Skip to main content
. 2024 Jul 22;27(3):458–478. doi: 10.1007/s10729-024-09682-7

Table 4.

Studies related to ML-based discharge time prediction; the “*” denotes the best-performing model

Study Predicted parameter Patient population Methodology Main factors Dataset size
Gholipour et al. [117] LOS Trauma patients ANN*, Lagrangian regression Mechanism of trauma, the site involved, vital signs and physical examination, laboratory findings (n=125)
Barnes et al. [36] Discharge time General patients Tree-based supervised ML models, Regression RF* Admission and discharge times, demographics, basic admission diagnoses (n= 8,852)
Elbattah and Molloy [99] LOS Elderly patients with hip fracture care RF*, BDT, NN, Linear regression (n=2,000)
Tsai et al. [118] LOS Cardiology patients ANN*, Linear regression Sex, age, location, main diagnosis (n=2,377)
Turgeman et al. [112] LOS General patients Regression tree Demographics, outpatient and inpatient history, medication history, lab values and vital signs (n=4,840)
Thompson et al. [135] Prolonged LOS Newborns NB, Multi-layer Perceptron, Simple Logistic, SVM, DT, RF*, RT Administrative data, minimal clinical data at the time of admission/birth (n= 2,610)
Muhlestein et al. [119] LOS Brain tumor surgery patients ML ensemble model Nonelective surgery, preoperative pneumonia, sodium abnormality, race (n= 41,222)
Kabir and Farrokhvar [113] LOS Surgical patients ANN*, LR, SVM surgical category (n= 880,000)
Safavi et al. [114] Discharge time Surgical inpatients Feedforward NN Demographic, environmental, administrative, clinical (n= 15,201)
Lazar et al. [37] Discharge time Surgical patients RF Age, sex, admission source, laboratory measurements, vitals (n=10,904)
Bacchi et al. [107] LOS Stroke patients LR, RF, DT, ANN* Age, sex, estimated pre-stroke mRS (n= 2,840)
Nemati et al. [115] Discharge time General patients GB*, Fast SVM, Fast Kernel SVM Age, sex (n=1,182)
Bertsimas et al. [102] Short-term discharges General patients Linear regression, CART DT, Optimal Trees, RF, GBT* Demographics, provider orders, diagnosis codes, medications (n= 63,432)
He et al. [121] LOS, Flow General patients ANN Age, sex, LOS, admit source department, medical features (n=3,959)
Zhong et al. [122] LOS Ambulatory total hip arthroplasty patients Multivariable LR, ANN*, RF* Anesthesia type, BMI, age, ethnicity, white blood cell count (n=63,859)
Gabriel et al. [136] Discharge time Surgical patients Regression, RF*, balanced RF*, balanced bagging, NN, SVM Patient’s surgical characteristics, age, sex, weight (n=13,447)
Zeleke et al. [123] LOS General patients Linear Regression, Ridge and Elastic-net regression, SVM, RF, KNN, XGB* Demographic factors, mode of arrival/source of admission, risk categories, current problems (n=12,858)