic
al

13
1

Y
es

19
/1

7
E

ns
em

bl
e 

of
 

cl
as

si
fi

er
s

10
-f

ol
d 

C
V

N
o

K
ay

 a
nd

 A
ga

rw
al

 
(2

01
7)

–
–

0.
58

10
Y

es
W

av
el

et
, M

FC
C

, 
in

te
rb

ea
t a

nd
 

co
m

pl
ex

ity

67
5

Y
es

 (
PC

A
)

50
D

ro
pC

on
ne

ct
ed

 N
N

10
-f

ol
d 

C
V

Y
es

L
an

gl
ey

 a
nd

 M
ur

ra
y 

(2
01

7)
0.

55
89

0.
96

33
0.

76
11

 *
N

o
Sp

ec
tr

al
 a

m
pl

itu
de

 
an

d 
w

av
el

et
 

en
tr

op
y

un
kn

ow
n

N
o

un
kn

ow
n

D
ec

is
io

n 
tr

ee
C

V
N

o

M
ak

ni
ck

as
 a

nd
 

M
ak

ni
ck

as
 (

20
17

)
0.

80
63

0.
87

66
0.

84
15

#
N

o
M

FS
C

N
/A

N
o

N
/A

D
ee

p 
C

N
N

tr
ai

n/
te

st
 

di
vi

si
on

Y
es

Pl
es

in
ge

r 
et

 a
l. 

(2
01

7)
0.

89
00

0.
81

60
0.

85
50

Y
es

Fr
eq

ue
nc

y,
 

st
at

is
tic

al
22

8
Y

es
 

(P
R

O
B

A
fi

nd
)

53
Pr

ob
ab

ili
ty

 
as

se
ss

m
en

t
N

o
N

o

W
hi

ta
ke

r 
et

 a
l. 

(2
01

7)
0.

80
10

0.
80

60
0.

80
30

Y
es

T
im

e,
 f

re
qu

en
cy

, 
sp

ar
se

 c
od

in
g

un
kn

ow
n

N
o

un
kn

ow
n

SV
M

10
00

/2
15

3 
tr

ai
n/

te
st

N
o

M
FC

C
 =

 m
el

-f
re

qu
en

cy
 c

ep
st

ra
l c

oe
ff

ic
ie

nt
s.

 M
FS

C
 =

 m
el

-f
re

qu
en

cy
 s

pe
ct

ra
l c

oe
ff

ic
ie

nt
s.

 P
C

A
 =

 p
ri

nc
ip

al
 c

om
po

ne
nt

 a
na

ly
si

s.
 F

D
A

 =
 f

is
he

r 
di

sc
ri

m
in

an
t a

na
ly

si
s.

 N
N

 =
 n

eu
ra

l n
et

w
or

k.
 S

V
M

 =
 s

up
po

rt
 

ve
ct

or
 m

ac
hi

ne
. C

N
N

 =
 c

on
vo

lu
tio

na
l N

N
. C

V
 =

 c
ro

ss
-v

al
id

at
io

n.

* in
di

ca
te

s 
th

e 
pa

pe
r 

pr
es

en
ts

 th
e 

sa
m

e 
re

su
lts

 f
ro

m
 th

e 
C

ha
lle

ng
e 

of
fi

ci
al

 e
nt

ri
es

,

# in
di

ca
te

s 
th

e 
pa

pe
r 

pr
es

en
ts

 th
e 

sa
m

e 
re

su
lts

 f
ro

m
 th

e 
C

ha
lle

ng
e 

un
of

fi
ci

al
 e

nt
ri

es
,

□
in

di
ca

te
s 

th
e 

pa
pe

r 
pr

es
en

ts
 n

ew
 r

es
ul

ts
 in

 th
is

 f
ol

lo
w

-u
p 

ph
as

e.

Physiol Meas. Author manuscript; available in PMC 2024 October 08.


	Abstract
	Introduction
	Challenge data
	Example algorithms and scoring
	Benchmark classifier algorithm
	Voting algorithm
	Scoring

	Results of the Challenge
	Review of Articles in the Special Issue
	
Abdollahpur et al. (2017)

	
Homsi and Warrick (2017)

	
Kay and Agarwal (2017)

	
Langley and Murray (2017)

	
Maknickas and Maknickas (2017)

	
Plesinger et al. (2017)

	
Whitaker et al. (2017)

	
Liu et al. (2017)


	Discussion and Conclusions
	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:

