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Post marketing safety surveillance depends in part on the ability to detect concerning clinical events 
at scale. Spontaneous reporting might be an effective component of safety surveillance, but it requires 
awareness and understanding among healthcare professionals to achieve its potential. Reliance on 
readily available structured data such as diagnostic codes risks under-coding and imprecision. Clinical 
textual data might bridge these gaps, and natural language processing (NLP) has been shown to 
aid in scalable phenotyping across healthcare records in multiple clinical domains. In this study, we 
developed and validated a novel incident phenotyping approach using unstructured clinical textual 
data agnostic to Electronic Health Record (EHR) and note type. It’s based on a published, validated 
approach (PheRe) used to ascertain social determinants of health and suicidality across entire 
healthcare records. To demonstrate generalizability, we validated this approach on two separate 
phenotypes that share common challenges with respect to accurate ascertainment: (1) suicide 
attempt; (2) sleep-related behaviors. With samples of 89,428 records and 35,863 records for suicide 
attempt and sleep-related behaviors, respectively, we conducted silver standard (diagnostic coding) 
and gold standard (manual chart review) validation. We showed Area Under the Precision-Recall Curve 
of ~ 0.77 (95% CI 0.75–0.78) for suicide attempt and AUPR ~ 0.31 (95% CI 0.28–0.34) for sleep-related 
behaviors. We also evaluated performance by coded race and demonstrated differences in performance 
by race differed across phenotypes. Scalable phenotyping models, like most healthcare AI, require 
algorithmovigilance and debiasing prior to implementation.

Background
Incident detection refers to identifying new occurrence of relevant events from existing data assets and systems. 
Clinical examples of incident events include myocardial infarction, overdose from substance use, or suicide 
attempt. Precise detection at enterprise- or system-scale from healthcare records remains a major challenge. 
Once a product is Food and Drugs Administration (FDA) approved, post-marketing safety surveillance for 
this medication includes both active processes like Sentinel and passive processes like the FDA Adverse Event 
Reporting System (FAERS)1–4. Identifying adverse drug events (ADEs) or new onset diseases that might relate to 
those new medications remains paramount5,6. Outside of FDA regulatory processes, population health requires 
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ascertainment of clinical incidents to allocate resources and properly support frontline staff, e.g., at triage in 
emergency settings7. Precision medicine and predictive modeling initiatives (e.g., Clinical Decision Support 
[CDS]) also depend strongly on comprehensive ascertainment of phenotypes across biobanks and healthcare 
data repositories to power studies appropriately and minimize type I error8,9.

Significant attention has been given in guiding processes around reporting in post-market surveillance10, 
but gaps remain. Spontaneous reporting might be effective but requires awareness and understanding among 
healthcare professionals11. It also has known limitations including under-reporting, duplication, and vulnerability 
to media attention or other trends in reporting such as sampling variation and errors or bias in reporting12. 
Novel systems that leverage computational automation to achieve scalability might improve incident detection 
in healthcare broadly and post-market surveillance specifically.

Another challenge for incident detection relates to the ability to determine whether the event started in the 
past, or is prevalent, or whether it is a new occurrence, or incident. Many prevalent chronic conditions might 
have acute incident exacerbations, e.g., chronic obstructive pulmonary disease exacerbations, or be punctuated 
by incident clinical events, e.g., suicide attempts. Even when structured diagnostic codes exist for such events, 
differentiating whether those codes describe a new incident remains difficult. Current incident detection systems 
depend on structured data though efforts to expand inputs to unstructured data are underway13. Coding data 
are driven by billing processes and are prioritized by clinical relevance and reimbursement rates. Codes are often 
linked to conduct of procedures or diagnostic testing, are not deterministic for the coded condition, and still 
might not always captured14–16. Restrictions or rules in patients’ insurance that impact coding practices may also 
complicate incident assessment.

Temporality stands as another major obstacle to accurate incident detection17. Many events have sequelae that 
result in similar or identical new data inputs18–20. Sequencing healthcare events or, more importantly, evaluating 
potential causal links depends on establishing temporal order. Further, healthcare data might be recorded for a 
given patient at a later date (e.g., clinical documentation after billing) or outside of a “healthcare encounter”, as 
defined by most major vendor Electronic Health Records (EHRs).

A final challenge – most open healthcare systems do not have broad interoperability or data sharing to enable 
incident detection. Efforts to ameliorate this concern include national or payor systems, e.g., Veterans Health 
Administration or Kaiser Permanente, state-supported interoperability, e.g., New York’s Healthix21,22, and 
vendor-led tools for common users of EHRs, e.g., EPIC Systems CareEverywhere. While a patient suffering, e.g., 
a myocardial infarction (MI), at one health system might not have billing codes recorded in EHRs at another, 
that patient or their family would likely report the event to providers of care in another health system to ensure 
optimal clinical decision-making and healthcare communication. However, while providers are expected to 
obtain and summarize relevant patient care leading up to an encounter or interaction, structured codes from 
prior care are not generally imported. A summary of outside care might be reliably documented in unstructured 
clinical text in the routine practice of medicine.

Natural language processing (NLP) permits extraction and detection of incidents from unstructured textual 
data, and has been used in event detection and disease onset before16,19. It has also been applied to accurately 
identify social determinants of health to better understand the prevalence of these problems both within23 and 
across24 health systems including in FDA-linked initiatives like Sentinel25,26. In work motivating this study, NLP 
has been applied to suicidal ideation and suicide attempt yielding accurate and precise ascertainment from 
unstructured text data agnostic to source data or EHR27.

To improve scalable incident detection, we developed and validated a novel incident phenotyping approach 
based on a published, validated prevalence approach used to ascertain social determinants of health and 
suicidality across entire healthcare records. To demonstrate generalizability, we validated this approach on two 
separate phenotypes that share common challenges with respect to accurate ascertainment: (1) suicide attempt; 
(2) sleep-related behaviors. Identification of these two phenotypes might also warrant further investigation and/
or have regulatory relevance given their neuropsychiatric nature.

Methods
All methods were performed in accordance with the relevant guidelines and regulations. The study was approved 
by the institutional review board (IRB) at Vanderbilt University Medical Center (VUMC) with waiver of 
informed consent (IRB #151156) given the infeasibility of consenting these EHR-driven analyses across a health 
system and a large, retrospective dataset.

Cohort generation
Data were extracted from the Vanderbilt Research Derivative, an EHR repository including Protected Health 
Information (PHI), for those receiving care at Vanderbilt University Medical Center (VUMC)28. PHI were 
necessary to link to ongoing operational efforts to predict and prevent suicide pursuant to the suicidality 
phenotypic work here29,30. Patient records were considered for years ranging from 1998 to 2022. For both suicide 
attempt and sleep-related behaviors, we focused on adult patients aged over 18 years at the time of healthcare 
encounters with any clinical narrative data in the EHR.

While the technical details of the Phenotypic Retrieval (PheRe) system adapted here have been published 
elsewhere23,27, the algorithm’s retrieval method determined which records were included in this study. In brief, 
after query formulation to establish key terms for each phenotype (see “Automatic extraction.” below), this 
algorithm assigned scores to every adult patient record. To be included in this study, those records with any non-
zero NLP score, i.e., any single term in the query lists, were included in subsequent analyses.
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Phenotype definitions
Our team has published extensively in the suicide informatics literature on developing, validating, and deploying 
scalable predictive models of suicide risk into practice. As a result, suicide attempt was defined based on prior 
work using published diagnostic code sets for the silver standard27 and domain knowledge-driven definitions for 
the gold standard annotation (see below for details on both).

For sleep-related behaviors, our team reviewed the literature and sleep medicine textbooks for structured 
diagnostic codes for sleep-related behaviors31,32. We also consulted with clinical experts in sleep-related 
behaviors and sleep disorders in the Department of Otolaryngology at VUMC (see Acknowledgement). This 
expertise informed both the silver and gold standards for this phenotype. The specific standards will be detailed 
below; in brief, the silver standard was hypothesized to be less specific and less rigorous a performance test than 
the gold standard yet easier to implement since it relied on structured data.

Early in the study, we considered various levels of granularity, e.g., “parasomnias” – more general – versus 
“sleepwalking” – less general. We prioritized sleep-related behaviors that might be associated with black-box 
warnings if found to be associated with a hypothetical medication or other intervention. We selected a subset 
of sleep-related behaviors - sleepwalking, sleep-eating, sleep-driving - as the resulting foci for this investigation.

Temporality
23In prior work, we applied NLP to ascertain evidence of any suicide attempt or record of suicidal ideation from 
EHRs across entire healthcare records27. In this work, the intent was to ascertain evidence of new, clinically 
distinct incidents of these phenotypes. To move from prevalence-focused to incidence-focused algorithms, we 
constrained the time windows for input data processed by NLP. For example, rather than ascertaining suicidal 
ideation from every note in an individual’s health record, we considered looking at notes documented on a 
single calendar day. The team discussed numerous potential temporal windows to focus the NLP including: (i) 
healthcare visit episodes (time of admission to time of discharge); (ii) set time-windows, e.g., twenty-four-hour 
periods; seven days; thirty days; multiple months; (iii) combinations of those two, e.g., clinical episodes plus/
minus a time-window to capture documentation lag.

After discussion and preliminary analyses, we selected a 24-hour period, midnight to the following midnight, 
as the window for this incident detection NLP approach. This window was chosen for clinical utility, simplicity, 
and agnosticism to vendor EHR or documentation schema. Operationally, this meant that we considered all the 
notes of a patient on a given day to encode a potential incident phenotype.

Automatic extraction of phenotypic profiles from clinical notes
We developed a data-driven method to extract relevant text expressions for each phenotype of interest (see 
Fig. 1). The method involved processing large collections of clinical notes from EHRs (including tokenization 
and extraction of n-gram representations such as unigrams and bigrams) and unsupervised training of 

Fig. 1. Overview of automatic extraction process enabling Incident detection, steps Numbered and legend 
shown.
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Google’s word2vec33 and transformer-based NLP models such as Bidirectional Encoder Representations from 
Transformers (BERT)34 to learn context-independent and context-sensitive word embeddings. The extraction 
of phenotypic profiles consisted of iteratively expanding an initial set of high-relevant expressions (also called 
‘seeds’) such as ‘suicide’ as follows. First, we ranked the learned embeddings by their similarity to the seed 
embeddings. Then, we manually reviewed the top ranked expressions and selected the relevant ones as new 
seed expressions. The final sets of text expressions corresponding to each phenotype of interest are listed in 
eSupplement.

Large-scale retrieval of incident phenotypes
We implemented a search engine to identify incident phenotypes in all the notes from the Vanderbilt Research 
Derivative and to rank them by relevance to their profile. In this context, each phenotypic profile corresponds 
to an input query for the search engine while each meta-document comprising of all the notes of a patient 
on a given day encodes a potential incident phenotype. In the implementation framework, we represented the 
meta-documents and input queries as multidimensional vectors, where each vector element is associated with a 
single- or multi-word expression from their corresponding phenotypic profile. The relevance of a patient meta-
document to a phenotype was measured as the similarity between their meta-document and input query vectors 
using the standard term frequency-inverse document frequency (TF-IDF) weighted cosine metric. The final 
NLP-based score was a continuous value ranging from low single digits (< 10) to hundreds (< 500 typically). 
Higher scores indicated more similarity and therefore more evidence of the phenotype.

To further improve the performance of our search engine, we performed query reformulation based on 
relevance feedback by iterative assessment of the top 20 retrieved incident phenotypes of each run23. The selection 
and ranking of the incident phenotypes was performed using the Phenotype Retrieval (PheRe) software package 
in Java, which is available at https://github.com/bejanlab/PheRe.git.

Silver standard generation
A silver standard represents a source of truth that might be less precise or more error-prone than ground truth, 
a gold standard. An advantage to silver standards remains their relative efficiency to generate and validate 
compared to more labor-intensive gold standards. To generate silver standards for sample size calculations 
for all phenotypes, we used ICD9CM (Clinical Modification) and ICD10CM diagnostic code sets to generate 
preliminary performance for the NLP to identify presence/absence of structured phenotypic data (i.e., 
International Classification of Disease [ICD] codes)35. For suicide attempt, we used validated code sets from 
published literature29,36. For sleep-related behaviors, we reviewed the literature and adapted code sets from the 
literature with clinical experts in Sleep Medicine at VUMC. Codesets for all phenotypes used in this project are 
available in the eSupplement.

To evaluate preliminary performance, we used presence/absence of a single ICD code from the validated 
lists within thirty days of the date of NLP score calculation as a positive label (label = 1) and the absence as 
a negative label (label = 0). Thirty days was chosen as a common time period in which clinical risk is close 
enough to warrant documentation and intervention but not so close as to be imminent and required emergent 
care. The continuous NLP scores were a univariate ‘predictor’ of presence/absence. Performance was measured 
with typical information retrieval and model discrimination metrics: Area Under the Receiver Operating 
Characteristic (AUROC), Precision (P), Recall (R), P-R Curves, and F-measures (F1-score). These metrics were 
clinically relevant to the phenotypes under study as both phenotypes are rare at health-system scale. That is, 

Characteristic Suicide attempt phenotype Sleep-related behaviors phenotype (N, %)

Total Individuals 89,428 35,863

Age, median, years 43.2 (95% CI 43, 43.4) 57.7 (95% CI 57.5, 57.9)

Sex at birth, coded in EHR N % N %

Woman 52,386  58.6 18,850                52.6

Man 37,003                   41.4 17,007                47.4

Unknown 9 <1 6 <1

Race, coded in EHR N                     % N                     %

White 71113 79.5 28719 80.1

Black 11173 12.5 4341 12.1

Unknown 4329 4.8 1880 5.2

Asian 1756 2.0 446 1.2

Other* 901 1.0 414 1.2

Alaskan/Native American 156 0.2 63 0.2

Ethnicity, coded in EHR N                     %                   N                     %

Non-Hispanic/Latinx 80,698                 90.2 32,832                 91.5

Hispanic/Latinx 2,564                   2.9 692                   1.9

Unknown 6,166                   6.9 2,339                    6.5

Table 1. Baseline study characteristics. *Other includes all combinations of coded race categories and a 
distinct category labeled “Other” in source EHR documentation
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algorithms might perform with adequate c-statistics at the expense of low P (high false positive rates). For a 
hypothetical post-market safety surveillance system, such false positives would be problematic to burden and 
accuracy. Similarly, high recall ensures cases of potential adverse events in a hypothetical system would not be 
missed (true positive rate).

Gold standard generation
The intent in gold standard generation was to generate corpora of charts across all NLP score bins (e.g., NLP 
scores from 5 to 10, 10–15, 15–20, …) to evaluate performance of the NLP incident detection system. Unlike 
top-K precision used in information retrieval, we sought insight into performance with confidence intervals 
across score spectra to plan for downstream CDS applications. In top-K precision, error analysis concentrates 
on the highest scored records.  Here, for broader clinical application, we sought error estimation for low scores 
(i.e., low number of assertions supporting the phenotype) as well as high, as we anticipated systems considering 
adopting similar systems would want to evaluate error estimates for all possible scores.

For sample size calculation, we used preliminary performance from the silver standards to calculate numbers 
of chart-days to extract for multi reviewer chart validation. The rationale for this key step was the need for (1) 
efficient chart review within a selected marginal error and (2) intent to understand NLP performance for all 
possible scores – not simply performance in the highest ranked charts, aka “top-K” performance typical in this 
literature where K is some feasible number of highly ranked records, e.g., K = 200. To determine the number 
of encounters for chart review, we used the marginal error method which involves the half-width of the 95% 
confidence interval for the performance metrics in the investigated cohort. The process involved the following 
steps: (1) dividing the predicted risk scores into 5-point intervals and calculating the number of encounters 
in each interval; (2) estimating the precision and recall for each interval using ICD9/ICD10 codes; and (3) 
computing the sample size by setting the marginal error for the probability estimate in the individual interval 
to 0.05. We assumed that the number of positive encounters selected for chart review approximates a normal 
distribution and follows a hypergeometric distribution. The larger sample size between the calculated sample 
sizes for precision and recall estimates determines the required sample size for chart review.

To conduct chart review, annotation guides were developed and revised after initial chart validation training 
(fifty chart-days for each phenotype). These guides included instructions on labeling and factors contributing 
to label decisions. All reviewers (K.R., J.K., C.W. [adjudicator]) were trained on the required annotation and 
participated in a Training phase using fifty chart-day examples for each phenotype. Chart labels included: 
Positive – phenotype documented in notes “reports suicidal ideation”; Negative - phenotype documented as 
not present, e.g., “denied suicidal ideation”; Unknown – insufficient evidence to determine labels. In subsequent 
analysis after the third reviewer adjudicated disagreement and unknown labels, these three labels were collapsed 
into two: Positive; Negative. Annotation guides are available as eSupplements.

Evaluation metrics
Metrics to evaluate NLP performance mirrored those used in preliminary analyses above, including P-R Metrics 
and curves; F1-score. We also calculated error by score bin to understand how well the NLP score performed 
across all thresholds. The intent was to replicate a common clinical implementation challenge – discretizing 
a continuous output from an algorithm into a binary event, e.g., a decision or an intervention that cannot be 
discretized in practice.

Threshold selection
Because the NLP produces a continuous score amenable to precision-recall metrics, users might select optimal 
performance thresholds through traditional means, as well. For example, thresholds might be chosen that 
maximize F-scores such as F0.5-, F1-, or F2-scores which emphasize precision, balanced precision/recall, or 
recall, respectively. We use F1-score here to select optimal thresholds for these NLP algorithms.

Results
Baseline patient characteristics by phenotype
Across both suicide attempt and sleep-related behaviors, the study cohorts included 89,428 and 35,863 patients, 
respectively. As outlined in Cohort generation above, these numbers included any records with at least one query 
term match in the day of notes for that patient. Baseline study characteristics at each patient’s first documented 
visit are shown (Table 1).

Silver standard performance (diagnostic code classification)
From prior work and multiple validation studies of the silver standard diagnostic coding for suicide attempt, we 
used 58% PPV for ICD9 and 85% for ICD10 versions of these codes as the initial benchmarks.

For sleep-related behaviors, we had no similar benchmarks from prior work or the published literature. Using 
the presence of an ICD9 or ICD10 code for sleep-related behaviors, we note the NLP algorithm had a PPV of 
60% to predict the silver standard and establish a benchmark for sample size calculation and chart review.

Gold standard performance (chart validation)
Precision-recall performances of the NLP incident detection systems are shown including AUPR ~ 0.77 (95% CI 
0.75–0.78) for suicide attempt and AUPR ~ 0.31 (95% CI 0.28–0.34) for sleep-related behaviors.

P-R curves are shown with respect to coded race and smaller differences are noted for suicide attempt by 
coded race compared to sleep-related behaviors (Fig. 2). Notably, the confidence intervals in the legend also 
overlap for both phenotypes (Fig. 3).
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Threshold selection, steps toward implementation
Selecting a threshold for a hypothetical implementation where precision matters more than recall, we use the 
maximum F1-score. For suicide attempt NLP-based detection, for example, and our overall P-R performance 
above, an NLP score of 25 and higher would have an F1-score of 0.75 associated with a recall of 0.93 and a 
precision of 0.63.

Similarly calculated for sleep-related behaviors, the optimal F1-score-based threshold is 35 or above in 
which the F1-score would be 0.42, precision 0.33, recall 0.57. We note that this score, while the optimal model 
performance, might not represent an acceptable or optimal performance for specific applications e.g., defining 
an endpoint of interest in medical product safety surveillance.

Discussion
In this study, an NLP-based incident detection system was developed and validated across two challenging and 
disparate phenotypes. Such detection was feasible to conduct using a 24-hour period of documentation, agnostic 
to EHR architecture or data standard, or to underlying textual source systems. The implications of this system 
for initiatives like FDA Sentinel indicate scalable detection would be achievable with appropriate evaluation and 

Fig. 2. Precision-recall of suicide attempt NLP incident detection by coded race.
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milestones in the implementation path. For example, in these two phenotypes, gold standard manual chart review 
was necessary and would remain necessary for novel phenotypes on a subset of charts in development sites. But 
here as in many phenotypic examples, prior work facilitated the sample size calculation and chart review itself. 
Moreover, silver standard validation permitted efficient sample size calculation and error estimation across all 
possible NLP scores, not solely those highest ranked “top-K” records as in traditional information retrieval. Even 
with imperfect coded race variables, performance differences were easily identifiable here. Algorithmovigilance37 
to prevent perpetuating or worsening disparities remains paramount in the evolution of systems like this one – 
not solely at initial algorithm validation but throughout the life cycle38.

Performance varied by phenotype with better performance in suicide attempt, a phenotype that was more 
common and with a clearly defined clinically observable set of attributes. Sleep-related behaviors, even when 
focused on sleepwalking, -eating, -driving, are still a group of diagnoses that may or may not be documented 
clearly in every visit even when present. That is, these selected phenotypes differ in clinical specificity and in the 
degree to which care will focus on them if observed. However, both might be associated with regulatory action 
if a new medication or device were shown to cause them. Despite the rarity of all phenotypes in this study, the 
unsupervised learning approach used to derive NLP scores relies on the assertions present in each record, not 
on the overall prevalence or case balance as in a supervised learning paradigm. Thus rarity should not introduce 

Fig. 3. Precision-recall of sleep-related behaviors NLP incident detection by coded race.
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bias or affect performance for the unsupervised learning NLP developed here, nor would it for subsequent rare 
phenotypes in future work.

Active efforts including a recent National Academy of Science, Engineering, and Medicine (NASEM) report 
suggest excluding race from genetic and genomic studies39. Race remains a social construct with potential to 
reflect or worsen healthcare disparities if not handled appropriately. Use of clinical language does vary by race 
and this usage remains an important limitation of studies like this one. Here, coded race was used as a means of 
testing these NLP algorithms for disparate performance as an early checkpoint in model validation. Our findings 
are hypothesis-generating with respect to reasons for performance differences and more detailed analyses with 
better quality race data are indicated in any case. A parallel effort in replicating an approach like this one in new 
phenotypes would necessitate careful consideration of factors like demographics, clinical attributes or others 
that might undermine the successes of an incident detection system at scale.

Silver standard evaluation alone was not sufficient to estimate final NLP performance observed here. Both 
sleep-related behaviors and suicide attempt were associated with ~ 60% PPV in silver standard, ICD-based, 
performance but suicide attempt as a phenotype was much better identified in this method than sleep-related 
behaviors. Thus, some manner of gold standard evaluation is indicated for adding new phenotypes to this system. 
To that end, annotation guides and annotator training facilitated rigorous multi-reviewer chart validation as did 
sample size calculation of numbers of required charts to review based on the silver standard.

This work builds on the work of others by adding to understanding of unstructured data-based phenotyping 
algorithms in neuropsychiatric phenotypes with emphasis on temporality and incident detection. Determining 
temporal onset of symptoms with NLP has been attempted in clinical areas including psychosis40, perinatal 
health41, and hematology42. Deep learning has been used with NLP-based features to identify acute on chronic 
exacerbations of chronic diseases such as hypoglycemic events in diabetes43. More recently, large language 
models (LLMs) have been studied for clinical text extraction44–47. The rise in prominence of LLMs occurred 
after the work reported here and our team and others are now investigating their performance in NLP-based 
ascertainment. While phenotyping in suicidality has included NLP in numerous studies including those of this 
team, phenotyping in sleep disorders has been less commonly reported48,49. This study adds to evidence that 
sleep-related behaviors might be less well-coded and well-documented than other neuropsychiatric phenotypes 
and therefore NLP-based algorithms to detect them were more challenging to develop.

Overall, this NLP-based incident detection approach scaled to diverse, rare phenotypes and benefited from 
multiple levels of silver and gold standard evaluation. A post-market safety surveillance system using this 
phenotypic detection method would need important advances in addition to those reported here to be effective. 
For example, sequence handling and temporal representation to capture sequences of events would be critical 
to move toward causal inference. Design of interpretable, transparent interfaces that summarized candidate 
incidents and their contributors would also be needed. Coupling such advances with expansion of incidents to 
new phenotypes would be important areas of future work.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to their sensitive 
nature and their inclusion of PHI/PII but are available from the corresponding author on reasonable request.
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