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The development of accurate predictions for a new drug’s absorption, distribution, metabolism, and 
excretion profiles in the early stages of drug development is crucial due to high candidate failure rates. 
The absence of comprehensive, standardised, and updated pharmacokinetic (PK) repositories limits 
pre-clinical predictions and often requires searching through the scientific literature for PK parameter 
estimates from similar compounds. While text mining offers promising advancements in automatic PK 
parameter extraction, accurate Named Entity Recognition (NER) of PK terms remains a bottleneck due 
to limited resources. This work addresses this gap by introducing novel corpora and language models 
specifically designed for effective NER of PK parameters. Leveraging active learning approaches, we 
developed an annotated corpus containing over 4000 entity mentions found across the PK literature on 
PubMed. To identify the most effective model for PK NER, we fine-tuned and evaluated different NER 
architectures on our corpus. Fine-tuning BioBERT exhibited the best results, achieving a strict F1 score 
of 90.37% in recognising PK parameter mentions, significantly outperforming heuristic approaches 
and models trained on existing corpora. To accelerate the development of end-to-end PK information 
extraction pipelines and improve pre-clinical PK predictions, the PK NER models and the labelled 
corpus were released open source at https://github.com/PKPDAI/PKNER.

Bringing a new chemical compound to the market is an extremely costly process, which has been estimated 
between $161m and $4.5bn1. Meanwhile, over 90% of drug candidates fail after entering phase I clinical trials2,3. 
Accurate predictions of candidate drug properties at an early stage are critical for improving the efficiency of this 
process. To elicit the desired effect, candidate drugs must reach a specific concentration at the target site of the 
body over a certain time period4. Predicting whether candidate drugs will reach the desired concentration over 
a certain period at the target site requires understanding the processes of absorption, distribution, metabolism 
and excretion (ADME) of drugs from the human body.

Pharmacokinetic (PK) parameters quantify the ADME processes of chemical compounds through numerical 
estimates. Accurate estimation of drugs’ PK parameters is crucial for drug development research4. Mechanistic 
models have been widely used to predict the PK parameters of candidate drugs before they are tested in humans. 
However, a significant proportion of those candidates still fail due to PK complications found during the clinical 
phases5. Hence, improving PK predictions of candidate compounds before they are given to humans is crucial 
for assessing candidate prospects and optimising the drug development pipeline.

One of the main challenges in improving PK predictions for chemical compounds is the lack of comprehensive 
and standardised PK repositories6,7. Although existing open-access databases collect information ranging 
from chemical structure to a summary of PK publications, they typically only report sparse PK information 
explicitly2,6,8. Consequently, researchers must search and curate PK estimates from scientific literature before 
pre-clinical predictions can be made6,9. The vast and continually increasing number of PK publications, coupled 
with the extensive amount of PK information locked in scientific articles, limits our ability to efficiently find 
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and curate comprehensive datasets manually2. Thus, despite the potential PK data stored in scientific articles, 
efficiently exploiting this resource remains a significant challenge in drug development.

Automated text mining approaches can aid researchers in extracting information from the scientific literature 
more efficiently. Recognising entities of interest is a crucial step in information extraction pipelines that enables 
subsequent downstream tasks such as relation extraction or entity linking. In this study, we focus on the initial 
step towards automated extraction of PK parameter estimates from the scientific literature, Named Entity 
Recognition (NER). Developing systems that can identify mentions of PK parameters in scientific text is crucial 
for end-to-end PK extraction as well as characterising drug-drug interactions (DDIs), as many interactions are 
reported by mentioning their effect on specific PK parameters10. However, PK NER remains a challenging task 
since there are multiple PK parameter types and their mentions are often highly variable across the scientific 
literature, involving the frequent use of acronyms and long textual spans11. Additionally, the scarcity of annotated 
resources limits the development of effective NER models that can deal with this diversity. In this work, we tackle 
these challenges by developing annotated corpora and machine-learning models for effective PK NER.

Methodology
Corpus construction
A protocol was established to generate corpora of labelled sentences that allowed training and evaluation of PK 
NER models. The final corpus is referred to as the PK-NER-Corpus and can be found at https://zenodo.org/
records/464697012.

Source
To create a candidate pool for sentence annotation, the pipeline described in Fig. 1 was applied. A PubMed 
search for “pharmacokinetics” was initially conducted to retrieve articles using the default search parameters in 
PubMed. No additional filters were applied. The pipeline from Gonzalez Hernandez et al.7 was used to identify 
114,921 relevant publications reporting PK parameters. Out of these, 10,132 articles (8.82%) were accessible in 
full text from the PMC OA subset (https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/), while only abstracts 
were available for the rest. Both, abstracts and full-text articles were downloaded in XML format from PubMed 
(https://www.nlm.nih.gov/databases/download/pubmed_medline.html) and PMC (https://ftp.ncbi.nlm.
nih.gov/pub/pmc/) FTP sites. The PubMed Parser13 was used to parse the XML files, and paragraphs from 
the introduction section were excluded. The scispaCy sentence segmentation algorithm14 split abstracts and 
paragraphs into sentences. The resulting sets were the abstract pool with over a million sentences and the full-text 
pool with 721,522 sentences. To create a balanced candidate pool for ML model training and evaluation, 721,522 
instances were randomly sampled from the abstract pool and combined with full-text sentences, resulting in 
a balanced pool of 1,443,044 sentences, referred to as the candidate pool. All labelled sentences in the corpus 
construction were sampled from the candidate pool.

Annotation
The team responsible for the annotation involved twelve annotators with extensive PK expertise and familiarity 
with the different parameters and study types in the PK literature. To ensure consistency in the annotation 
process, each annotator initially labelled a small set of 200 examples to identify sources of disagreement. The 

Figure 1. Flow diagram showing the main processes involved to generate a pool of candidate sentences for 
NER labelling. (1) Search for “pharmacokinetics” in PubMed and (2) run binary classification pipeline to 
filter abstracts containing PK parameters. (3) Parse XML abstract and full-text documents, and (4) filter out 
introduction sections. Finally, (5) segment each paragraph into sentences to generate the final corpus of PK 
sentences.
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team then discussed which parameters to include and how to define span boundaries using the PK ontology from 
Wu et al.11 as a reference. Annotation guidelines were provided to annotators before they began the labelling 
task, and were updated as new challenging examples were resolved during the annotation process. Details about 
the annotation interface and guidelines can be found in Supplementary Information: Appendix A. Training, 
development and test sets were developed to train and evaluate different NER pipelines.

Training set
Training effective NER models for new entity types often requires a large number of annotated samples with 
diverse spans to account for the variability of surface forms and contexts of use15. However, the sampling strategy 
followed by the test and development sets resulted in a low proportion of sentences containing PK entities 
(16.4%). To generate an effective training dataset, two main approaches were sequentially applied to selectively 
sample informative sentences for PK NER while reducing annotation efforts: 

 1.  Heuristic labelling. The rule-based model described in Supplementary Information: Appendix B was applied 
to all the sentences within the candidate pool. From those sentences that contained matches from the rule-
based model, 300 were randomly chosen to form an initial training set with a substantial number of entity 
mentions. To enhance the quality of this set, the annotators corrected the labels generated by the rule-based 
model. Following correction, 86.67% of the sentences retained PK mentions, although adjustments were 
often needed for their span boundaries. Subsequently, an initial scispaCy NER model14 was trained on this 
dataset.

 2.  Active learning. After training the initial scispaCy model, it was used to identify spans from the candidate 
pool that were most informative for model training. Utilising the active learning interface from Prodigy16, 
which presents candidate spans to annotators based on model uncertainty, annotators provided binary la-
bels denoting the correctness of suggested spans. During the active learning process, the model underwent 
updates in a loop after every set of 10 annotated sentences. After obtaining binary labels, a final round of an-
notation was conducted to label any additional spans present in the sentences and correct span boundaries. 
Following this protocol, a total of 2800 sentences with a large number of PK entity mentions were labelled. 
Further details on the Active Learning protocol can be found in Supplementary Information: Appendix C.

Test and development sets
The development and test sets were generated by randomly sampling sentences from the candidate pool without 
replacement, to preserve the distribution of sentences found in PK articles. In total, 1,500 and 500 sentences 
were selected for the test and development sets, respectively. Then, each sentence in the development and test 
sets followed a two-stage procedure of (1) initial annotation by one expert and (2) review and standardisation of 
span boundaries by at least two additional experts (similar to17). This process was carried out in batches of 200 
sentences. After each batch, sources of disagreement were discussed, and annotation guidelines were updated.

Inter-annotator agreement (IAA)
We selected pair-wise F1 as the main metric for measuring IAA in NER18,19. IAA was computed for each pair 
of annotators and F1 was obtained by treating the labels of one annotator as ground truth and the other as the 
system prediction. All annotators independently labelled a total of 200 sentences from the test set, used to derive 
the IAA. This exercise was done with the last batch of the test set when guidelines had already been updated 
multiple times, but no corrections were performed before computing the IAA.

External dataset validation
We utilised the PK Ontology and its corresponding corpus developed by Wu et al.11 for external validation. 
This corpus, referred to as PK-Ontology-Corpus, comprises 541 abstracts manually labelled, encompassing 
the annotation of key terms, sentences related to Drug-Drug Interactions (DDI), and annotated DDI pairs. 
The abstracts originated from four study types: clinical PK, clinical pharmacogenetics, in vivo DDI, and in 
vitro DDI studies. One of the annotated key terms in the PK-Ontology-Corpus was PK parameters. The NER 
models developed in this study were also evaluated in the PK-Ontology-Corpus, which allowed for assessing 
model performance in different study types, including several DDI sentences and detecting differences in the 
annotation criteria.

Models
Rule-based system
Given the PK expertise of the annotation team, a set of rules was generated to develop a rule-based model 
covering well-known PK parameters and their primary surface forms and acronyms. The model was 
implemented using the entity ruler from spaCy, which requires a set of token-level patterns and can incorporate 
rules regarding part-of-speech (POS) and dependency labels. ScispaCy14 was used as a base tokeniser, POS 
tagger and dependency parser to incorporate the token-level patterns into the model. Developing the list of 
terms and rules was an iterative process performed together with the annotation team, and rules were updated 
by assessing their performance on the development set. Supplementary Information: Appendix B describes the 
iterative process followed to develop the rule-based system.

BERT
The Transformer architecture has emerged as state-of-the-art for NLP tasks20. In this study, pre-trained BERT 
models were fine-tuned to perform PK NER21. We added a task-specific layer (fully-connected + softmax) to 
map output token embeddings from BERT models to BIO labels22. Two pre-trained models were compared: 
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BERTBASE
21 which was pre-trained on general-domain English text, and BioBERT v1.123 which was further 

pre-trained on PubMed articles. Models were implemented in PyTorch24 using the Transformers library25.
BERT tokenizers split each input sentence into sub-word tokens, each associated with a BIO label. The model 

was trained to minimise categorical cross-entropy loss. Both BERT and classification layer parameters were 
fine-tuned during 20 epochs. The model’s performance was evaluated on the development set at the end of each 
epoch, saving the state with the highest entity-level F1 score. We used the Adam optimizer with a linear weight 
decay of 0.05 and a dropout probability of 0.1 on all layers. We used a batch size of 16 and the learning rate was 
grid-searched, with µ = 3e−5 yielding the best performance. The maximum sequence length was set to 256 to 
cover most training instances. During inference, sentences with over 256 tokens were split, and predictions were 
re-joined after BIO label assignments. Experiments ran on a single NVIDIA Titan RTX (24GB) GPU.

ScispaCy
The scispaCy model was also fine-tuned to perform NER of PK parameters. ScispaCy is built on top of spaCy but 
focuses on biomedical and scientific text processing14. In this work, all components from the scispaCy pipeline 
were reused, and the NER layer was trained from scratch. Analogous to the BERT pipelines, models were trained 
for 20 epochs and the state of the model with the best performance on the development set was saved. The rest 
of the hyperparameters were kept identical to Neumann et al.14.

Evaluation
We computed precision and recall, and derived F1 score for comparing model performance. To determine 
true positives we used both, strict and partial matching. Strict matching requires complete overlap in entity 
boundaries between predictions and annotations while partial matching considers instances where system 
predictions partially overlap with annotated entities. Both strict and partial matching metrics were computed 
using the nervaluate library (https://github.com/MantisAI/nervaluate).

Results and discussion
Corpus statistics
The main statistics for the PK-NER-Corpus are shown in Table 1. Since the evaluation sets randomly sampled 
sentences from PK articles, the proportion of sentences containing PK parameter mentions was only 16.40%. 
Despite preserving the distribution of sentences in which PK NER algorithms might be applied, fewer entity 
mentions were present in the evaluation sets. On the other hand, 64.25% of sentences in the training set contained 
mentions of PK parameters, resulting in many entity mentions. This difference in the distribution of parameter 
mentions was due to the active learning sampling protocol selecting sentences with a higher proportion of 
entity mentions. Additionally, while we randomly sampled sentences from the abstract or full-text section in the 
evaluation sets, the active learning protocol selected a higher proportion of sentences from the full text (79.56%).

The statistics of our external evaluation corpus (PK-Ontology-Corpus) from Wu et al.11 are shown in Table 2

Effects of active learning
To evaluate the effects of active learning we performed the following experiment. The development set (n = 500
) was used as an example of an annotated set randomly sampled while 500 sentences from the training set 
collected with active learning were randomly sampled to perform a fair comparison. Ten separate runs with 
different random seeds were performed. The active learning experiment randomly sampled a different subset 
of sentences from the training set and randomly initialised the classification layer parameters in each run. The 
BioBERT model was trained for five epochs with a learning rate of 3e−5, and the final model was applied to the 
test set at the end of each run.

Figure 2 show the results of these experiments. Training the BioBERT model with the active learning dataset 
resulted in over 7% increase in the median F1 score for strict matching compared to training with randomly 
sampled sentences. These results suggest that the protocol used to generate the training set highly benefited the 
model performance compared to randomly sampling sentences. Most of this benefit is the consequence of an 
improved recall, suggesting that the active learning dataset contains a wide variety of PK spans not covered by 

Dataset Sentences Entity mentions Sentences with PK mentions (%)

Training 4008 1478 23.68

Test 1021 377 25.27

Table 2. Corpus statistics of the PK-Ontology-Corpus stratified by the training and test sets.

 

Dataset Sentences Entity mentions Sentences with PK mentions (%) Full-text sentences (%)

Training 2800 3680 64.25 79.46

Development 500 149 16.40 50.8

Test 1500 390 16.40 50.8

Table 1. Corpus statistics of the PK-NER-Corpus stratified by the training, development and test sets.
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the random sampling dataset. Considering the frequency of named entities in each dataset (i.e. only 16.4% of 
sentences mentioned PK parameters in the randomly sampled datasets), it is likely that the selective sampling 
approach implemented for this task was particularly beneficial for covering a wider variety of relevant spans.

Model performance
Table 3 summarises the main results on the test set. The results showed that the rule-based model could not 
efficiently cover the diversity of PK parameter mentions annotated by field experts, achieving a strict F1 score 
below 50%. Some of the main challenges of the rule-based approach were (1) the great variety of PK parameter 
types, which limited the pipeline’s recall, (2) the presence of complementary terms within PK spans (e.g. total 
body clearance) and (3) acronyms highly dependent on context (e.g. “F” for bioavailability). Notably, there was 
a large difference in precision between strict and partial matches (over 15%). This is a consequence of challenge 
(2), where rules often detected the primary PK term, but complementary terms determining the parameter sub-
type were missed. The machine learning pipelines significantly outperformed the heuristic model with over 30% 
gain on the strict F1 score, mostly driven by substantial improvements in recall.

We observed distinct patterns in the true positives and errors produced by the rule-based and LLM models. 
The machine learning models, particularly those fine-tuned with pre-trained transformers, demonstrated much 
higher F1 scores by effectively capturing a wider variety of PK parameter mentions not explicitly covered by 
the rules defined by PK experts, and they were also more flexible at encapsulating complementary terms that 
often vary in PK parameter mentions. Nonetheless, this flexibility also introduced a few extra false positives, 
where the model would occasionally overgeneralise, predicting incorrect PK entities in similar contexts such as 
mentions of pharmacodynamic parameters, which the rule-based models avoided (e.g. Area Under the Effect 
Curve (AUEC), Maximum Tolerated Dose (MTD)).

As it has been previously reported26, it was observed that the models based on BERT provided substantial 
performance benefits in comparison to the scispaCy model. The test set predictions showed that the scispaCy 
pipeline was x10 faster at inference time on CPU than running BERT models on a single GPU. Therefore, we also 
released the fine-tuned scispaCy pipelines open-source (https://github.com/PKPDAI/PKNER). The BioBERT 
model outperformed the BERT model pre-trained on general-domain English text, especially on strict entity 
matching. Specifically, BioBERT provided a large gain (+ 9%) on the pipeline precision in comparison to all the 
other models. This result suggests that domain-specific pre-training is crucial for effective PK NER.

Strict Partial

Model P R F1 P R F1

Rule-based 52.8 43.59 47.75 69.25 57.18 62.64

ScispaCy 77.09 82.82 79.85 80.91 86.92 83.81

BERT 81.47 87.72 84.48 84.92 91.43 88.05

BioBERT 90.49 90.26 90.37 92.54 92.31 92.43

Table 3. Results on the test set for different NER models. Metrics are reported at the entity level using strict 
and partial matches.

 

Figure 2. Distribution of F1, Recall and Precision scores for the Active Learning and Random Sampling 
datasets (n=500 sentences) after 10 runs with different random seeds. The left and right panels display the 
scores considering strict and partial matching of entities, respectively.
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Performance on external corpus
To assess the generalisability and robustness of the BioBERT model fine-tuned on the PK-NER-Corpus, we 
conducted external validation using the PK-Ontology-Corpus developed by Wu et al.11. This corpus comprises 
541 manually annotated abstracts, focusing on key terms and sentences related to PK parameters and drug-
drug interactions (DDIs). Importantly, the annotated abstracts were selected with more specific filtering criteria 
regarding study types and focusing on specific drugs (e.g. midazolam).

Our model, fine-tuned on the PK-NER-Corpus, was directly applied to the PK-Ontology-Corpus test set 
without any additional training, achieving a competitive strict F1 score of 74.52% and a partial matching F1 score 
of 81.10% (see Table 4). The substantial increase from strict to partial matching indicates that the main PK terms 
were often identified, although discrepancies in annotated span boundaries between the two corpora impacted 
strict matching. These discrepancies might be due to different annotation criteria used in the development of the 
PK-NER-Corpus and the PK-Ontology-Corpus. However, the competitive performance on a different dataset 
demonstrates our model’s robustness in identifying PK parameters across varied contexts, indicating that it is 
not overfitted to specific features of the PK-NER-Corpus, thus enhancing its applicability to other PK studies.

Conversely, when the BioBERT model was fine-tuned on the PK-Ontology-Corpus and evaluated on the 
PK-NER-Corpus, the strict matching F1 score was 66.13%, highlighting the limitations of training models on 
narrowly focused datasets. This cross-dataset validation underscores the necessity of training on diverse datasets 
to capture a wide range of PK parameters and contexts. By demonstrating that models trained on a broad corpus 
covering multiple PK study types and drugs (PK-NER-Corpus) perform well on an externally developed dataset, 
we illustrate the importance of comprehensive and varied training data for developing robust PK NER models.

The observed differences in transferability highlight the importance of corpus diversity when training and 
evaluating NLP models for PK applications. Future work could involve creating and annotating additional 
datasets that bridge the gap between general and specific corpora. For instance, incorporating clinical trial 
reports, which contain a large number of PK parameter estimates, or other relevant contexts, could provide a 
more comprehensive training and evaluation ground for PK NER models.

Potential applications and implications
The NER models developed in this study can now be used to characterise DDIs by identifying PK parameters 
involved in those interactions and performing downstream bio-NLP tasks such as extending knowledge graphs 
with PK-related entities. Additionally, they provide a fundamental step to achieve end-to-end extraction of 
PK parameter estimates and automatically construct comprehensive databases used for pre-clinical drug 
development. However, further work is required to develop subsequent relation extraction systems that extract 
numerical values and related entities. This step is crucial for accurately capturing numerical estimates and their 
contexts. Such a system will facilitate the creation of extensive, high-quality PK databases while minimising 
human effort. These databases can serve as valuable resources for literature reviews, extraction of parameter 
distributions for (semi-)mechanistic and physiological-based models, and machine learning-based predictions 
of PK parameters for new molecules.

Conclusion and future work
This work presented a new corpus to train and evaluate NER models to detect mentions of PK parameters 
in the scientific literature. A variety of models were compared, and fine-tuning BioBERT resulted in the best 
performance on PK NER with over 90% F1 score on strict entity matching. Domain-specific pre-training with 
transformers was crucial to obtain optimal performance. Machine learning models largely outperformed the 
rule-based model, potentially due to the high diversity in PK parameter surface forms and the importance of 
context to determine PK entities.

The active learning protocol helped accelerate the curation of PK data while improving the information 
provided by labelled sentences compared to random sampling. A variety of approaches have been applied for 
active learning in NER27–29. For instance, bayesian approaches have recently shown promising results29, although 
their application comes with computation costs. It is still unclear which active learning approaches are most 
beneficial to make efficient use of a model in the loop. In this study, many approaches are left for exploration. For 
instance, using transformer-based models in the loop instead of scispaCy, using diversity sampling or applying 
other criteria to estimate model uncertainty. However, the framework developed with Prodigy allowed for fast 
annotations that reduced the labelling load, and the samples selected for annotations provided diverse and 
challenging spans that resulted in larger information gains than samples randomly sampled.

Finally, the best-performing model showed good generalisation to various study types when applied to 
external annotated corpora and validated its potential application to improve the characterisation of DDIs. The 
experiment results indicate that NER models trained on the PK-NER-Corpus generalise better to unseen PK 
publications than those trained on existing corpora. Overall, we believe that these resources can become crucial 

Strict Partial

Training corpus P R F1 P R F1

PK-NER-Corpus 77.05 72.15 74.52 83.85 78.51 81.10

Table 4. Results obtained on the external PK-Ontology-Corpus test set after training BioBERT on the PK-
NER-Corpus.
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in developing end-to-end PK information extraction pipelines, improving the characterisation of drug-drug 
interactions, and ultimately helping to improve PK pre-clinical predictions.

Data availability
The PK NER models and the labelled corpus have been released open source at https://github.com/PKPDAI/
PKNER.
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