Skip to main content
. 2024 Jul 22;27(3):458–478. doi: 10.1007/s10729-024-09682-7

Table 3.

Studies of ML-based discharge destination prediction; the “*” denotes the best-performing model

Study Predicted parameter Patient population Methodology Main factors Dataset size
Elbattah and Molloy [99] Discharge destination Elderly patients with hip fracture care RF*, Boosted Decision Tree (BDT), NN, Linear regression (n=2,000)
Karhade et al. [100] Facility-based discharges Elective lumbar degenerative disc disorders patients NN*, BDT, SVM, Bayes Point Machine Age, sex, BMI, fusion level, functional status (n= 26,364)
Bacchi et al. [107] Community-based discharges Stroke patients LR*, RF, DT, ANN Age, sex, estimated pre-stroke mRS (n= 2,840)
Lu et al. [125] Facility-based discharges Unicompartmental knee arthroplasty patients Generalized linear model, RF, NN, XGB* Total LOS, preoperative hematocrit, BMI, preoperative sodium (n=7,275)
Bertsimas et al. [102] Discharge destination General patients LR, CART DT*, Optimal Trees with Parallel Splits, RF, GBDT Demographics, provider orders, diagnosis codes, medications (n= 63,432)
Imura et al. [105] Community-based discharges Stroke patient DT, Linear discriminant analysis, KNN*, SVM*, RF Age, sex, stroke type (n=481)
Satyadev et al. [103] Discharge disposition Traumatic brain injury patients KNN, XGB, RF* Vitals, demographics, mechanism of injury, comorbidities (n=5,292)
Mohammed et al. [104] Community-based discharges Total knee arthroplasty patients LR, GB*, RF*, ANN Age, sex, race, admission month, admission on a weekend, admission type (n=572,811)
Bacchi et al. [107] Community-based discharges Ischaemic or haemorrhagic stroke patients LR, ANN* Age, sex, stroke severity, health history (n=1,158)
Ikezawa et al. [108] Community-based discharges Ischemic cerebral infarction patients XGB early nutritional initiation (n=41,477)
Zhao et al. [133] Facility-based discharges Elective radical cystectomy patients GBDT Age, race, LOS, BMI (n=11,881)
Morris et al. [109] Discharge destination Elderly patients with trauma Bayesian additive regression trees Age, comorbidities, LOS, physiologic parameters (n=47,037)
Mickle and Deb [110] Discharge destination Acute neurological patients LR, SVM, KNN, XGB*, RF Age, glucose, admission weight (n=5,245)
Chen et al. [111] Facility-based discharges Total knee arthroplasty patients ANN*, RF, HGB*, KNN LOS, age, BMI, sex (n=434,550)
Geng et al. [137] Facility-based discharges Elective anterior cervical discectomy and fusion patients RF Age, Medicare insurance, American Society of Anesthesiology score, fusion levels (n=2,227)