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Abstract
Discharge planning is integral to patient flow as delays can lead to hospital-wide congestion. Because a structured discharge
plan can reduce hospital length of staywhile enhancing patient satisfaction, this topic has caught the interest ofmany healthcare
professionals and researchers. Predicting discharge outcomes, such as destination and time, is crucial in discharge planning
by helping healthcare providers anticipate patient needs and resource requirements. This article examines the literature on
the prediction of various discharge outcomes. Our review discovered papers that explore the use of prediction models to
forecast the time, volume, and destination of discharged patients. Of the 101 reviewed papers, 49.5% looked at the prediction
with machine learning tools, and 50.5% focused on prediction with statistical methods. The fact that knowing discharge
outcomes in advance affects operational, tactical, medical, and administrative aspects is a frequent theme in the papers
studied. Furthermore, conducting system-wide optimization, predicting the time and destination of patients after discharge,
and addressing the primary causes of discharge delay in the process are among the recommendations for further research in
this field.
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1 Introduction

Healthcare demand and expenditures are increasing, putting
pressure on healthcare systems [1]. Hospital operational and
financial expenditures are affected by inpatient flow man-
agement. Effective patient flow involves preparing patients
for each stage of care they require [2]. One of the most
critical parts of inpatient flow is the process of patient dis-
charge, often called Discharge Planning (DP). DP connects
a patient’s hospital treatment and post-discharge care [3] and
ensures continuity of care for patients when they leave the
hospital.
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Several studies have shown that a structured discharge
plan may reduce hospital Length of Stay (LOS) and read-
mission rates while increasing patient satisfaction. Based on
several studies, standard DP can improve patient outcomes
including mortality/ survival rate [4–6], readmissions [5, 7–
12], LOS [8, 12–14], and health-related quality of life [5, 8].
While there is little evidence that DP can lower healthcare
expenditures [3, 15, 16], several studies indicate that proper
DP results in cost savings for hospitals and the whole health
system [17–20].

DP is a complicated procedure in hospitals that signif-
icantly impacts the entire healthcare system. As a result,
numerous researchers have attempted to analyze this pro-
cess, the causes of discharge delays, and its implications on
the healthcare system. Several studies help this process by
applying different methods to improve outcomes for both
the system and the patients. They use approaches from the
process improvement field, such as standardization of DP
processes [16, 21–23], re-engineering of processes [24],
applying knowledge management [25, 26], lean approaches
[20, 27–31], and data analysis and quality assessment [32,
33] to examine the effectiveness of DP for patients moving
from the hospital.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10729-024-09682-7&domain=pdf


A systematic literature review of predicting patient discharges... 459

Combining patient-level data from Electronic Health
Records (EHR) with advanced predictive tools can provide
visibility into patient flow and discharge to help hospitals
run more efficiently. Machine learning (ML) algorithms are
effective in processing large amounts of data and provide a
way to forecast the patients’ discharge elements in a timely,
systematic, and accurate manner. With the growth in data
analysis methods, several studies utilized different MLmod-
els to predict the discharge volume [34, 35], time [36, 37],
and destination [38, 39]. These and other recent studies have
looked into predicting the time and destination of discharged
patients.However,we could not find a literature reviewarticle
on this subject. This review article examines the prediction
of discharge destination, which refers to where a patient is
discharged (e.g., home, long-term care facilities), discharge
time, which indicates when a patient is discharged (or LOS,
which stands for the duration of a patient’s stay in a hos-
pital). Additionally, it explores volume, which refers to the
number of patient discharges in a fixed time period. These
findings are reported in various sources, including journal
articles, conference proceedings, grey literature, and books.
Our discussion encompasses the evolution and contributions
of developed methodologies in this field and summarizes the
literature on discharge prediction.

The search strategy and identified articles are described in
Section 2. Section 3 summarizes the use of predictive models
in DP, including statistical-based and ML-based predictions.
Section 4 summarizes the findings and recommends ways to
improve DP and DP prediction in the future.

2 Search strategy

Papers that met at least one of the following criteria are
included in this review. (1) They investigated the prediction
of DP factors from a statistical analysis. (2) They investi-
gated prediction in DP problems utilizing ML models. The
databases used are Scopus, Web of Science, Google Scholar,
and Medline/Pubmed search engine. The authors discovered
a group of relevant journal articles through scoping searches.
These articles were then reviewed by an information spe-
cialist to generate a list of search phrases that encompassed
each aspect of the review criteria, which was used to pre-
pare the list of search terms. Search keywords in the title are
Patient discharge planning;Discharge plan; Patient discharge
prediction; Discharge time prediction; Patient discharge des-
tination; Patient post-discharge; Post-discharge + long-term
care; Post-discharge + home. All searches were carried out
in August 2023, with a restriction on English-language pub-
lications and a period of 2002 to 2022.

2.1 Search results

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [40, 41]were followed
in reviewing the papers. The search yielded a total of 437
studies, ofwhich 106were identified as duplicates, ultimately
leaving 331 distinct papers. Articles that did not match the
criteria based on their title and abstract were disregarded. The
complete texts of the remaining articles were reviewed. 101
publications met one or both evaluation criteria (see Fig. 1).

2.2 Classification of results

Todemonstrate the breadth of this research area,we classified
the articles into two categories based on their methodology.
The objective of papers in both categories is the same: to pre-
dict the time or destination of patients after discharge. The
first category of papers uses statisticalmethods (51 out of 101
papers), which is reviewed in Section 3.1. The second cate-
gory of papers usesML (50out of 101 papers) and is reviewed
in Section 3.2. The trends in these research areas are shown
in Fig. 2, indicating the growing interest in understanding
and improving the discharge process through prediction.

3 Predicting discharge

Prediction is a strong tool for decision-making, from inven-
tory management to strategic management [42]. Discharge
prediction aims to improve inpatient flow by giving decision-
makers accurate information [43, 44]. Furthermore, forecast-
ing different aspects of DP, such as LOS, discharge time, and
discharge destination, helps healthcare providersmake better
decisions for the entire system [45, 46]. This section reviews
articles that determine and predict discharge factors using
statistical tools (Section 3.1) and studies that use ML-based
methods (Section 3.2).

3.1 Statistical-based prediction

This subsection focuses on studies that analyze patient data
with statistical methods to identify predictive factors related
to discharge destination and discharge time. Most studies
appear in clinical journals and seek the correlation between
the discharge destination or time and patient factors such as
demographic, socioeconomic,medical, etc. These studies use
data analysis to determine the main features that can predict
discharge destination and time.

123



460 M. Pahlevani et al.

Fig. 1 Literature search and
screening flowchart

3.1.1 Discharge destination prediction

Discharge destination is the most studied factor in this cate-
gory. Knowing which characteristics impact the destination
of patients is critical for physicians and hospital authorities
[47, 48]. Based on their health situation, patients need to be
discharged to either community-based places (e.g., home,
home with support) or facility-based places (e.g., rehabilita-
tion, long-term care).

One of the most studied groups of patients is orthopedic
surgical patients. Studies help identify which patients may

need additional care after surgical recovery. In several stud-
ies, different variables such as age, sex, race, socioeconomic
factors, and family status are obtained as prediction factors
for the next destination for patients [48–51].

Total joint arthroplasty (TJA) patients have attracted the
attention of many researchers. TJA is a surgical procedure
in which a damaged or diseased joint is replaced with an
artificial joint or prosthesis. This procedure is commonly
performed on the hip and knee. Since most of these patients
need specialized care and assistance after surgery, defining
their discharge destination is critical. Several studies find that

Fig. 2 The trend of studies in
discharge prediction during
recent years
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demographics, clinical, and personal situations are the most
important predictors of patients’ discharge destination after
TJA [49, 52–58].

Mehta et al. [59] show that the level of community depri-
vation, representing the disadvantage or lack of resources
within a community, can predict the discharge destination
of patients undergoing hip arthroplasty. In a retrospective
cohort study, Duque et al. [60] point to a connection between
TJA performed under neuraxial anesthesia and an increased
likelihood of home discharge. In a recently published study,
to predict the discharge destination after total hip and knee
arthroplasty, Hadad et al. [61] simultaneously investigate the
performance of two tools; the preoperatively administered
Predicting Location after Arthroplasty Nomogram (PLAN)
and the postoperatively administered Activity Measure for
Post-Acute Care (AM-PAC) “6-Clicks” basic mobility tools.
They reveal that PLAN and “6-Clicks” basic mobility scores
are well-performed predictors, suggesting that preoperative
and postoperative variables influence discharge destination.

To investigate the impact of social support and psycholog-
ical distress in the discharge plan after TJA, Zeppieri et al.
[55] use the Risk Assessment and Predictive Tool (RAPT)
(social support assessment) and modified STarT Back Tool
(mSBT) (psychological distress assessment). Their results
show that the RAPT is a proper tool to predict discharge des-
tination. Focusing on the recent trends of community-based
services, Cohen et al. [58] develop a modified RAPT score,
which indicates the highest overall predictive accuracy of
92% and is capable of predicting home discharges.

Investigating spine surgery patients, Aldebeyan et al. [62]
discover different demographic and clinical features that lead
to facility-baseddischarge.They also use amultivariate logis-
tic regressionmodel to predict discharge destinations to other
facilities rather than home. Through a retrospective cohort
study focusing on the effect of age, Pennicooke et al. [63]
show that patients over 70 had a higher chance of transfer-
ring to a facility-based destination. In another study, Lubelski
et al. [64] create a calculator to estimate patients’ destinations
after spine surgery. Their data analysis demonstrates that age,
insurance type, marriage status, and surgical procedure are
significantly associated with facility-based discharge desti-
nations.

Kimmel et al. [48] develop a model to predict the facility-
based destination for lower limb fracture patients. In another
study, Glauser et al. [50] prove that the preoperative RAPT
score is a highly predictive tool in lumbar fusion patients for
discharge destinations that can predict admission to another
facility or home. Using a multinomial logistic regression
model, Ryder et al. [65] analyze and compare various char-
acteristics and health outcomes of hospitalized patients with
hip fractures. They also examine predictors of discharge des-
tination to home or other facilities.

As patients have special needs after brain injury, many
patients need to be discharged to a facility-based destination.
To predict rehabilitation needs upon discharge after trau-
matic brain injury, De Guise et al. [66] consider different
variables such as age, education, duration of posttraumatic
amnesia, and clinical results. They find that having shorter
posttraumatic amnesia lowers the chances of experiencing a
disability and consequently lowers the need to be discharged
to facility-based destinations. Focusing on the impact of race
on the rehabilitation of traumatic brain injury patients, Oye-
sanya et al. [67] show that younger patients belonging to
Latino or other racial/ethnic groups had a greater chance of
being discharged to their homes rather than other facilities.
In another study by Oyesanya et al. [68], sex and age are
considered critical predictors for the discharge destination of
traumatic brain injury patients. Also, using Logistic Regres-
sion (LR) on patients’ data, it is reported that younger and
female patients have a lower chance of discharge to facility-
based destinations.

Early prediction of post-stroke discharge destinations is
found to be a way to improve patient outcomes, reduce costs,
and improve the quality of care [69–72]. Also, some studies
show that predicting and planning for a patient’s post-stroke
discharge destination can reduce readmission rates, improve
patient satisfaction, and increase the chance of successful
rehabilitation [73–75]. Post-stroke discharge destination is
typically predicted with clinical assessment and predictive
modeling. Predictive modeling can be used to identify and
analyze patient-specific predictors of post-stroke discharge
destination. These predictors can determine which patients
are more likely to be discharged to a facility-based or a
community-based destination. Clinical assessment includes
a patient’s medical history, current medical condition, and
other factors such as age, sex, and comorbidities [76, 77].

Numerous studies reveal that patients’ physical situation,
the family’s readiness at home, personal financial status, and
marital status are significant predictive factors of discharge
destination for patients after stroke [69, 71, 78–80]. A study
by Nguyen et al. [81] reveals that marital status is crucial
in determining discharge destination. However, immigrant
and area-based socioeconomic status do not significantly
impact discharge destinations.Moreover, Ouellette et al. [73]
and Roberts et al. [82] propose that various functional and
clinical outcome data at admission can be used to develop
an accurate tool to predict discharge destinations for stroke
patients. Kim et al. [83] establish a realistic assessment tool
that forecasts home discharge for mild stroke patients after
subacute rehabilitation therapy in tertiary institutions. This
assessment tool considers a range of demographic, clinical,
and functional variables as potential predictors. Cho et al.
[75] investigate the link between the discharge status of post-
stroke and patient characteristics using a probabilistic LR
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model. Based on their results, low readmission rates reflect
complete care and proper discharge. Chevalley et al. [84]
examine the effects of stroke patients’ socio-environmental
characteristics and show that the most effective predictors of
home discharge are living with others, receiving support at
home, being married, and living at home before the stroke.

In another study, Gosling et al. [85] investigate the occur-
rence and risk factors associated with adverse discharge
disposition (ADD) following cardiac surgery and present a
tool to predict preoperative risks. Results show that patients
with ADD are more elderly, female, have had a more
extended hospital stay before surgery, and have undergone
emergency surgery. Sex, race, payment type, injured region,
physiologically base, and need for an Intensive Care Unit
(ICU) are defined as determinant predictors of discharge des-
tination for trauma patients by Lim et al. [86] and Strosberg
et al. [87]. Hirota et al. [88] present two novel prediction
models to determine where elderly patients with aspiration
pneumonia will be discharged. They used various predictors,
including age, sex, BMI score, and other clinical characteris-
tics, to demonstrate that these models can aid in early-stage
discharge planning. Table 1 presents an overview of the stud-
ies reviewed in this subsection, including the study name,
prediction goals, patient populations, the method used, the
main factors defined by studies as predictive factors, and
dataset sizes.

3.1.2 Discharge time prediction

Although most studies focus on the destination of patients
after discharge, multiple investigations consider the time
of discharge or equivalently a patient’s LOS at the hospi-
tal [89]. Using the RAPT and mSBT, Zeppieri et al. [55]
show that lower social support leads to longer LOS after
TJA. Also, Cohen et al. [58] develop a modified RAPT score
which indicates the highest overall predictive accuracy of
92% and is capable of predicting LOS. Investigating spine
surgery patients, Aldebeyan et al. [62] discover different
demographic and clinical features that lead to an increase
in the LOS. Through a retrospective cohort study focusing
on the effect of age, Pennicooke et al. [63] show that patients
over 70 had a higher chance of staying more in the hospital.
In another study, Lubelski et al. [64] create a calculator to
estimate patients’ LOS after spine surgery.

Hintz et al. [90] use LR models with time-dependent
covariate inclusion to evaluatemultiplemodels for predicting
newborns’ time to discharge. They found that the predic-
tion of discharge time is poor if only perinatal factors are
considered, but it improves considerably with knowledge
of later-occurring morbidities. Shukla and Upadhyay [91]
investigate the factors influencing delay in discharge time
for insured patients, considering discharge Turn Around
Time. Predictors of same-day discharge following benign

minimally invasive hysterectomy are identified by Alashqar
et al. [92]. The demographic, surgical, and surgeon character-
istics connected to discharge on surgical day 0 are examined
using multivariate LR. They show that higher chances of
same-day discharge are connected with robotic hysterec-
tomy, quicker surgical duration, and minimum blood loss.

Moreover, in a recent investigation conducted by Lebruan
et al. [93], the efficacy of the RAPT score in predicting
LOS for patients undergoing TJA is examined. Unlike pre-
vious studies that considered total knee arthroplasty (TKA)
and total hip arthroplasty (THA) together when analyzing
the RAPT score, this research assesses them separately. The
results reveal that THA patients outperformed TKA patients
with similar RAPT scores, indicating a potential difference
in RAPT performance between the two procedures. Table 2
demonstrates the studies reviewed in this subsection.

The studies discussed in these subsections employ sta-
tistical techniques to analyze historical data to predict the
discharge destination and discharge time based on factors
that are derived from the data. Many of these studies choose
LR models for their analysis, depending on the specific vari-
ables, research question, and data characteristics. LRmodels
the connection between a binary dependent variable and
one or more independent variables. By examining histor-
ical data, these studies identify the primary predictors for
discharge destination or discharge time, with demographic,
socio-economic, and clinical factors being the main predic-
tive elements.

RAPT is the other tool used in this area. TheRAPT is a risk
assessment tool that uses a set of risk factors, such as age, sex,
medical status, and other patient characteristics, to calculate
a risk score for each patient. The risk score is then used to cat-
egorize patients into defined classes. It should be noted that
the accuracy of these prediction models is highly dependent
on the quality of the data used to develop the models.

3.2 ML-based predictions

ML can refer to circumstances in which machines can sim-
ulate human minds in learning and thus be used to solve
problems [94]. Researchers in the healthcare sector have been
applying artificial intelligence to aid better analysis and raise
the efficacy of the entire healthcare industry [95]. Prediction
modeling has experienced a tremendous rise in the popularity
of techniques from the ML domains [96].

Multiple studies in recent years have looked into several
models to predict discharge outcomes. The main outcomes
investigated are the discharge destination, LOS and discharge
time, and the discharge volume. These predictions can help
hospitals and healthcare providers optimize bed utilization,
manage staffing levels, and coordinate patient care more
effectively. This subsection investigates studies in which
researchers predict discharge outcomes using various ML
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models. The emphasis of these papers tends to be on com-
paring the performance of multiple ML models and, in some
of them, on reporting the most important factors affecting
discharge outcomes.

3.2.1 Discharge destination prediction

As mentioned earlier, we consider two possible destina-
tion types for patients after discharge from the hospital:
community-based (e.g., home, home with support) and
facility-based (e.g., rehabilitation, long-term care). Knowing
whether patients are going to their homes or other facilities
directly impacts discharge planning. Lackof capacity in other
facilities can lead to extended hospital stays, increased risk of
complications, and poorer health outcomes overall. In addi-
tion, it is a critical component for managing resources in a
healthcare system [97, 98]. Researchers use a variety of ML
models to predict discharge destinations based on historical
data of patients; for example, Elbattah and Molloy [99] use
different MLmodels to aid in planning senior care with a hip
fracture focused on predicting discharge destination. They
found that compared to other models, Random Forest (RF)
offers significantly higher accuracy.

Considering various attributes of elective inpatient lumbar
degenerative disc diseases after surgery, Karhade et al. [100]
show that using different ML to develop an open-access web
application to predict facility-based discharges has promis-
ing results. Lu et al. [101] introduce five ML models aimed
at forecasting whether patients following knee arthroplasty
can be discharged to their homes or require alternative facili-
ties. The findings indicate that the extreme gradient boosting
(XGB) model outperforms the remaining models. Further-
more, they identify key factors influencing the likelihood
of facility-based discharges, including total hospital LOS,
preoperative hematocrit, body mass index, sex, and func-
tional status. Bertsimas et al. [102] use a wide range of
ML models to predict various elements of patient flows,
including discharge destinations using a unique patient rep-
resentation. The findings show that EHR data combined with
interpretable MLmodels can be leveraged to provide visibil-
ity into patient flows.

In another study for traumatic brain injury patients,
Satyadev et al. [103] develop several ML models to pre-
dict discharge destination and propose the RF model as the
best-performingmodel.Mohammed et al. [104] develop four
different MLmodels (Gradient boosting (GB), RF, LR, Arti-
ficial neural networks (ANN)) to predict three discharge
outcomes of patients after total knee arthroplasty, includ-
ing discharge destination. The findings show that these ML
models can predict the desired outcomes successfully.

Imura et al. [105] demonstrate that among three classifi-
cation and regression tree models, the model including basic
information, functional factor, and environmental attributes

has the highest accuracy for classifying the likelihood of
stroke patients being discharged at home. Imura et al. [106]
also use ML to discover the relevant parameters influencing
stroke patients’ home discharge who require a wheelchair
after discharge. Consequently, the most closely connected
variables for home discharge are revealed to be physical envi-
ronmental characteristics of the patient’s home which may
cause accessibility challenges. In a different investigation,
Bacchi et al. [107] showcase the effective validation, both
prospective and external, of ML models. These models uti-
lize six variables to predict discharge-related information,
particularly concerning home discharges for stroke patients.

Utilizing the XGB model, Ikezawa et al. [108] reveal that
patients with ischemic cerebral infarction had excellent rates
of home discharge when early nutrition occurred within the
first three days of hospital admission. Morris et al. [109]
develop a novel ML model called Bayesian additive regres-
sion trees that outperforms conventional regression analysis
in predicting discharge destinations after trauma in elderly
patients. Investigating the data set, they also find that age and
the Glasgow Coma Scale upon admission play critical roles
in predicting discharge destination. Mickle and Deb [110]
also find that the XGB model can classify the discharge des-
tination for patients in acute neurological care effectively,
based on demographic and medical data available within 24
hours of their hospital admission.

In another study, to predict facility-based discharge des-
tination after total knee arthroplasty, Chen et al. [111] apply
ANN, RF, histogram-based gradient boosting (HGB), and k-
nearest neighbor (KNN) on a large dataset. They discover
that ANN and HGB have excellent predictive performance
during internal and external validations and can performwell
in distinguishing facility-based discharges. In a recent study
byGeng et al., it is found that patients over 65, females, those
with higher American Society of Anesthesiology scores, and
those requiring more extensive fusion are more likely to be
discharged to community-based care after elective anterior
cervical discectomy and fusion.

The studies reviewed in this subsection are summarized in
Table 3. The information in the table includes the predicted
parameters and the target patient population. Additionally,
the table lists the ML model(s) used for prediction, the best-
performing ML models in studies where various models are
employed, and the database size used.

3.2.2 Discharge time prediction

The LOS and discharge time significantly affect capacity,
costs, and patient satisfaction. By accurately forecasting the
discharge time (or, equivalently, a patient’s LOS), hospi-
tals can proactively address patient needs and improve their
overall quality of care [112, 113]. Numerous studies use
ML models to forecast the discharge time. By employing
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tree-based supervised MLmodels, Barnes et al. [36] demon-
strate that early discharges are less predictable than midnight
discharges. Their model surpasses clinicians in predicting
daily discharges with greater accuracy and can effectively
rank patients in order of proximity to upcoming discharges.

A clinically interpretable feedforward Neural Network
(NN) model by Safavi et al. [114] helps to foresee which
patients leave the hospitalwithin 24 hours and their obstacles.
The NN model finds clinical barriers, variations in clinical
practice, and non-clinical factors among the 65 hurdles to
discharge. In another study, Lazar et al. [37] design an RF
model to predict the clinical preparedness for discharge in
the next 24 to 48 hours. They find that this model predicts
surgical discharges on a 48-hour basis with greater sensitiv-
ity than clinicians. Nemati et al. [115] use six different ML
and statistical analysis models to predict the discharge time
of COVID-19 patients to aid health professionals in making
better decisions. After comparing the results, they find that
the GB survival model performs better than the others.

Some studies predict LOS rather than discharge time. In
recent years, inpatient LOS prediction has been studied using
various ML models. To predict LOS, Liu et al. [116] apply
Decision Tree (DT), Naive Bayesian (NB) classifiers, and
feature selectionmodels to a dataset from a geriatric hospital.
They discover that using NB models to deal with the sizable
amount of missing data can significantly improve the clas-
sification accuracy of forecasting LOS, particularly for the
long-stay group. ANNmodel is also utilized by Gholipour et
al. [117] to predict the LOS in ICU. They find that ANN out-
performs the Lagrangian regression model. Tsai et al. [118]
create an ANN model to predict the LOS for inpatients in a
cardiology unit. The findings show that preadmissionmodels
can predict LOS and pre-discharge models.

Muhlestein et al. [119] devise a novel strategy for con-
structing a model that predicts LOS after craniotomy for
a brain tumor. With high internal and external validation
performance, anML ensemble model predicts LOS and gen-
erates medical insights that could enhance patient outcomes.
Bacchi et al. [120] look at how well ML models could esti-
mate the likely LOS for stroke patients using admission data.
According to this study, ML models may aid in prognos-
ticating characteristics crucial to post-stroke DP. He et al.
[121] develop an ANN-based multi-task learning model for
the prediction of patient LOS. This model produces better
results than single-task regression and classification mod-
els. By evaluating different ML models, Zhong et al. [122]
demonstrate the RF and ANNmodels are accurate enough to
predict the LOS of ambulatory total hip arthroplasty patients.
A recently published study by Zeleke et al. [123] aims to
develop and compare variousMLmodels for predicting LOS
and Prolonged LOS in general patient settings for those
admitted through the emergency department. The objective
is to create a framework for prediction rather than favoring

a specific model. Eight regression models are developed for
LOS prediction, with XGB regressions displaying the lowest
prediction error. The studies reviewed in this subsection are
summarized in Table 4.

3.2.3 Other discharge outcomes prediction

Utilizing ML can also be a valuable tool for hospital prac-
titioners and staff in determining several critical discharge
planning outcomes. These results aid in predicting patient
needs and optimizing the DP process. Morton et al. [124]
examine the performance of several supervised ML mod-
els (i.e., multiple linear regression, support vector machines
(SVM),multi-task learning, andRF) for predicting long LOS
vs. short LOS in hospitalized diabetes patients. The results
of this study show that the SVMmodel is the most promising
for predicting short-term LOS. The number of discharges per
day in hospital or discharge volume is another outcome that
can be predicted using data. Knowing daily discharge volume
in advance can diminish capacity-related uncertainties, lead-
ing to more optimized decisions regarding patient admission
scheduling [34]. To predict daily inpatient discharges from
the nephrology department, Luo et al. [125] use three mod-
els based on time series analysis. They discover that the RF
model performs best.

The performance of a novel time-series ML model for
predicting hospital discharge volume is compared to more
straightforward models by McCoy et al. [35]. Their results
emphasize that while more highly developed models are
presented, time-series-based prediction can enhance clini-
cal planning in the short term with little effort and without
using big data sets, or computational power. Moreover, Van-
Walraven et al. [126] validate the Tomorrow’s Expected
Number of Discharges model’s accuracy in predicting the
number of hospital discharges the following day. Consid-
ering gynecologic oncology surgery patients, Lambaudie et
al. [127] develop a prediction model including Classifica-
tion and Regression Trees to determine who can stay at the
hospital for less than two days. Levin et al. [128] address
the support of multidisciplinary discharge-focused rounds
problem using real-time EHR data and developing an ML-
based discharge prediction model. Their findings show that
computerized patient discharge predictions within multidis-
ciplinary rounds help shorten hospital stays.

To help prioritize complex individuals and reduce health-
care inefficiency, Ghazalbash et al. [129] use classification
ML models to predict multimorbidity using three indices.
Results show the feasibility and utility of predicting multi-
morbidity status utilizing ML models, allowing early detec-
tion of individuals at risk of 30-day death and readmission.
Moreover, three ML models are used in a study by Gra-
maje et al. [130] to forecast whether a patient after surgery
should remain in the hospital or not. They offer intriguing
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results; while ML models in the class Remain show promis-
ing results, allMLmodels perform poorly in class Discharge.
This study recommends including non-clinical characteris-
tics of patients such as education, availability of family,
finalized DP, and final physical examinations to boost the
model’s performance.

Ahn et al. [131] investigate the discharge prediction and
individual features of inpatients with cardiovascular dis-
eases using five ML models. The XGB model outperforms
other models. By assessing the outcomes of prediction mod-
els and visualizing simulated bed management, they also
discover risk factors in cardiovascular patients and help hos-
pital authorities develop resource management. Also, Gao
et al. [132] predict inpatient discharges by proposing a novel
ensemble deep learning model based on random vector func-
tional links (edRVFL). Numerous forecasting indicators and
statistical testing show that the suggestedmodel surpasses the
benchmark by a statistically significant margin. To improve
DP for patients undergoing radical cystectomy, Zhao et al.
[133] develop a Gradient Boosted Decision Tree (GBDT)
model that supports patients’ complex conditions and helps
them receive higher care. Jaotomboa et al. [134] compare the
performance of different ML models on a hospital dataset to
identify patients with prolonged LOS. By evaluating AUC,
they demonstrate that among LR, classification and regres-
sion trees, RF, GB, and NN, the GB classifier outperforms
the other models. The studies reviewed in this subsection are
summarized in Table 5.

This section explains the studies that explore the imple-
mentation of various ML models on a dataset and seek to
predict discharge outcomes such as destination, time, vol-
ume, etc. However, just a few studies consider multiple
discharge outcomes, such as destination, time, and volume.
Another considerable gap among these studies is about the
input data. Since integrating data from multiple sources can
be a complex task, many studies are developed and validated
using data from a single institution or a specific popula-
tion, which might limit the generalizability of the results.
Further research is needed to validate predictive models
across diverse healthcare settings, populations, and geo-
graphic locations.

Moreover, most existing prediction models are based on
historical data and may not fully use real-time data. Inte-
grating real-time data, such as vital signs, laboratory results,
and patient monitoring data, could enhance the accuracy of
predictions. Limited use of advanced analytics techniques is
found to be another gap in review studies. Although there
are many different types of predictive modelling techniques,
there has not been a lot of use of advanced analytics to pre-
dict patient discharge factors. Future studies can explore the
application of advanced analytics to enhance predictions’
reliability and accuracy.

4 Discussion

This paper presents a literature review focusing on studies
that have employed prediction methods to estimate the des-
tination, time, and volume of discharged patients. Numerous
researchers have applied prediction methods to estimate dif-
ferent discharge factors using statistical andML-basedmeth-
ods. Papers following the first approach (statistical methods
in Section 3.1) aim to identify medical, demographic, and
socioeconomic factors predicting patient discharge within
specific cohorts. However, the second approach (ML-based
models in Section 3.2) seeks to predict various discharge
factors by implementing ML-based models on extensive
datasets.

These two approaches share similarities but also exhibit
differences. One of the significant distinctions is how they
address discharge-related aspects. In the first approach, stud-
ies primarily focus on determining the destination and time of
discharge. However, in the second approach, leveraging the
enhanced capabilities of ML models, researchers can pre-
dict a more comprehensive array of variables such as daily
discharge volume, discharge likelihood, and other related
parameters.

In the first approach, discerning patient factors is para-
mount, as studies endeavour to uncover influential variables
for predicting discharge outcomes through statistical analy-
ses. Conversely, ML-based studies may pinpoint significant
factors, but the primary objective is not necessarily to isolate
patient variables. Instead, their ultimate aim is to develop the
most effective prediction model. In ML-based studies, the
emphasis lies on comparing different models and identifying
the one with the highest predictive accuracy.

This contrast is particularly evident when considering
the methods employed. Unlike studies in the first approach,
which utilize statistical methods, especially logistic regres-
sion, in the second approach, ML-based studies explore
various ML models to minimize prediction errors. The
statistical studies also try to customize their analyses for par-
ticular groups of patients, thereby enhancing the relevance
of patient-related factors to predicted outcomes.

Figure 3 illustrates the characteristics of the two reviewed
approaches. There are both similarities and differences
between these approaches. However, the most notewor-
thy distinction lies in their methodologies, with additional
notable variations. In the first approach, all the studies pri-
marily investigate the prediction of destination and time of
discharge, focusing on a specific group of patients. They
aim to identify the most pertinent and critical patient fac-
tors related to discharge outcomes. Conversely, in the second
approach, besides destination and time, other goals are con-
sidered. In this ML-based approach, studies are oriented
toward comparing the performance of various ML models
to determine the optimal model.
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Fig. 3 The characteristics of the
two reviewed approaches

Most reviewed studies in Section 3.1 focus on orthope-
dic surgical patients, brain injury patients, and stroke. For
orthopedic surgical patients, factors such as age, sex, race,
socioeconomic factors, and family status are found to be sig-
nificant predictors of discharge destination. Similarly, age,
education, and clinical results are crucial for brain injury
patients in predicting rehabilitation needs upon discharge. In
stroke and cardiac surgery patients, factors such as patients’
physical condition, family readiness, financial status, and
marital status play significant roles in determining discharge
destinations. Also, several studies explore specific variables
associated with discharge outcomes in other patient groups.

On the other hand, papers in Section 3.2 provide various
ML models that utilize historical data. The chosen model is
determined by the data set’s size, characteristics, and pre-
diction type (whether a classification or a clustering model).
A common application of ML-based models is in discharge
destination prediction. By analyzing patient data, multiple
studies utilize ML models to predict whether patients will
be discharged to community-based or facility-based destina-
tions. Another area whereML-based predictions have shown
promise is in discharge time prediction. Accurately fore-
casting the discharge time allows hospitals to proactively
address patient needs and improve patient flow and through-
put. Moreover, ML-based predictions have been utilized to
indicate discharge volume, enabling healthcare organizations
to anticipate patient discharge outcomes. In most studies,
time series models are utilized to predict discharge volumes.
These approaches are effective in short-term forecasting and
clinical planning without requiring extensive computational
resources.

In terms of methodology, various methods are used to
investigate statistical studies, such as LR and RAPT, with
LR models being the most widely used. LR finds extensive
application in both statistical-based and ML-based studies,
although there are differences in their use and purpose. In
statistical analysis, LR is primarily employed for inference,
helping to understand the relationship between indepen-
dent variables and binary outcomes. The emphasis here
lies in comprehending the significance of each predictor. In
contrast, in ML-based studies, LR is often utilized as a clas-
sification algorithm, predicting binary outcomes. The focus
in this context shifts to predictive accuracy rather than infer-
ential insights.

RF, NN-based, and GB-based models are the most com-
monly employedMLmodels inML-based prediction studies.
Among the 50 investigated studies, RF was used in 27,
NN-based models in 20, and GB-based models in 17 for
predictions. RF was the best-performing model in 13 studies
[36, 37, 99, 103, 104, 122, 125, 126, 129, 135–137],making it
the top-performing model in approximately 50% of its appli-
cations. NN models outperformed others in 11 studies [100,
106, 107, 111, 113, 114, 117, 118, 120–122], accounting for
approximately 56% of their usage. GB models exhibited the
best performance in 12 studies [104, 107, 108, 110, 111, 115,
123, 129, 131, 133, 134], establishing GB-based models as
the best choice in 67% of their applications.

These models often outperform traditional statistical
methods such as LR. It is important to note that the choice
of models depends on the specific prediction task and the
available data. Different MLmodels may suit diverse patient
populations and discharge factors. Future studies can aim
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to validate and compare other models using more extensive
and varied datasets, incorporate additional features such as
non-clinical characteristics, and focus on improving the inter-
pretability of ML models.

The researchers use various approaches to compare the
performance of different ML models. One widely used
performance metric is the area under the ROC curve. The
ROC curve plots the true positive rate against the false pos-
itive rate for different classification thresholds. The AUC
measures the overall performance of the ML model in dis-
tinguishing between positive and negative samples. Many
studies use the AUC because it is easy to compute and inter-
pret. Also, it provides a single value that summarizes the
model’s overall performance, making it easier to compare the
performance of different models on the same task or dataset.

Furthermore, several pieces of research focus on the
destination, while others concentrate on the timing, daily
discharge, or discharge volume. However, few studies exam-
ine multiple discharge patient outcomes, such as destination,
LOS, volume, and clinical features. The lack of a diverse
and generalized dataset is found to be another gap in this
area. Incorporating input data from various healthcare insti-
tutions, populations, and locations, as well as considering
real-time data, can increase the accuracy and validation of
results. Another significant gap in this field is the applica-
tion of prediction results as decision-making aids in hospital
administration. Further effort is required to confirm the link
between predictions, hospital actions, and quality of care.
The incorporation of DP with other health facilities needs
to be addressed for planning to be effective and precise in
real-world scenarios.

Discharge is the final point of patient flow in the hospi-
tal, and for patients not discharged to home, it is linked to
other healthcare facilities such as nursing homes, long-term
care facilities, rehabilitation centers, etc. Accordingly, solu-
tions to discharge concerns often lie outside the hospital and
necessitate system-wide policies. Even in prediction studies,
the majority of studies use a prediction tool to anticipate time
or destination and assess the model’s effectiveness, and there
is little discussion on the next steps. Another area of future
research in this field is the practical use of the predictions to
improve hospital processes and patient outcomes.

These problems need to be accurately modeled during the
entire discharge process and predict system performance in
a more realistic and detailed setting. While the DP problem
presents itself as a difficult challenge, it also allows pub-
lic health, healthcare systems, and hospitals to collaborate
to develop best practices and intervention strategies. As a
result, applying different tools, including data analysis, ML,
operations research, and quality improvement, will benefit
health administrators and patients.

Glossary

Acronym Description

ADD Adverse Discharge Disposition
ANN Artificial Neural Networks
AUC Area Under the ROC Curve
BDT Boosted Decision Tree
BMI Body Mass Index
DP Discharge Planning
DT Decision Tree
EHR Electronic Health Records
FIM Functional Independence Measure
GBDT Gradient Boosting Decision Trees
HGB Histogram-based Gradient Boosting
ICU Intensive Care Unit
KNN K-nearest Neighbor
LOS Length of Stay
LR Logistic Regression
ML Machine Learning
MLR Multinomial Logistic Regression
mSBT Modified STarT Back Tool
MTL Multi-Task Learning
NB Naive Bayesian
NN Neural Networks
RAPT Risk Assessment and Predictive Tool
RF Random Forest
ROC Receiver Operating Characteristic
RT Random Trees
SVM Support Vector Machine
TJA Total Joint Arthroplasty
THA Total Hip Arthroplasty
TKA Total Knee Arthroplasty
XGB Extreme Gradient Boosting
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