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The positioning and communication between the nucleus and centrosomes
are essential in cell division, differentiation and tissue formation. During
skeletal myogenesis, the nuclei become evenly spaced with the switch
of the microtubule-organizing centre (MTOC) from the centrosome to
the nuclear envelope (NE). We report that the tail-anchored sarcolemmal
membrane associated protein 3 (SLMAP3), a component of the MTOC
and NE, is crucial for myogenesis because its deletion in mice leads to
a reduction in the NE-MTOC formation, mislocalization of the nuclei,
dysregulation of the myogenic programme and abnormal embryonic
myofibres. SLMAP3−/− myoblasts also displayed a similar disorganized
distribution of nuclei with an aberrant NE-MTOC and defective myofibre
formation and differentiation programming. We identified novel interactors
of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1),
AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin
family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain
2) and nuclear lamins, and observed that the distribution of centrosomal
proteins at the NE together with Nesprin-1 was significantly altered by
the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to
negatively regulate Hippo signalling, but its loss was without impact on
this pathway in developing muscle. These results reveal that SLMAP3 is
essential for skeletal myogenesis through unique mechanisms involving the
positioning of nuclei, NE-MTOC dynamics and gene programming.

1. Introduction
Mechanisms that guide the positioning of the nucleus are critical for cell
migration, division and tissue formation. The linker of nucleoskeleton and
cytoskeleton (LINC) complex comprising klarsicht/ANC-1/Syne-1 homology
(KASH) and Sad1/UNC-84 (SUN) proteins are believed to bridge the nuclear
membrane to transmit mechanical information from the cytoskeleton to
influence nuclear positioning as well as impact the nuclear lamina and
chromatin organization [1,2]. Skeletal muscle formation is a fascinating
example of the radical cellular cytoskeleton reorganizations that cells can
undergo, where the proliferative progenitor myoblast cells differentiate
and fuse, forming a syncytium that is called myotube [3]. In this proc-
ess, a cytoskeletal remodelling takes place before myoblast fusion [4–6],
where microtubule-organizing centre (MTOC) proteins from the centrosome
relocate to the nuclear envelope (NE) [4,7–9], in a process dependent on the
LINC complex member Nesprin-1 [10]. It is hypothesized that this MTOC
switch is important for the proper localization of nuclei in developing
myotubes [11,12]. Nuclear mispositioning in myofibres has been associated
with muscular dysfunctions, including Emery–Dreifuss muscular dystrophy
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(EDMD) and centronuclear myopathy (CNM) [11,12], which are characterized by muscle weakness and wasting [13,14].
Following the MTOC switch in differentiating myoblast, the Golgi apparatus relocalizes in perinuclear regions (PEs), forming
a Golgi belt-like ring structure [4,5,8,15], and itself also becomes an MTOC [16–18]. The endoplasmic reticulum (ER) exit
sites (ERES) are remodelled together with the Golgi [5,15,19]. The remodelling of Golgi and ERES suggests that the secretory
pathway surrounding the nucleus must be also important for the skeletal muscle function, such as the proper transport of
M-cadherin to cellular membrane and contribute to myoblast fusion [19]. Centrosomal proteins including pericentrin, PCM1
and AKAP9 have been reported to be important for the centrosome-NE MTOC switch and Golgi remodelling [10,18,20,21].

Previously, we defined the sarcolemmal membrane associated protein 3 (SLMAP3) as a component of the centrosome, where
it localizes via its N-terminal sequences encompassing the forkhead-associated domain (FHA) [22]. SLMAP3 can also target
the perinuclear membrane via its hydrophobic C-terminal tail anchor [23,24]. SLMAP3 has also been found in the striatin-inter-
acting phosphatase and kinase (STRIPAK) complex [25,26] and linked to the Hippo signalling by inhibiting MST kinase, and
consequently activating Yes1 associated transcriptional regulator (YAP) and transcriptional coactivator with PDZ-binding motif
(TAZ) to induce proliferation [27–30]. To elucidate the role of SLMAP3 in vivo, we devised a strategy to specifically delete the
SLMAP3 isoform in embryonic and post-natal heart muscle, but these mice exhibited normal physiology most likely due to the
presence of the other SLMAP isoforms in cardiomyocytes [31,32]. Splicing mechanisms generate many SLMAP isoforms that are
expressed in a developmental and tissue-specific manner [33,34]. Here we report the generation of global SLMAP3 knockout(−/−)

mice, which displayed stunted growth characteristics with widespread organ deficits leading to lethality. SLMAP3−/− embryos
presented abnormal skeletal muscle and molecular analysis indicated downregulation of genes involved in skeletal muscle
development. Furthermore, the deletion of the SLMAP gene in mouse myoblasts, which express only SLMAP3, caused aberrant
differentiation and myotube formation. A major impact on the distribution and positioning of the nuclei and a defective
centrosome-NE MTOC switch was evident in vivo, and cultured myotubes devoid of SLMAP3. The loss of SLMAP3 also led to a
reduction in the Golgi apparatus remodelling to PEs in myoblasts. We identified SLMAP3 in a novel complex with components
of the MTOC, kinesin-1 motor proteins and nuclear lamins. AKAP9, pericentrin and PCM1, as well as Kinesin-1 members Kif5B,
KLC1 and KLC2, are known to contribute to the proper positioning of nuclei in developing myotubes [20,35–37]. The ability of
SLMAP3 to localize and assemble with components from the various organelles implies that it can influence their functions and
organization in cell biology. The impact on genes associated with muscle development and new interactions of SLMAP3 reveal
an essential role for this protein through mechanisms linking centrosomal and nuclear organization and activity.

2. Results
2.1. SLMAP3 is present in the centrosome and perinuclear membrane of skeletal myoblasts
The slmap gene encodes multiple protein isoforms, which display C-terminus transmembrane domain (TM) and coiled-coil
(CC) domains along their structure [22,33,34] (electronic supplementary material, figure S1a). The TM domain anchors SLMAP
to ER, mitochondria and perinuclear membranes [23,23,24], whereas the CC domains are responsible for protein–protein
interaction, including its own self-assembly [24,38,39]. The SLMAP3 isoform additionally has an N-terminus containing an FHA
(electronic supplementary material, figure S1a), which is necessary to target the centrosome [22,40]. SLMAP3 is ubiquitously
expressed whereas the other isoforms are expressed in a tissue-specific manner, with muscle subtypes exhibiting diverse
isoforms [33,34]. SLMAP3 localization in skeletal myoblasts was examined by transducing C2C12 cells with adenovirus carrying
SLMAP3 tagged with green fluorescent protein (GFP-SLMAP3) and inducing their differentiation in low serum medium for
3 days (electronic supplementary material, figure S1b). In undifferentiated and differentiated myoblasts (stained for MyoG),
GFP-SLMAP3 localized in the centrosome (arrows) and NE (arrowhead). Upon differentiation, GFP-SLMAP3 localization in
the NE becomes more evident and correlates with pericentrin localization at this structure (electronic supplementary material,
figure S1b). The cytoplasmic localization of GFP-SLMAP3 corresponds to the ER, which was stained for calnexin, with Pearson’s
r = 0.705 and Mander’s coefficients M1 = 0.991 and M2 = 0.963 (electronic supplementary material, figure S1c). The Golgi staining
with anti-GM130 showed poor colocalization of GFP-SLMAP3 with this organelle (Pearson’s r = 0.241). These data demonstrate
that in skeletal myoblasts SLMAP3 localizes in the centrosome, NE and in the ER, but not in the Golgi apparatus.

2.2. Genes downregulated in SLMAP3−/− mice embryos enrich for muscle developmental processes
Since the in vivo function of SLMAP remains elusive, we have generated a floxed mouse line for global ablation of SLMAP3
using the Cre-Lox system. The loxP sites were inserted flanking exon 3 of the SLMAP gene (reference ENSMUST00000139075.8;
figure 1a) as described [31], and these mice were crossed with CMV-Cre mice to create the SLMAP3−/− animals (figure 1b). The
resulting mice exhibit late embryonic/perinatal lethality due to underdeveloped essential organs, such as lungs, and display
other phenotypes including short tail and limbs (figure 1c) and reduced body weight (figure 1d).

For a better characterization of SLMAP3−/− embryonic phenotype, we performed RNA sequencing of whole E11.5 embryos
from SLMAP3−/− and wild-type (WT) animals (electronic supplementary material, table S1). The significant genes with log2 fold
change below or equal to −0.75 were selected as query for the tissue-specific expression analysis (TSEA) tool [41,42] and for gene
ontology enrichment analysis on g:Profiler [43]. TSEA results indicate the strongest enrichment of muscle tissues, with statistical
significance reached in all specificity index thresholds (pSI; figure 1e), and the topmost significant enriched biological processes
detected on g:Profiler are associated with muscle development (figure 1f). The data are also available in the Gene Expression
Omnibus (GEO) genomics data repository with the accession number GSE230748.
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2.3. SLMAP3 exists in association with MTOC proteins and nuclear lamins
To investigate SLMAP3 interactors in vivo, we performed immunoprecipitation followed by mass spectrometry (IP–MS) with
protein lysates from E12.5 mouse brain, an organ where only the SLMAP3 isoform is expressed (figure 2a). We identified
SLMAP3 in a new complex with AKAP9, PCNT, PCM1, Kinesin-1 subunits (Kif5B, KLC1 and KLC2) and lamin B as well as the
expected STRIPAK component striatin (STRN) (electronic supplementary material, table S2). The IP–MS data were validated by
IP with anti-SLMAP and western blot with anti-STRN and anti-lamin B1, both of which were detected in the IP–MS (figure 2b).
The SLMAP3 interactors were used for gene ontology enrichment analysis on g:Profiler. The top cellular components enriched
include cytoskeleton (GO:0005856) and supramolecular complex (GO:0099080), but also centrosome (GO:0005813), microtubule
cytoskeleton (GO:0015630) and MTOC (GO:0005815; figure 2c). The proteins enriching these cellular components are shown
in figure 2d. These proteomics data are available via ProteomeXchange with identifier PXD041687, and the exclusive unique
spectrum counts of the interactors are given in electronic supplementary material, table S2.

It is notable that SMAP3 is a component of the MTOC and localizes to the NE and its newly identified interactors (PCNT,
PCM1, AKAP9, kinesin-1 and lamin B) also reside at these locations, providing credence to the IP–MS data. These proteins play
important roles during skeletal muscle development, by participating in nuclear positioning and in centrosomal MTOC switch
to the NE [11,12]. Considering the downregulation of genes associated with muscle development and the identification of the
aforementioned proteins in complex with SLMAP3, we speculated that depletion of SLMAP3 impairs muscle development by
affecting the function of MTOC.

2.4. SLMAP3−/− myoblasts display differentiation and myotube formation defects
To elucidate the role of SLMAP3 in skeletal muscle development, we generated SLMAP3−/− C2C12 myoblasts with CRISPR/Cas9,
as these cells represent an excellent model of myogenesis. Two guide RNAs were designed to target exon 3 of SLMAP (reference
ENSMUST00000139075.8) next to the predicted start codon (electronic supplementary material, figure S2a), keeping the same
strategy of exon 3 disruption as in our Cre-Lox SLMAP3−/− mouse. A monoclonal colony of each guide was selected for further
experiments, designated KO1 and KO2 (colony 90 and 14, respectively), with depletion of the SLMAP3 protein assayed by
western blots (electronic supplementary material, figure S2b) and immunofluorescence staining of SLMAP3 in KO2 (electronic
supplementary material, figure S2c).

Skeletal myogenesis is regulated by the myogenic regulatory factors (MRFs) comprising the basic helix–loop–helix transcrip-
tion factors MyoD, Myf5, MyoG and MRF4 [3]. To assess any impact of SLMAP3 loss on the differentiation of C2C12 myoblasts,
we investigated the expression of these MRFs. Real-time quantitative polymerase chain reaction (RT-qPCR) indicated downre-
gulation of MyoD and MyoG (figure 3a), with MyoD and MyoG expression reduced ~9-fold and ~19-fold, respectively, due to
SLMAP3 loss (figure 3b,c), which is similar to what we observed in SLMAP−/− embryos. These results indicate that deletion of
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Figure 1. Genes downregulated in SLMAP3−/− mouse embryos enrich for muscle developmental processes. (a) Mice carrying floxed slmap gene [31] were bred
with mice carrying cre under CMV promoter to nullify SLMAP3 expression. (b) Western blot with an anti-SLMAP antibody that detects all isoforms showing SLMAP
expression in SLMAP3−/−, SLMAP3−/+ and SLMAP3+/+ E11.5 embryos. (c) Phenotype of SLMAP3−/− P0 mice, with short limbs and tails. (d) SLMAP3−/− pups have
significantly reduced body weight when compared to SLMAP3+/− or SLMAP3+/+ animals. (e) The tissue-specific expression analysis (TSEA) shows a significant
enrichment of muscle tissues of the downregulated genes in SLMAP3−/− embryos in all specificity index threshold (pSI) stringencies. (f) The downregulated genes in
RNA-seq from SLMAP3−/− embryos enrich for muscle developmental processes. Three SLMAP3−/− and four wild-type (WT) embryos were sequenced. Gene ontology
enrichment performed using g:Profiler.
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SLMAP3 in C2C12 myoblasts recapitulates transcriptional changes observed in SLMAP3−/− embryos and represents an excellent
model to investigate further the mechanisms of SLMAP3 action in myogenesis.

Given the changes in the MRF transcripts in SLMAP3−/− C2C12 myoblasts, we proceeded to differentiation assays. For this,
we incubated cells with 2% horse serum medium and collected protein lysates on days 0, 2 and 4 of differentiation for western
blot analysis. The results show that both SLMAP3−/− C2C12 cells have drastically reduced expression of MyoG and myosin
heavy chain (MHC) proteins, although no changes in MyoD levels were observed on day 0 and day 2 of differentiation (figure
3d), despite the reduced transcripts observed in the RT-qPCR (figure 3a). On day 4, the KO cells still had significant MyoD
expression, which is reflective of a defect in differentiation. A significantly reduced fusion index during differentiation of
SLMAP3−/− myoblasts was also notable by day 4 (figure 3e), and on day 8 of differentiation, it was reduced by ~93% in KO1 and
~40% in KO2 (figure 3e). These findings indicate that SLMAP3 is important for the proper skeletal myoblast differentiation and
fusion via mechanisms involving the temporal expression of key myogenic factors such as MyoG and MyoD.

2.5. Depletion of STRN3, a STRIPAK component, does not affect myoblast differentiation
SLMAP3 is found in complex with STRIPAK together with STRN3, the latter that acts as a regulatory B‴ subunit of PP2A
phosphatase [25,26]. Similarly to SLMAP3, STRN3 knockout results in embryonic lethality with complete penetrance [44]. Due
to the partnership between SLMAP3 and STRN3 in the STRIPAK, and because of the lethal phenotype with their knockout, we
questioned if depletion of STRN3 would also affect skeletal myoblasts. Two shRNAs targeting STRN3 and a shRNA scramble
(SC) control were designed and packaged in lentivirus and used to transduce C2C12 myoblasts. Both the shRNAs reduced
STRN3 protein levels, but shRNA STRN3#2 completely abolished its expression (figure 3f). Induction of myoblast differentiation
with low serum levels showed that the C2C12-shRNA STRN3#2 cells did not have reduced expression of MyoD, MyoG or MHC
(figure 3g), nor any impairment of myotube formation (figure 3h) after 5 days of differentiation compared to the C2C12-shRNA
SC control. These findings suggest that SLMAP3 action in myoblast differentiation is distinctly unique from that of STRN3.

2.6. Differentiating SLMAP3−/− myoblasts present defective MTOC recruitment to the nuclear envelope and reduced
Golgi belt-like ring structure formation

Given that SLMAP3 can reside at the centrosome in association with its identified interactors AKAP9, PCNT, PCM1 and
kinesin-1 subunits, we hypothesized that it contributes to the function of these proteins in myogenesis. To investigate this, we
analysed the MTOC switch from the centrosome to the NE during the differentiation of SLMAP3−/− C2C12 cells.

Firstly, we performed the differentiation of SLMAP3−/− C2C12 myoblasts for 5 days and analysed the localization of pericen-
trin, AKAP6 and Kif5b proteins by immunofluorescence. AKAP6 was reported to be a key player in the MTOC switch of
centrosomal proteins to the NE [18,21]. Because these proteins were described to localize in the NE after MyoG expression [21],
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we only analysed MyoG+ cells. With CellProfiler software, we used the MyoG staining to mask the cells and quantify their
pericentrin, AKAP6 and Ki5fb mean intensity staining in concentric bands of 1 µm around the nucleus, which were designa-
ted NE, perinuclear (Peri) and cytoplasm (Cyto). It is notable that pericentrin, AKAP6 and Kif5b have the NE recruitment
impaired in SLMAP3−/− MyoG+ C2C12 cells (electronic supplementary material, figure S3a–c, respectively). The mean intensity
of pericentrin, AKAP6 and Kif5b in the NE was 5.5-fold, 3.5-fold and 2.47-fold higher in the WT compared to the KO cells. Also,
the differences in the mean intensity between NE and Cyto for their staining in SLMAP3−/− MyoG+ C2C12 cells were reduced
compared to WT controls, suggesting a reduced recruitment of these proteins to the NE.

If pericentrin, AKAP6 and Kif5b recruitment to the NE is affected, then a defective remodelling of the Golgi apparatus to PEs
is also expected. AKAP6 was reported to be recruited to the NE by the interaction with the LINC complex member Nesprin-1α
[18,21,45]. AKAP6 binds to AKAP9, which in turn is important for Golgi recruitment [18]. To assess the Golgi remodelling, we
measured the intensity of the staining Golgi around the nucleus of MyoG+ cells, with the modification of having the first band
starting 0.5 µm further from the NE, and then calling the resulting bands as Peri, Cyto1 and Cyto2. The recruitment of Golgi
apparatus to PEs was reduced in SLMAP3−/− myoblasts as well, with a higher difference between the mean intensity in the Peri
and Cyto2 bands in the WT compared to the KO cells (figure 4a).

To test if the reduced recruitment of centrosomal proteins to the NE of SLMAP3−/− myoblasts was because of either a delayed
differentiation or an anchorage defect, we performed the pericentrin, AKAP6 and Kif5b analysis again, but in MHC+ cells after
8 days of differentiation. Remarkably, their recruitment to the NE was still significantly impaired in SLMAP3−/− MHC+ cells
(figure 4b–d). To further validate this finding, we analysed pericentrin recruitment to the NE in MHC+ cells in two other colonies
generated by each sgRNA, and the same phenotype was observed (electronic supplementary material, figure S3d). To rule out
the possibility of reduced expression of these proteins due to the differentiation defects, we performed western blot with C2C12
lysates after 8 days of differentiation, and the expressions of AKAP6 and Kif5b were not significantly different from that of
the control WT cells (figure 4e). Additionally, after 8 days of differentiation, the MHC expression in C2C12 KO2 cells was no
longer significantly reduced compared to the WT (figure 4e). Therefore, the reduced presence of AKAP6, Kif5b and most likely
pericentrin in the NE is due to protein mislocalization and not changes in their protein levels.
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Figure 3. SLMAP3−/− myoblasts display differentiation and myotube formation defects. (a) RT-qPCR shows that KO1 and KO2 cells have altered the expression of
MRFs. (b) The RNA-seq from E11.5 was validated by RT-qPCR, where we confirmed the reduced expression of myod1 and myog. (c) Comparison of the mean log2
fold change (log2FC) values from the transcripts of both KO C2C12 cells and E11.5 embryos obtained by RT-qPCR. The C2C12 cells and embryos null for SLMAP3 have
significantly reduced myod and myog expression. (d) Differentiation assay was performed with low serum media, and protein lysates were collected on days 0, 2 and 4.
The western blot shows that C2C12 myoblasts lacking SLMAP3 have reduced MHC and MyoG protein levels. (e) Myotube formation in SLMAP−/− C2C12 cells is impaired.
On differentiation day 4, very few myotubes are observed, and by day 8, the fusion index is still significantly reduced for both KO1 and KO2 C2C12 cells. Scale bar, 125
µm. (f) Two shRNAs were designed to reduce the expression of STRN3. The shRNA#2 had the highest depletion in expression and was used for further experiments.
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replicates. The average of each biological replicate is plotted. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant.
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Although depletion of STRN3 did not affect C2C12 differentiation or myotube formation, we tested if this protein had any
impact on the recruitment of MTOC proteins to the NE. After 5 days of differentiation, the STRN3-depleted cells did not present
defective pericentrin recruitment to the NE (figure 4f).

These findings suggest SLMAP3 has a unique mode of action in muscle formation through a structural mechanism involving
the anchorage of centrosomal proteins to the NE, and consequently, for the Golgi remodelling in PEs and myoblast differentia-
tion, a function that is distinct from STRN3.

2.7. Differentiating SLMAP3−/− myoblasts display defective microtubule growth from the nuclear envelope
Analysis of microtubule cytoskeleton in both SLMAP3−/− and WT cells before differentiation does not indicate any obvious
differences between them (figure 5a). Also, microtubule nucleation assay with α-tubulin and AKAP9 staining shows centro-
somal microtubule nucleation in both undifferentiated SLMAP3−/− and WT cells (figure 5b). However, it is observable that
microtubule nucleation from the centrosome in SLMAP3−/− cells is stronger compared to WT myoblasts (arrows in figure 5b).
This could be because in the WT cells, there was already a level of decentralization of MTOC activity from the centrosome to
the NE (arrowhead in figure 5b). In SLMAP3−/− fibroblasts, the microtubule cytoskeleton and Golgi (electronic supplementary
material, figure S4a) and microtubule growth from the centrosome (electronic supplementary material, figure S4b) do not have
any obvious abnormalities. Additionally, microtubule nucleation remains in the centrosome of fibroblasts rather than decentral-
ized to the Golgi (electronic supplementary material, figure S4c). This is consistent with our findings in undifferentiated C2C12
myoblasts, where centrosomal MTOC activity is not reduced in cells lacking SLMAP3.

Next, we asked how the microtubule growth would appear in SLMAP3−/− C2C12 cells after differentiation, considering
their defective MTOC switch to the NE. The initial visualization of the microtubule cytoskeleton in myotubes after 5 days of
differentiation shows that parallel arrays of microtubules along the myotube structure are present in both SLMAP3−/− and WT
myoblasts (figure 5c). To visualize the sites of microtubule growth, we performed a microtubule nucleation assay. It is visible
that the microtubule growth in SLMAP3−/− myotubes takes place in the cytoplasm (figure 5d). By performing this same assay
but with Golgin-97 staining, it became evident that those sites of microtubule nucleation in the cytoplasm correspond to the
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dispersed Golgi (figure 5e). The quantification of the mean intensity of α-tubulin staining in the NE was also significantly
reduced in SLMAP3−/− MyoG+ cells (figure 5f), suggesting reduced microtubule nucleation from the NE in differentiation.

These results suggest two things: firstly, the nucleation of the microtubules from the NE in SLMAP3−/− myotubes is compro-
mised, consistent with our findings of the defective MTOC switch; secondly, the microtubule nucleation from the centrosome
before differentiation and from the Golgi after differentiation is unaffected. Thus, in the context of skeletal myogenesis,
SLMAP3 is important for microtubule nucleation specifically from the NE.

2.8. Skeletal muscle of SLMAP3−/− embryos display defective recruitment of pericentrin to the nuclear envelope and
nuclear mispositioning

Given the downregulation of genes involved in muscle development in SLMAP3−/− embryos and the defects in differentiation,
myotube formation and MTOC switch, we analyed sections of hind limbs at E16.5, a time when secondary myogenesis is taking
place and sustained mostly by myoblast fusion [3]. It is notable that the overall muscle in the SLMAP3−/− embryos, visualized by
haematoxylin and eosin (H&E) staining, is smaller compared to WT (figure 6a). We manually quantified the fibre length across
the muscle using Fiji software and found that the fibre length in SLMAP3−/− embryos was reduced by approximately 40% when
compared to WT (figure 6a). Although we could not identify significant changes in the diameter and in the number of nuclei
per fibre of the SLMAP3−/−, we found that the inter-nuclear distance within the fibres was approximately half of the distance in
WT embryonic muscle (figure 6a). In one SLMAP3−/− embryo, multiple muscle fibres show agglomeration of nuclei (figure 6a),
compared with the even spread seen in WT. These findings suggest that the mechanism of muscle abnormalities in SLMAP3−/−

embryos involves, at least partially, an impairment of nuclei positioning.
The fact that we could not identify differences in the number of nuclei per fibre in SLMAP3−/− embryos could be an indication

that myoblast fusion was not as impaired as we observed in culture during differentiation of C2C12 myoblasts. Also, although
the overall muscle is smaller and the inter-nuclei distance is reduced in SLMAP3−/− embryos, the muscle fibres are visibly
formed (figure 6a). Additionally, at E16.5, the analysis of MHC expression in the limbs by western blot indicates no difference in

C
2

C
1

2
-W

T
C

2
C

1
2

-K
O

2

DAPI

DAPI

Undifferentiated C2C12- Microtubules

DAPI a-tubulin SLMAP Merge

Undifferentiated C2C12- Microtubule Nucleation

AKAP9DAPI a-tubulin Merge

Differentiated C2C12 - Microtubules - Differentiation Day 5

a-tubulin MergeDAPI SLMAP

a-tubulin

Differentiated C2C12 - Microtubule Nucleation - Differentiation Day 5

C2C12- Microtubules (MyoG+) - Differentiation Day 5

MyoG a-tubulin Merge

0.20
***

**0.15

0.10

0.05

N
E

 M
ea

n
 I

n
te

n
si

ty
 (

a.
u

.)

0.00

K
O

1
K
O

2

SLMAP

C2C12-MT NE (MyoG+)

Genoytype

W
T

Merge

C
2

C
1

2
-W

T
C

2
C

1
2

-K
O

2

C
2

C
1

2
-W

T
C

2
C

1
2

-K
O

2

Differentiated C2C12 - Microtubules and Golgi - Differentiation Day 5

DAPI a-tubulin Golgin-97 Merge

C
2

C
1

2
-K

O
1

C
2
C

1
2
-K

O
2

C
2
C

1
2
-W

T
 

C
2
C

1
2
-K

O
2

C
2
C

1
2
-W

T
 

(a)

(e)(d)

(f)

(b) (c)

C
2
C

1
2
-K

O
1

C
2
C

1
2
-K

0
2

C
2
C

1
2
-W

T
 

Figure 5. Differentiating SLMAP3−/− myoblasts display defective microtubule growth from the NE. (a) Microtubule cytoskeleton in undifferentiated C2C12 cells. No
obvious abnormalities could be seen in SLMAP3−/− myoblasts. (b) In undifferentiated cells, microtubule nucleation assay shows a stronger microtubule growth from
the centrosomes of SLMAP3−/− myoblasts (arrow), whereas microtubule nucleation in WT cells seems already partially switched to the NE (arrowhead). (c) Microtubule
cytoskeleton in differentiated C2C12 cells. Parallel arrays of microtubules are present in both SLMAP3−/− and WT cells. (d) Microtubule nucleation assay in differentiated
C2C12 cells shows that in WT cells, the microtubules mostly grow from the NE (arrowhead), whereas in SLMAP3−/− cells the growth is from sites in the cytoplasm
(arrows). (e) Microtubule nucleation assay in differentiated C2C12 cells shows that the sites of microtubule growth in the cytoplasm in SLMAP3−/− cells correspond
to fragments of the dispersed Golgi (sites of microtubule nucleation from the Golgi expanded from the merged images for clarity). (f) The quantification of the
mean intensity of microtubules in the NE of MyoG+ myoblasts confirms the reduced microtubule growth from this site in SLMAP3−/− cells. Scale bar, 8 µm. For the
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***p < 0.001.
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SLMAP3−/− embryos compared to WT (figure 6b), despite the observed downregulation of skeletal muscle genes in these animals
at E11.5. It could be that the muscle development in SLMAP3−/− embryos is delayed, but it reaches the formation of muscle fibres
by E16.5 through endogenous compensatory mechanisms that are absent in tissue culture. It is also plausible that temporal
expression of other SLMAP isoforms may compensate for SLMAP3 deficiency in the various fibre types [31,32].

Since SLMAP3 appears to be involved in the centrosomal MTOC switch to the NE in cultured myotubes, we investigated
quadriceps muscles of SLMAP3−/− embryos to see if a similar MTOC switch was evident in vivo. Immunofluorescence staining
indicated that pericentrin could be observed in the NE of MHC+ tissue, but this staining was weaker and much less defined
in SLMAP3−/− muscles compared to WT (figure 6c). These data are similar to that seen in cultured myotubes derived from
SLMAP3−/− C2C12 myoblasts (figure 4b). We also analysed the protein expression of AKAP6 and Kif5b in the limbs of E16.5
embryos lacking SLMAP3, and no differences were seen compared to the WT (figure 6d), which is consistent with our observa-
tions in C2C12 derived myotubes (figure 4e).

Collectively our data imply that loss of SLMAP3 in C2C12 myoblasts or in vivo negatively impacts muscle development at
the level of NE-MTOC dynamics.

2.9. Differentiating SLMAP3−/− myoblasts have abnormal localization of LINC complex proteins
Given our data that the MTOC switch is critically dependent on SLMAP3 for myogenesis, we assessed if the localization of
Nesprin-1 was also affected in differentiating MyoG+ myoblasts. Kinesin-1 was reported to be important for nuclei positioning
in myoblasts, and it is recruited to the NE by Nesprin-1α [10,20,35–37,46,47]. Nesprin-1α is also responsible for the recruitment
of AKAP6 [18,21,45]. Since SLMAP3 appears in complex with centrosomal proteins that are mislocalized in SLMAP−/− myo-
blasts, we examined any changes in anchorage of Nesprin-1 in the NE by comparing its mean intensity of staining between
the NE band and distribution in the nucleoplasm. Surprisingly, the Nesprin-1 mean intensity in the NE was reduced in the
SLMAP3−/− MyoG+ cells (figure 7a). If the lack of SLMAP3 was affecting solely the MTOC proteins and Kinesin-1, we would
expect an intact Nesprin-1 staining, which does not seem to be the case.

Since Nesprin-1, a LINC complex member [48], was affected in the myoblasts lacking SLMAP3, we asked if lamins would
also be changed in these cells. Lamins are intermediate filaments that decorate the inner side of the NE, and lamin A/C interacts
with Nesprin-1α [48]. Lamins B1 and B2 have a constitutive expression in all cells and are encoded by two different genes,
while lamin A/C are encoded by the single gene lmna and expressed only in differentiated cells [48]. For lamin A/C we analysed
only MyoG+ cells since it has been demonstrated that myoblasts at this stage of differentiation already display higher lamin
A/C recruitment from the nucleoplasm to the NE [49,50]. Indeed, the NE staining of lamin A/C was reduced in SLMAP3−/−

MyoG+ cells when compared to the WT myoblasts (figure 7b). The NE recruitment of the constitutive lamin B1 was only slightly
changed in SLMAP3−/− cells before differentiation (figure 7c). These results suggest that the lack of SLMAP3 also impacts the
LINC complex and is important for the proper recruitment of Nesprin-1 and lamins to the NE in myoblasts.
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Figure 6. Skeletal muscle of SLMAP3−/− embryos display defective recruitment of pericentrin to the NE and nuclear mispositioning. (a) H&E staining of E16.5
quadriceps indicates that SLMAP3−/− embryos have abnormal muscle fibres, with reduced length and reduced internuclear distance. Fifteen fibres analysed across the
quadriceps of three animals of each genotype. The averages corresponding to each animal are plotted. (b) Western blot analysis of E16.5 limbs shows no difference
in MHC expression in SLMAP3−/− embryos compared to WT. (c) Pericentrin and MHC staining in muscle quadriceps indicate that skeletal muscle fibres of SLMAP3−/−
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2.10. SLMAP3 is crucial for developing muscle independent of Hippo signalling
SLMAP3 has been reported to be part of the STRIPAK complex [25,26], in an evolutionary conserved way [39,51], and proposed
to negatively regulate the Hippo pathway (figure 8a), which consists of a cascade of kinases leading to the phosphorylation
of the transcriptional coactivators YAP and TAZ, resulting in their cytoplasm sequestration and degradation. In the proposed
mechanism, SLMAP3 recruits the serine/threonine sterile-20-like kinases MST1/2, to STRIPAK, where they are dephosphoryla-
ted and deactivated by PP2A phosphatase. The depletion of SLMAP3 could then result in higher activation of MST1/2, reducing
the nuclear localization of YAP and TAZ and, consequently, decreasing the expression of genes associated with growth,
proliferation and survival [27–30].

Due to the observed skeletal muscle abnormalities in SLMAP3 KO embryos, we analysed YAP phosphorylation in E16.5
limbs. No significant differences were detected between SLMAP3 KO and WT embryos (figure 8b). Further analysis of YAP
and MST1/2 phosphorylation in C2C12 myoblasts does not indicate any changes in SLMAP3 KO myoblasts either, even with
okadaic acid treatment to inhibit PP2A (figure 8c,d). Furthermore, the RNA-seq did not reveal any impact on Hippo-regulated
genes due to SLMAP3 loss. Together, these results strongly suggest that the defective muscle development due to SLMAP3 loss
is independent of any involvement of Hippo signalling. Our data also indicated that STRN3, which is a key regulator of Hippo,
was without effect on myotube formation or the NE-MTOC.

3. Discussion
We established that SLMAP3 is critical for the formation of muscle through mechanisms that involve the positioning of the
nuclei and the switch of MTOC components from the centrosome to the NE during myogenesis. SLMAP3 is structurally
designed to target the MTOC and NE; thus the impairment in MTOC dynamics due to SLMAP3 loss could be a result
of defective attenuation of centrosomal activity, i.e. reduced microtubule nucleation from the centrosome and/or failure in
the anchoring of the MTOC machinery to the NE. The newly identified interactors of SLMAP3 (AKAP9, PCNT, PCM1 and
Kinesin-1 subunits) that are MTOC components further support the role of SLMAP3 in the positioning of centrosomal proteins.
The impact of SLMAP3 loss on muscle-specific gene expression as well as nuclei mispositioning in developing myofibres point
to a novel role at the NE in connecting cytoskeletal changes to nuclear function.

In microtubule nucleation assays, we observed microtubules growing from the Golgi of SLMAP3−/− myoblasts upon
differentiation. It is tempting to assume that some level of centrosome attenuation was occurring to increase the MTOC activity
in the Golgi instead of NE. In RPE1 cells, laser ablation of centrosome induces microtubule nucleation in the Golgi, suggesting
that the excess of MTOC proteins go to this organelle [52]. However, we should consider that: firstly, the microtubule growth
colocalizing with Golgi in SLMAP3−/− cells could correspond to centrosomes from the fused cells that failed to migrate to the NE.
Clustering of centrosomes from fused cells is observed in osteoclasts [53]. Secondly, in the context of skeletal myogenesis, the
microtubule growth from the Golgi could be independent of centrosome attenuation. Therefore, we suggest that SLMAP3 could
be important for the attenuation of centrosome activity, as modelled in figure 9, where SLMAP3 interacts with centrosomal
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components via its N-terminal FHA domain and targets the NE through the C-terminal hydrophobic tail anchor. We know
it is not important for microtubule nucleation because the centrosomal microtubule growth in SLMAP3−/− myoblasts was not
impacted, and SLMAP3 is not associated with the Golgi [23,38,40], an organelle known to have microtubule nucleation activity
[54–57].

Our data that the loss of SLMAP3 impacted the distribution of MTOC components at the NE during differentiation further
imply a mechanism where SLMAP3 contributes to the anchorage of MTOC proteins at the NE (figure 9). In addition, the
recruitment of Nesprin-1, which is not an MTOC protein and therefore independent of centrosomal attenuation, was also
affected at the NE in differentiating SLMAP3−/− myoblasts (figure 9). We noted a reduction in lamin A/C at the NE with
redistribution in the nucleoplasm in SLMAP3−/− myoblasts, which supports a role for SLMAP3 in organizing the nuclear
cytoskeleton. In this regard, our data here also suggest interactions of SLMAP3 with nuclear lamins, indicating that SLMAP
could potentially reside at the nuclear face of the NE to impact gene activity, although this remains to be tested.

The implication of defective recruitment of centrosomal proteins to the NE during skeletal myogenesis is nuclei misposi-
tioning, a feature observed in patients with EDMD and CNM [11,12]. In EDMD, it is usually caused by mutations in genes
encoding proteins from the LINC complex, such as emerin, SUN1, SUN2, lamin A/C and Nesprin-1 and Nesprin-2 [14,48,58],
characterized by progressive muscle weakness and wasting, early contractures and cardiac abnormalities [13,14]. In differentiat-
ing myoblasts, the NE up to the Golgi is organized as follows: in the LINC complex, Nesprin-1 and Nesprin-2 members localize
in the outer nuclear membrane (ONM) [48], although their smaller isoforms can also localize in the inner nuclear membrane
(INM) [59–61]. In the NE lumen, the KASH domain of Nesprin proteins interacts with the SUN domain proteins, which are
anchored in the INM [46]. In the INM, both the SUN proteins and the smaller Nesprin isoforms interact with lamin A/C and
emerin [48,62]. Additional proteins are recruited to the ONM by interaction with Nesprin-1α, a smaller isoform of Nesprin-1.
These include the motor proteins from the dynein and kinesin-1 complexes [10,20,36,37,47] and the protein AKAP6 [18,21,45].
Another level of organization is the binding of the paralogues AKAP9 and pericentrin to AKAP6 [18,21]. The Golgi belt-like ring
structure around the nucleus is then tethered by AKAP9 [18]. In this organization, microtubules could be nucleated from both
NE and Golgi [17,18].

We found that SLMAP3 interacts with the outer layer proteins, such as Kinesin-1 and centrosomal proteins. However,
because we observed abnormalities in the distribution of all these proteins in SLMAP3−/− myoblasts, SLMAP3 may also
be important for the proper localization of the LINC complex. Our finding that SLMAP3 interacts with proteins of the
nuclear cytoskeleton implies that SLMAP3 could integrate the MTOC-NE dynamics via its structural domains. The alternative
hydrophobic C-terminal sequences in SLMAP3 would make it an ideal candidate to target both outer and INMs to orient the
protein so as to serve functions across the NE thus integrating centrosomal activity with the nuclear lamina, although this needs
to be tested.

Depletion or mutation of LINC complex members, AKAP6 and Kinesin-1, have been reported to lead to differentiation and
myotube formation defects [47,49,63–68] (electronic supplementary material, table S3) much like that seen here with SLMAP3
loss, potentially indicative of a common pathological mechanism. Changes in emerin and lamin A/C can lead to changes in the
tethering of heterochromatin in the NE and impact the expression of genes of the myogenic programme [61,69]. It is conceivable
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that loss of SLMAP3 leading to the redistribution of lamins at the NE may also impact chromatin dynamics and lead to the
observed changes in muscle gene expression.

Although SLMAP3−/− myoblasts presented a reduced fusion index and decreased expression of MyoG and MHC, SLMAP3−/−

embryos at E16.5 did not indicate any changes in MHC expression. E11.5 embryos showed a decrease in the expression of genes
involved in muscle development, and the muscle from SLMAP3−/− E16.5 embryos was clearly abnormal, with reduced fibre size
and inter-nuclei distance. Differentiation defects have been reported in culture for mutations in lamin A/C and emerin [49,63–
67], while mice null for either of them are born without observable muscle defects [70,71]. Lamin A/C KO animals become
dystrophic a few weeks after birth [68], and the emerin KO mice have defective muscle regeneration [71]. Therefore, skeletal
muscle differentiation problems in SLMAP3−/− animals could become even more evident in the context of muscle regeneration.

In our analysis of the microtubule cytoskeleton of differentiated SLMAP3−/− myoblasts, we noticed that parallel arrays of
microtubules were present. However, with microtubule nucleation assay we could see that microtubules were growing from
sites colocalizing with Golgi. The presence of parallel arrays of microtubules even when the NE-MTOC is impaired seems to
be a common feature, since it was observed in differentiated myoblasts with knockout or depletion of Nesprin-1α, Sun1, Sun2,
Sun1/2, Kif5b and AKAP6 [10,20,21,36,72].

The fact that SLMAP3 as a STRIPAK component was found to be crucial in the NE-MTOC formation suggests that other
members of the complex could also play a role in this process. However, the depletion of STRN3 had no impact on NE-MTOC
or myogenesis. Whether other paralogues STRN or STRN4 could serve compensatory roles needs consideration, although the
knockout of either STRN3 or STRN is enough to result in embryonic lethality.

Finally, despite the mechanistic descriptions of SLMAP3 as a negative regulator of the Hippo pathway [27–30], changes
in this signalling cascade could not be detected in the limbs of SLMAP3−/− embryos or SLMAP3−/− myoblasts. In myoblasts,
YAP was reported to be important in the early proliferative phase, but its cytoplasmic sequestration is essential for terminal
differentiation [73]. In human cardiomyoblasts, the activation of MST and LATS kinases was sufficient to induce centrosome
disassembly and relocation of PCM proteins to the NE [74]. If loss of SLMAP3 was inducing Hippo, then we would expect
no defects in the terminal differentiation in vivo or in myoblasts. Therefore, the defects observed in SLMAP3 deficiency are
most likely independent of Hippo and point to novel mechanisms involving the newly identified interactors of SLMAP3,
including AKAP9, Kinesin-1 and centrosomal components. It is notable that STRN3 loss had no impact on the MTOC or
myotube development implying that distinct STRIPAK components may serve unique roles in a cell-/tissue-specific manner as
exemplified here by SLMAP3.

4. Conclusion
Here we identify SLMAP3 as an essential player in developing skeletal muscle by participating in positioning nuclei and the
formation of MTOC at the NE to impact the differentiation programme. Our data define a novel role for SLMAP3 in the
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formation of non-centrosomal MTOCs and link to nuclear activity and tissue development. The ability of SLMAP3 to assemble
with components of the MTOC and the nuclear membrane makes it an ideal player to serve such functions which appear to be
independent from any involvement with Hippo signalling.

5. Material and methods
5.1. Transgenic mice generation
The generation of the flox-SLMAP mouse line was already described in detail [31]. The Cre transgenic mouse was a gift from
Dr Nemer Mona, University of Ottawa. For the genotyping of both mouse lines and the breeding strategy, we followed the
procedures already described [31]. The mice in this study were housed at the Animal Care and Veterinary Service (ACVS)
Barrier Facility at the University of Ottawa and handled in compliance with the Canadian Council on Animal Care, Guide to
the Care and Use of Experimental Animals, 2 vols. (Ottawa, Ont.: CCAC, 1980−1993) and Animals for Research Act, R.S.O. 1990,
c.A. 22. The protocols for animal study were approved by the Animal Care Committee at the University of Ottawa.

5.2. Cell culture and treatment conditions
MEFs were isolated from E14.5 embryos as described [75], and tails were used for genotyping. All WT MEFs used are from
littermates of SLMAP3−/− embryos. The C2C12 myoblast cell line was commercially provided by the American Type Culture
Collection. Cells were kept in humidified atmosphere with 5% CO2 and at 37°C. For MEFs, we used a medium containing high
glucose Dulbecco’s Modified Eagle Medium (DMEM) (Wisent, cat. 319-005), 1× MEM (Gibco, cat. 11140050), 20 mM HEPES, 10%
fetal bovine serum (FBS; Wisent, cat. 080-150), 1× antibiotic-antimycotic (Gibco, cat. 15240062) and 0.1 mM β-mercaptoethanol,
as described [76]. For C2C12 cells, we used a medium containing DMEM (Wisent, cat. 319-005), 10% FBS (Wisent, cat. 080-150)
and 1× antibiotic-antimycotic (Gibco, cat. 15240062). The C2C12 differentiation medium was prepared with DMEM without
sodium pyruvate (Wisent, cat. 319-015), 1× antibiotic-antimycotic (Gibco, cat. 15240062), 25 mM HEPES and 2% horse serum
(Gibco, cat. 16050122). We considered ‘differentiating myoblasts’ all the cells incubated with differentiation medium. For
okadaic acid (Cell Signaling, cat. 5934) condition, we used a final concentration of 1.5 µM for 1 h of treatment. For transfections,
we used Lipofectamine 3000 (Invitrogen, cat. L3000001) following the protocol of the manufacturer. Microtubule nucleation
assays were performed in cells as described elsewhere [77], with the final nocodazole concentration of 8.3 µM and incubation
time of 2 h at 37°C. After nocodazole washout in cold medium, coverslips were kept in the saponin solution at 37 ͦ C for 45 s,
followed by incubation with medium at 37 ͦ C for 50 s. Cells were subsequently fixed in freezer-cold methanol for 5 min.

5.3. SDS–PAGE and western blot
Protein lysates were extracted on ice from cells by cell scraping and by homogenization of snap-frozen tissue. The lysis buffer
contained 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA and 1% Triton X-100. For each 10 ml of buffer,
one tablet of Pierce Protease Inhibitor (Thermos Scientific, cat. A32955) and of Pierce Phosphatase Inhibitor (Thermo Scientific,
cat. A32957) were used. Proteins were denatured with SDS buffer containing 10% glycerol, 2% SDS, 62.5 mM Tris–HCl (pH
6.8) and 10% β-mercaptoethanol and boiled for 5 min. The lysates were loaded on sodium dodecylsulfate polyacrylamide gel
electrophoresis (SDS–PAGE) gel and posteriorly transferred to polyvinylidene fluoride membrane (Bio-Rad). For membrane
wash, blocking and antibody solutions, we used Tris-buffered saline (TBS-T) buffer containing 1 M Tris, 290 mM NaCl and 0.1%
Tween 20 (pH 7.4). Antibody solutions were prepared with 5% milk in TBS-T or with 5% BSA for primary antibodies targeting
phosphorylated amino acid residues. Images were acquired on the Bio-Rad ChemiDoc system and analysed by densitometry on
Image Lab Software (Bio-Rad). The list of the antibodies used for western blot (WB) is as follows:

primary antibodies

target company catalogue host dilution WB

SLMAP Novus Biologicals NBP1-81397 rabbit 1:500

SLMAP Novus Biologicals NBP1-81398 rabbit 1:1 000

STRN3/SG2NA (S68) Novus Biologicals NBP74572 mouse 1:500

MST1 (KRS2) (H-8) Santa Cruz SC-515051 mouse 1:200

MST2 (KRS1) (87.K) Santa Cruz SC-130405 mouse 1:200

phospho-MST1 (Thr183)/MST2 (Thr180)
(E7U1D)

Cell Signaling 49332 rabbit 1:500

YAP (1A12) Cell Signaling 12395 mouse 1:1 000

phospho-YAP (Ser127)(D9W2I) Cell Signaling 13008 rabbit 1:1 000

MyoD (G-1) Santa Cruz SC-377460 mouse 1:100

(Continued.)
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(Continued.)
primary antibodies

MyoG (F5D) Santa Cruz SC-12732 mouse 1:100

MHC Developmental Studies Hybridoma Bank MF20 mouse 1:50

lamin B1 Abcam ab16048 rabbit 1:200

vimentin (D21H3) XP Cell Signaling Technology 5741 rabbit 1:1 000

Akap6 Millipore Sigma HPA048741 rabbit 1:100

Kif5B [EPR10276(B)] Abcam ab167429 rabbit 1:100

secondary antibodies

target company catalogue host dilution WB

peroxidase AffiniPure goat anti-rabbit IgG (H + L) Jackson ImmunoResearch 111-035-144 goat 1:10 000

peroxidase AffiniPure goat anti-mouse IgG (H + L) Jackson ImmunoResearch 115-035-146 goat 1:10 000

5.4. RT-qPCR
Primers were designed using the Primer-Blast tool (NIH) and validated with standard curve and band size of PCR products
from cDNA of C2C12 cells. RNAs were extracted from cells with RNeasy Mini Kit (cat. 74104) from Qiagen according to
the protocol of the manufacturer. We synthesized cDNA from the RNAs with the iScript Reverse Transcription Supermix
for RT-qPCR from Bio-Rad (cat. 1708840). RT-qPCR was performed with the FastStart Universal SYBR Green Master (Rox;
Millipore Sigma, cat. 4913850001). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the housekeeping gene.
The samples were read on a Bio-Rad CFX 96 thermal cycler, and the data were analysed on Bio-Rad CFX Maestro. The primers
used are listed below:

primers forward (5′−3′) reverse (5′−3′)
Myf5 CTATTACAGCCTGCCGGGAC CTCGGATGGCTCTGTAGACG

Mrf4 CCCCACAGATCGTCGGAAAG CAGAATCTCCACCTTGGGCA

MyoG CAGCCCAGCGAGGGAATTTA AGAAGCTCCTGAGTTTGCCC

MyoD ATAGACTTGACAGGCCCCGA GCAGGTCTGGTGAGTCGAAA

Pax3 TCGAGAGAACCCACTACCCA CCCCCGGAATGAGATGGTTG

GAPDH GGTTGTCTCCTGCGACTTCA TGGTCCAGGGTTTCTTACTCC

5.5. RNA sequencing
Total RNA was isolated from E11.5 whole embryos by RNeasy Fibrous Tissue Mini Kit according to the manufacturer protocol
(Qiagen). The samples were then submitted to the StemCore Laboratories Genomics Core Facility at the University of Ottawa
for RNA sequencing as follows: total RNA (1 µg) was quantified using a Qubit (Thermo Scientific), and its integrity was
assessed on an AATI Fragment Analyzer (Agilent Technologies). Library construction was performed using TruSeq RNA v2
Library Preparation Kit (Illumina). Following library qualilty assurance/quality control (QA/QC) (as above for input), the eight
libraries were pooled on a NextSeq 500 75 cycle High Output Flow cell with 1% PhiX spike-in. RNA-seq post-processing and
differential expression analysis were prepared by the Ottawa Bioinformatics Core Facility. Briefly, reads were assigned to the
GRCm38_GENCODE.vM19 transcriptome model using Salmon [78], and the differential expression of transcripts was analysed
by DESeq2 [79]. The data discussed from this study have been deposited in NCBI’s Gene Expression Omnibus [80,81] and are
accessible through GEO Series accession number GSE230748 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE230748).
The data were validated by RT-qPCR, with the analysis of the expression of myod1, myog, myf5, myf6 and pax3.

5.6. Immunoprecipitation–mass spectrometry
Immunoprecipitation of SLMAP3 was performed on 75 µg of E12.5 mouse brain WT lysates by anti-SLMAP (Novus, cat.
NBP1-81397) with Pierce™ Protein A/G Magnetic Beads (Thermo Fisher, cat. 88802) based on the manufacturer protocol.
Immunoprecipitation of anti-IgG (Protein Tech, cat. 30000-0-AP) was performed identically and simultaneously as a control
to identify non-specific interactions. The resulting samples were submitted to the Montreal Clinical Research Institute for
MS as follows: pulled-down lysates incubated with anti-SLMAP and anti-IgG were treated with acetone to precipitate and
purify approximately 20 µg of pellet. Protein extracts were then re-solubilized in 6 M urea buffer and 100 mM ammonium
bicarbonate, followed by reduction with reduction buffer (45 mM DTT and 100 mM ammonium bicarbonate). Finally, samples
were alkylated in 100 mM iodoacetamide and 100 mM ammonium bicarbonate. After reducing the urea concentration to
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2M, 20 ng µl−1 of trypsin (Promega) was added to each sample, and digestion was performed at 37°C overnight. Prior to
liquid chromatography with tandem mass spectometry (LC–MS/MS), protein digests were re-solubilized in 0.2% formic acid.
Desalting/cleanup of the digests was performed using C18 ZipTip pipette tips (Millipore). Dried eluates were reconstituted in
2% acetronile/1% formic acid and loaded into a 75 µm i.d. × 150 mm Self-Pack C18 column installed in the Easy-nLC II system
(Proxeon Biosystems). The buffers used for chromatography were 0.2% formic acid (buffer A) and 90% acetonitrile/0.2% formic
acid (buffer B). The high performance liquid chromatography (HPLC) system was coupled to Orbitrap Fusion mass spectrome-
ter Xcalibur 4.0 and Tune 2.0 (Thermo Scientific) through a Nanospray Flex Ion Source. Nanospray and S-lens voltages were set
to 1.3–1.8 kV and 60 V, respectively. The capillary temperature was set to 250°C. Full scan MS survey spectra (m/z 360–1560) in
profile mode were acquired in the Orbitrap with a resolution of 120 000 with a target value at 3 × 105 and a maximum injection
time of 50 ms. The 20 most intense peptide ions were fragmented in the higher-energy collisional dissociation (HCD) cell and
analysed in the linear ion trap with a target value at 2 × 104, a maximum injection time of 50 ms and a normalized collision
energy at 29. Target ions selected for fragmentation were dynamically excluded for 25 s after two MS/MS events.

The protein database searches were launched using Proteome DiscovererTM software from Thermo Fisher Scientific (v.2.4)
and were performed with Mascot 2.6.2 (Matrix Science) against the mouse UniProt protein database (version 23 September
2019). The mass tolerances for precursor and fragment ions were set to 10 ppm and 0.05 Dalton, respectively. Trypsin was
used as the enzyme allowing for up to one missed cleavage. Cysteine carbamidomethylation was specified as a fixed modifi-
cation and methionine oxidation as a variable modification. Scaffold 5.2.2 was used to validate MS/MS-based peptide and
protein identifications. Protein identifications were accepted if they could be established at greater than 95.0% probability
and contained at least one identified peptide by the Protein Prophet algorithm [82]. Proteins that contained similar peptides
and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Proteins
sharing significant peptide evidence were grouped into clusters. The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE [83] partner repository with the dataset identifier PXD041687 and 10.6019/
PXD041687. The data were validated by IP, where the interactions of SLMAP3 with lamin B1 and STRN, both detected in IP–MS,
were confirmed.

5.7. Immunofluorescence and image processing
All images were acquired at the Cell Biology and Image Acquisition Core Facility at the University of Ottawa. For the slides
with H&E staining and cell plate phase contrast, a Thermo Fisher EVOS FL Auto 2 was used. For fluorescence, we used
the widefield Zeiss AxioObserver Z1 microscope, with the exception of images for Lamin B1 staining for which we used the
widefield Zeiss AxioObserver D1 microscope. The images acquired were exported from Zen Blue and analysed in Fiji for
image cropping. Background subtraction and contrast enhancement were applied for brightfield images. For the quantification
of perinuclear staining, multiple images of each biological sample were analysed on CellProfiler by pipelines that we created
and validated. In the pipelines, objects were created using 4′,6-diamidino-2-phenylindole (DAPI) staining. Further masking
with MyoG or MHC staining selected cells positive for these markers. Expansion and shrinkage of DAPI objects followed by
subtraction of the smaller object was used to generate three concentric bands of 10 pixels (pixel size 0.102 × 0.102 µm2) each.
The mean intensity of the staining was measured in these bands. For pericentrin, AKAP6 and Kif5b, the bands were the NE, PE
and cytoplasm (Cyto) objects. For Golgin-97 intensity measurement, these bands were shifted five pixels towards the cytoplasm,
creating the PE, cytoplasm 1 (Cyto1) and cytoplasm 2 (Cyto2) objects. For Nesprin-1, lamin A/C and lamin B1, the mean
intensity was measured on the NE object and in the DAPI object subtracted the NE, which was called the nucleoplasm object.
The size of the NE object for lamin A/C and lamin B1 was four pixels, whereas for Nesprin-1, it was 10 pixels. For quantification
of microtubule growth from the NE, we measured the mean intensity of α-tubulin staining in the NE object. For the fusion
index, we used CellProfiler. For that, MHC staining was used to mask the nuclei. Myotubes containing at least two nuclei were
considered and divided by the total nuclei identified in the field and multiplied by 100. Images with microtubule staining were
acquired in Z-stack, and image deconvolution was applied using the Regularized Inverse Filter on Zen Blue. All other images
were acquired in a single plane and followed image processing. The list of the antibodies used for immunofluorescence (IF) is as
follows:

primary antibodies

target company catalogue host dilution IF

SLMAP Novus Biologicals NBP1-81397 rabbit 1:200

MyoG (F5D) Santa Cruz SC-12732 mouse 1:100

MHC Developmental Studies Hybridoma Bank MF20 mouse 1:50

GM130 BD Biosciences 610822 mouse 1:200

golgin 97 Proteintech 12640-1-AP rabbit 1:100

calnexin Novus Biologicals NB100-1974 rabbit 1:200

lamin B1 Abcam ab16048 rabbit 1:200

pericentrin Covance/Biolegend PRB-432C rabbit 1:100

(Continued.)
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(Continued.)
primary antibodies

Akap9 Novus Biologicals NBP1-89167 rabbit 1:150

α-tubulin (DM1A) Millipore Sigma T6199 mouse 1:300

Akap6 Millipore Sigma HPA048741 rabbit 1:100

Kif5B [EPR10276(B)] Abcam ab167429 rabbit 1:100

nesprin-1 Wolfson Centre for Inherited Neuromuscular Disease MANNES1A mouse 1:100

lamin A/C Wolfson Centre for Inherited Neuromuscular Disease MANLAC3 mouse 1:4

secondary antibodies

target company catalogue host dilution IF

anti-mouse IgG (H + L) cross-adsorbed secondary antibody, Alexa Fluor 647 Invitrogen A-21235 goat 1:300

anti-rabbit IgG (H + L) cross-adsorbed secondary antibody, Alexa Fluor 555 Invitrogen A-21428 goat 1:300

anti-rabbit IgG H&L, Alexa Fluor 488 Abcam ab150077 goat 1:200

5.8. Histology
For H&E staining, tissues were fixed on formalin 10%. The embedding, paraffinization, sectioning and staining were performed
by the Louise Pelletier Histology Core Facility of the University of Ottawa.

5.9. Plasmids, cloning and viruses
The SLMAP3 mouse sequence was cloned as follows: cDNA from a mouse heart was used for SLMAP3 PCR amplification with
Phusion® High-Fidelity DNA Polymerase (BioLabs, cat. M0530) and using, respectively, the SLPN-forward and SLPN-reverse
primers 5′-GATGCCAGCTTCTAGAGGGAGGACG and 5′-GGAATTCGATGCCGTCAGCCTTGGC. The SLPN-F contains an
EcoRI restriction site before the start codon of SLMAP, and the SLP-R has an Xba I site after the stop codon. These two sites were
used to clone SLMAP3 into the pcDNA3-CMV- (Invitrogen, cat. V79020) vector where we had previously cloned GFP between
KpI and Eco RI restriction sites. The resulting GFP-SLMAP3, with the GFP in the N-terminus of SLMAP3, was sequenced by the
DNA Sequencing Facility at the Ottawa Hospital, and the construct was validated by western blot and fluorescence analysis of
transfected cells.

The GFP-SLMAP3 adenovirus was produced with the AdEasy Adenoviral Vector System from Agilent Technologies (cat.
240009), following the manufacturer protocol [84]. Briefly, the GFP-SLMAP3 from pCDNA3 was amplified with the primers
GFP-shuttle 5′-GCGTCTAGAATGGACAAA GGAGAAGAACTC and pcDNA3.1-R 5′-CAACAGATGGCTGGCAACTAG and
cloned into the pShuttle vector. The resulting plasmid was linearized with Pme I and transformed into BJ5183-AD cells, which
were pre-transformed with the pAdEasy-1 vector. The resulting plasmid from the recombination of both vectors was digested
with Pac I, followed by transfection in AD-293 packing cells. The virus production and infection were also performed according
to the manufacturer’s guidelines [84].

The shRNAs for STRN3 were designed with the following target sequences: shRNA#1—CACTGGTAGTGCGGTAATTTA
and shRNA#2—AGCAAGGCAGACAGCTATTAA. The SC control was designed with the target sequence AGGATAAGCGTC
AACGAATAGGTGA. ShRNAs#1 and #2 target sequences were cloned into pLV[shRNA]-Neo-U6 vector, and the shRNA SC
target sequence into pLV[shRNA]-Puro-U6 plasmid, all performed by VectorBuilder. The lentiviruses were packed in Lenti-X
293 T cells with the psPAX2 and pMD2.G plasmids following the Addgene protocol [85]. The transduction of C2C12 was
performed following the Addgene protocol [86]. After 3 days, cells transduced with shRNA#1 and #2 lentiviruses were selected
with G418 750 µg ml−1 for 6 days. Cells transduced with shRNA SC lentivirus were selected with puromycin 2.5 µg ml−1 for 3
days. The depletion of STRN3 and the shRNA control were validated by western blot.

5.10. Cell line generation
The polyclonal C2C12 lines with slmap genetic disruptions were generated, as described elsewhere [87], at the Genomic Editing
and Molecular Biology Core Facility in the Faculty of Medicine at the University of Ottawa. The following guide RNAs
targeting exon 3 were used for the generation of CRISPR/Cas9 knockout: 5′-AGTCGGGCTTCCATACCATC and 5′- ATACTCA
CTCTGAACGAAGT. These guides were cloned into pLentiCRISPRv2 (Addgene plasmid 52961 [87]), and the transduced cells
were selected with puromycin 2.5 µg ml−1 for 3 days. The gene cleavage was confirmed with T7 endonuclease I (NEB) using
the following primer pairs: 5′-CGGCCAGGAGAGACTATCAC and 5′-TCCAAGTCTCATGGCGTGTG. We isolated monoclonal
colonies from the cell pools generated with both guide RNAs by limiting diluting according to Addgene [88]. We confirmed
the selection of knockout colonies by western blot and immunofluorescence. For non-targeting control (NTC), we used the
pLentiCRISPRv2 carrying a guide RNA targeting GFP (Addgene plasmid 86153 [89]), and the transduced C2C12 cells were
selected with puromycin. No statistically significant differences were identified between not transduced and NTC C2C12 WT
myoblasts in terms of differentiation, myotube formation and MTOC switch to the NE after differentiation.
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5.11. Statistical analysis
All the statistical analyses were performed on GraphPad Prism. Data were represented by mean and standard error of mean.
For analyses with one variable with two groups, we used t-test. For three or more groups, we used one-way ANOVA followed
by Newman–Keuls post-test. Tests with multiple variables were performed with two-way ANOVA followed by Bonferroni
post-test. Statistical significance is indicated as *p < 0.05, **p < 0.01, ***p < 0.001 and n.s. for not significant. At least three
biological samples were used for all statistical analyses in this study.

Ethics. The mice in this study were housed at the Animal Care and Veterinary Service (ACVS) Barrier Facility at the University of Ottawa and
handled in compliance with the Canadian Council on Animal Care, Guide to the Care and Use of Experimental Animals, 2 vols. (Ottawa, Ont.:
CCAC, 1980–1993) and the Animals for Research Act, R.S.O. 1990, c.A. 22. The protocols for animal study were approved by the Animal Care
Committee at the University of Ottawa.
Data accessibility. The RNA-seq from this study have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series
accession number GSE230748 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE230748). The IP–MS results have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD041687 and 10.6019/PXD041687. The raw images
of all western blots of this study are available in electronic supplementary material, S2.
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