Skip to main content
. 2024 Jul 22;27(3):458–478. doi: 10.1007/s10729-024-09682-7

Table 2.

Studies related to Statistical-based discharge time prediction

Study Predicted parameter Patient population Methodology Main factors Dataset size
Hintz et al. [90] Discharge time, LOS Newborns patients Linear and logistic regression Clinical characteristics (n=2,254)
Carter et al. [89] LOS Total knee replacement patients Statistical tests Age, sex, consultant (n=2,130)
Aldebeyan et al. [62] LOS Lumbar spine fusion surgery patients Multivariate logistic regression Age, sex, comorbidities (n=15092)
Shukla and Upadhyay [91] LOS General patients with insurance Correlation and linear regression Turn Around Time for insured patients (n=443)
Zeppieri et al. [55] LOS Joint arthroplasty patients RAPT, factorial analysis of variance Social support, psychological distress (n=231)
Lubelski et al. [64] LOS Spine surgery patients Univariable and multivariable analyses Demographic variables, insurance status, baseline comorbidities (n=257)
Cohen et al. [58] LOS Joint arthroplasty patients RAPT, Multiple logistic regression RAPT scores, demographic, and medical factors (n=1,264)
Alashqar et al. [92] Discharge time Benign minimally invasive hysterectomy patients Multivariate logistic regression Operative, and surgeon factors (n=1,084)
LeBrun et al. [93] LOS Joint arthroplasty patients RAPT scores, Multivariable analyses BMI, Charlson comorbidity index, age (n=18,000)