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Importin α4 deficiency induces psychiatric disorder-related
behavioral deficits and neuroinflammation in mice
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Importin α4, which is encoded by the Kpna4 gene, is a well-characterized nuclear-cytoplasmic transport factor known to mediate
transport of transcription factors including NF-κB. Here, we report that Kpna4 knock-out (KO) mice exhibit psychiatric disorder-
related behavioral abnormalities such as anxiety-related behaviors, decreased social interaction, and sensorimotor gating deficits.
Contrary to a previous study predicting attenuated NF-κB activity as a result of Kpna4 deficiency, we observed a significant increase
in expression levels of NF-κB genes and proinflammatory cytokines such as TNFα, Il-1β or Il-6 in the prefrontal cortex or basolateral
amygdala of the KO mice. Moreover, examination of inflammatory responses in primary cells revealed that Kpna4 deficient cells
have an increased inflammatory response, which was rescued by addition of not only full length, but also a nuclear transport-
deficient truncation mutant of importin α4, suggesting contribution of its non-transport functions. Furthermore, RNAseq of sorted
adult microglia and astrocytes and subsequent transcription factor analysis suggested increases in polycomb repressor complex 2
(PRC2) activity in Kpna4 KO cells. Taken together, importin α4 deficiency induces psychiatric disorder-related behavioral deficits in
mice, along with an increased inflammatory response and possible alteration of PRC2 activity in glial cells.
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INTRODUCTION
Accumulating epidemiological evidence have identified a plethora
of genetic and environmental risk factors that contribute to the
pathogenesis of psychiatric disorders. Recently, members of the
importin α (karyopherin α: KPNA) family such as KPNA1 (human
importin α5), KPNA3 (human importin α4), and KPNA4 (human
importin α3) have been identified as possible genetic risk factors
to several different psychiatric disorders including schizophrenia,
depression, and substance use disorders [1–6]. These three
importin α subtypes are expressed in the central nervous system
(CNS) of humans as well as mice [7], and constitutive depletion in
mice has been associated to disorder-related behaviors: Kpna1
deficiency to reduced anxiety and other psychiatric disorder-
related behaviors [8–10], and Kpna3 deficiency to deficits in
reward-seeking behavior [11]. In particular, a postmortem study
has implicated human importin α3 (KPNA4) [12] in the pathology
of schizophrenia [6], where significantly decreased nuclear factor-
kappa B (NF-κB) pathway signaling, decreased p65 protein levels/
nuclear activation, and KPNA4 downregulation was found in
schizophrenia brains, suggesting that decreased KPNA4 results in

deficient nuclear transport of p65 in schizophrenia patients.
Moreover, in the same study, an allele in a KPNA4 expression
quantitative trait locus (eQTL) was associated to increased
schizophrenia risk, decreased KPNA4 expression, and decreased
prepulse inhibition (PPI), suggesting that KPNA4 depletion could
have roles in the pathogenesis of schizophrenia. Despite such
evidence, there has been little insight on the causal relationship
between Kpna4 deficiency in relation to psychiatric disorder-
related behavior.
Importin αs are a structural and functional subcategory of the

importin (karyopherin) superfamily which mediate signal-
dependent protein transport across the nuclear envelope
[13, 14]. Importin αs participate in nucleocytoplasmic transport
by forming a trimeric complex with classical nuclear localization
signal (cNLS) containing cargo proteins, as well as importin β1;
another member of the importin superfamily which facilitates
passage through the nuclear pore complex (NPC) [15]. Importin
α subtypes show differential expression patterns in various tissues,
as well as having distinct, yet “partially redundant” binding
specificities [16], implying that differential importin α expression
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can regulate accessibility of nuclear proteins to the nucleus
[16–18]. Additionally, recent accumulating evidence suggests that
importin αs are involved in non-transport functions such as
spindle assembly, nuclear envelope assembly, lamin formation,
protein degradation, and chromatin alteration [15, 19–22], as well
as neuron-specific functions such as axonal transport [23].
However, the physiological implications of such widespread
functions are still under extensive examination.
Mouse importin α4 categorizes in the same α3 subfamily with

the closely related subtype importin α3, which is encoded by the
Kpna3 gene and shares common characteristics including cargo
specificity for proteins such as regulator of chromosome
condensation 1 (RCC1), tumor suppressor p53, and methyl-CpG
binding protein 2 (MeCP2) [16, 24]. In particular, the α3 subfamily
has been well characterized in the tumor necrosis factor alpha
(TNF-α) induced nuclear translocation of NF-κB subunits p65 (RelA)
and p50 [25–28], the pathway which the previous study suggested
to be downregulated in schizophrenia patients [6]. In relation, a
recent study has reported that Kpna4 deficiency hinders NF-κB
nuclear translocation in lung cells and disrupts antiviral responses,
resulting in higher influenza lethality in mice [29]. Although a
constitutively Kpna4 deficient mice line has been reported to
show decreased pain responsiveness and impairment of c-fos
nuclear import in sensory neurons [30], there has been little
investigation into the effects of Kpna4 deficiency in psychiatric
disorder-related behaviors and regulation of neuroinflammation.
Further examination of such psychiatric disorder-related behaviors
in Kpna4 deficient animals is necessary to elucidate the roles of
the importin α4 in regulation of brain function and behavior.
In this study, we used a recently developed importin α4 (Kpna4)

knockout (KO) mouse line which show no apparent deficits in
gross morphology, but exhibit male subfertility and deficiencies in
sperm morphology, motility, and acrosome reaction capacity [21].
Using this knockout line, we found that Kpna4 deficiency in mice
induces psychiatric disorder-related behaviors, increased neuroin-
flammation, enhanced inflammatory responses in primary cul-
tured astrocytes, as well gene expression patterns suggestive of
enhanced inflammatory responses and altered polycomb repres-
sor complex 2 (PRC2) activity in sorted adult glial cells.

RESULTS
KO mice exhibit psychiatric disorder-related behaviors
To investigate the effects of constitutive Kpna4 deficiency on
behavior, we conducted a behavioral test battery consisting of an
open field test (OFT), elevated plus maze (EPM), Y-maze, social
interaction test, inhibitory avoidance (IA), and prepulse inhibition
(PPI) tests to assess psychiatric disorder-associated behaviors.
Locomotor activity and anxiety-like behavior were assessed in

an OFT, where no significant differences were observed in
novelty-induced locomotion (first 5 min) between all genotypes
(Fig. 1A). However, KO mice spent significantly shorter durations
of time in the center of the open field (Fig. 1B), suggesting higher
levels of anxiety-like behavior. There was no significant
difference between genotype in general levels of locomotion
over the entire 60 min trial (Fig. 1C and Fig. S1A). Furthermore,
similar to the results in the OFT, KO mice showed a significantly
shorter percentage of time spent in the open arms in the EPM
test (Fig. 1D), suggesting higher levels of anxiety-like behavior in
the KO mice.
We examined the social behaviors of KO mice in a reciprocal

social interaction test [31], where the number and duration of
contacts between the nose point of one mouse, with the nose
point, body center, or tail base of the other mouse was quantified
as a measure of social interaction (total interactions; sum of all 3
per mouse). Significant decreases in KO mice were observed in
both duration (Fig. 1E) and counts of social interactions (Fig. 1F),
along with several individual measures (Fig. S1B–G).

To assess if Kpna4 deficiency results in memory deficits, we
assessed short-term spatial memory and avoidance learning in KO
mice. In the Y-maze test, we did not observe any significant
alterations in spontaneous alternation between all genotypes
(Fig. 1G). In the IA task [32], 2W-ANOVA analysis revealed
significant effects of both Kpna4 deficiency (Genotype) and test
day (Trial), as well as a significant interaction (Fig. 1H; 2W-RM-
ANOVA; main effect of genotype: F (2, 25)= 25.41, p < 0.0001;
main effect of test day (Trial): F (1, 25)= 229.1, p < 0.0001;
interaction: F (2, 25)= 20.96, p < 0.0001). Inter-day comparison of
latencies showed that WT mice showed a significantly longer
latency to enter the dark chamber on day 2. In contrast,
heterozygote (Het, Kpna4+/−) and KO mice showed significantly
reduced latencies to enter the dark chamber compared with their
WT littermates.
To test whether Kpna4 deficiency results in sensorimotor gating

deficits, we administered a PPI test against an acoustic startle
stimulus. There was no significant difference in startle response to
the 120 dB pulse alone (Fig. 1I). In contrast, levels of PPI were
significantly altered as a result of genotype (Fig. 1J; 2W-RM-
ANOVA; main effect of genotype: F (2, 44)= 9.930, p= 0.0003;
main effect of prepulse strength (Trial): F (3.015, 132.6)= 32.05,
p < 0.0001; interaction: F (8, 176)= 1.682, p= 0.1056), with KO
mice exhibiting significantly lower levels of PPI compared to WT
mice in all types of trials (prepluse strength 74, 78, 82, 86, 90 dB).

Examination of morphology and expression of importin α
subtypes in the KO brain
Examination of gross morphology in the KO brain sections
revealed no apparent defects (Fig. S2A), and past studies [7] as
well as examination of single-cell RNAseq databases [33, 34] show
that Kpna4 expression is not region or cell type specific in the
brain. Moreover, we examined if Kpna4 deficiency results in
complimentary upregulation of other importin α subtypes (Kpna1,
Kpna2, Kpna3, Kpna6) in brain tissue. In the PFC, although qRT-PCR
analysis showed slight but significant increase in mRNA levels of
closed-related importin α3 (Fig. S2B), importin α3 protein levels
were not significantly altered (Fig. S2C, D). In addition, there was
no difference in expression of other subtypes between WT and KO
mice in the hippocampus (Fig. S2E). Furthermore, immunohisto-
chemical staining showed nuclear localization of importin α4
across several different areas in the brain (Fig. S3).

Increased proinflammatory reactions in brains of KO mice
As importin α4 (KPNA4) has been well characterized in the
nuclear transport for NF-κB [25, 29], and its downregulation has
been predicted to perturb NF-κB signaling in postmortem
studies [6], we sought to examine if such perturbations occur in
the brains of KO mice. Regional expression levels of NF-κB
genes and proinflammatory cytokines were assessed, examin-
ing five regions (prefrontal cortex: PFC, nucleus accumbens:
NAc, dorsal hippocampus: Hipp, basolateral amygdala: BLA,
cerebellum: Cere) sampled from mice used in behavioral testing
(Fig. 2A and Fig. S4). We first quantified regional Kpna4 mRNA
levels in various regions, where expression was detected in all
five regions with modest variation (Fig. 2B). We next quantified
mRNA expression of Rela and Nfkb1 in the KO brain where,
unexpectedly, we observed significant upregulation of Rela in
the PFC, as well as significant upregulation of Nfkb1 and
increasing trends of Rela in the in the BLA (Fig. 2C, D).
We further examined the regional expression of three typical

proinflammatory cytokines: Tnf-a, Il-1b, and Il-6 expected to be
downregulated as a result of decreased NF-κB nuclear retention.
Similar to Rela and Nfkb1, significant upregulation of all three
genes was observed in the BLA of KO mice, along with
significantly upregulated Tnf-a in the PFC, and trend towards
increase of all three in the PFC and Hipp (Fig. 2E–G). Measurement
of systemic changes in immune-related signal proteins in the
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Fig. 1 Behavioral analysis reveals psychiatric disorder-related behavioral deficits in Kpna4 deficient mice. A–C OFT. The total distance (A) and
percentage of the time spent in the center (B) in the first 5min of the OFT. Total distance (C) in the entire 60min duration of the OFT. D EPM. The
percentage of time spent in open arms during the EPM test. E, F Social interaction test. The duration (E) and number (F) of total interaction
behaviors in the social interaction test. G Percentage of successful alternations in the Y-maze test. H IA. Latency to step through to the dark
chamber in the IA test. I, J PPI. I Startle response when presented the only startle stimulus (120 dB). J Level of prepulse inhibition seen in the PPI
test. Bar graphs represent mean ± SEM. Box and whisker plots represent median (center line), first and third quartiles (box), ±1.5 interquartile range
(IQR) (whiskers), data points outside ±1.5 IQR are visualized as dots. Post-hoc Tukey’s test between genotype: ****p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05. Post-hoc Bonferroni test between days (H): ##p < 0.01. A–H WT 10–11, Het 7–8, and KO 11–12 I, J WT 16, Het 18, and KO 13.
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same mice did not show any significant alterations (Fig. S5). Taken
together, these data suggest that KO mice have increased
proinflammatory responses associated with enhanced NF-κB
signaling in the brain.

Increased proinflammatory activation in Kpna4 deficient cells
As we observed unexpected increases in NF-κB genes and
proinflammatory cytokines from the KO brain, we further
investigated the effects of Kpna4 deficiency on cellular inflamma-
tory responses using primary cultured neural cells, focusing on
glial populations. We first assessed TNF-α-induced nuclear
translocation of NF-κB subunit p65 in primary astrocytes (AST).

Clear nuclear translocation of endogenous p65 in response to
TNF-α treatment was visible in both WT and KO cells in
immunofluorescence experiments, revealing that Kpna4 depletion
does not alter their localization to the nucleus (Fig. 3A). Notably,
the nuclear localization ratio of p65 in KO cells were significantly
higher than WT (Fig. 3B). Moreover, examination of proinflamma-
tory cytokine expression revealed that Il-1b and Il-6 were
upregulated in KO primary AST after TNF-α stimulation (Fig.
3C, D). Taken together with the results from KO brains, our
observations suggest that Kpna4 depletion results in an increase in
inflammatory activation by increasing the concentration of p65 in
the nucleus, rather than inhibiting nuclear transport of p65.

Fig. 2 Upregulation of NF-κB genes and proinflammatory cytokines in the KO mouse brain. A Scheme of regional sampling (created with
BioRender.com.), coordinates shown in Fig. S3. B Regional expression levels of Kpna4 (prefrontal cortex: PFC, n= 5; nucleus accumbens: NAc,
n= 6; hippocampus: Hipp, n= 5; basolateral amygdala: BLA, n= 5; and cerebellum: Cere, n= 8). Regional mRNA expression levels (/β-actin) of
C Rela and D Nfkb1 in KO and WT mice (PFC, Hipp, BLA n= 5. NAc n= 6. Cere n= 4 each). Regional mRNA expression levels of E Tnf-α, F Il1-β,
and G Il-6 in KO and WT mouse brains (PFC, NAc, Hippo, BLA n= 6. Cere n= 4 each). Bar graphs represent mean ± SEM. C–G Mann–Whitney
test: ***p < 0.001, and *p < 0.05.
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Furthermore, in our examination of mouse embryonic
fibroblasts (MEFs) established from WT and KO mice, nuclear
translocation of the other typical cargos specific for the
importin α3 family such as RCC1 [35, 36], TDP-43 [37], STAT3
[38], and MeCP2 [24] were maintained in KO MEFs, indicating

that Kpna4 deficiency does not disturb their nuclear transport
(Fig. 3E). Similar to our results in primary AST cells, time-course
monitoring of Il-1b and Il-6 expression after TNF-α stimulation
showed that KO MEFs show increased inflammatory activation
(Fig. 3F, G).

K. Sakurai et al.

5

Translational Psychiatry          (2024) 14:426 



Results from our previous study have implied epigenetic
alteration in the testis of Kpna4 KO mice, which leads to altered
gene expression, abnormal sperm formation, and infertility [21]. To
address whether such epigenetic functions of importin α4 are
involved in aberrant cytokine expression, we examined if KO MEFs
can be rescued with importin α4 ΔIBB (IBB domain truncated,
transport deficient) mutant as well as importin α4 WT (Fig. 3H).
Both EGFP-Impα4-WT and EGFP-Impα4-ΔIBB transfected cells
showed significantly lower Il-1b and Il-6 expression after TNF-α
stimulation compared to EGFP transfected controls (Fig. 3I, J). This
result suggests that the effects of importin α4 in suppressing
aberrant proinflammatory activation is dependent on non-
transport functions such as chromatin alteration and epigenetic
regulation, rather than its well-characterized transport functions.

Increased proinflammatory signaling and altered polycomb
repressive complex activity in KO glial cells
To investigate the molecular alterations behind the unexpected
increase in proinflammatory activation induced by Kpna4 defi-
ciency, we examined individual inflammation-related glial cell
types to understand gene expression profiles in response to a
proinflammatory stimulus. We applied a brain disassociation-cell
sorting strategy utilizing magnetic cell sorting (MACS) or
florescence-activated cell sorting (FACS), to isolate both microglial
(MG) and AST populations from mice after LPS administration to
stimulate inflammation (Fig. 4A and Fig. S6). In line with our
previous tissue and cell experiments, we saw significant upregula-
tion of Il-6 expression in MG and AST isolated from adult KO mice
using MACS, along with an increasing trend in Tnf-a and Il-1b
(Fig. S7). Thus, we proceeded to isolate these populations with
FACS to examine their gene expression profiles using RNAseq. In
contrast with MG and AST, similar assessment of Tnf-a, Il-1b, and Il-
6 in non-neural immune cells (peritoneal macrophages: PECs)
collected from the same mice showed no significant difference in
expression of typical proinflammatory cytokines after LPS
stimulation (Fig. S8).
Prominent perturbation of gene expression was observed in MG

compared to AST (Tables S1 and S2), likely due to higher
expression of LPS recognizing toll-like receptors in MG [33, 34].
Differential expression analysis identified 48 differentially
expressed genes (upreg: 3, downreg: 45) of padj ≤ 0.05, |Fold
Change| ≥ 2 in Kpna4 deficient MG (Table S3). Notably, a larger
number of downregulated genes compared to upregulated genes
were identified, suggesting general repression of gene expression
in both MG (Fig. 4B and Tables S1, S3) and AST (Fig. S9A and
Tables S2, S4). As depletion of nuclear transport factors likely
disrupts nuclear localization of specific transcription factors (TFs)
or alter chromatin states [21], we sought to identify TFs and
histone modifications upstream of altered genes by enrichment
analysis in Enrichr [39–41]. By individually analyzing upregulated
and downregulated gene sets of p ≤ 0.05, |Fold Change| ≥ 2
(Tables S5–S14), we found significant enrichment only in the MG
downregulated gene set (792 genes) (Fig. 4C), where significant
enrichment of polycomb repressor complex 2 (PRC2) component
TFs (SUZ12, EZH2, and JARID2) (Fig. 4C left and Table S8), as well
as repressive histone modifications introduced by PRC2 (Fig. 4C

right and Table S10) was seen, suggesting aberrant PRC2
activation and global downregulation of PRC2 target genes. To
further validate these results, we utilized another analysis method:
weighted parametric gene set analysis (wPGSA) [42], which allows
for gene set-independent prediction of altered TFs directly from
gene expression data. Application of wPGSA to MG data revealed
prominent and significant enrichment of binding sites of PRC2-
related TFs (EZH2, SUZ12, JARID2, EZH1, PHF19, RING2, etc.) in
genes downregulated by Kpna4 deficiency (t score ≤ 0), as well as
suggesting a global downregulation of gene expression (i.e. the
majority of TFs were t score ≤ 0) (Fig. 4D and Table S15). Moreover,
the majority of TFs enriched in MG, including PRC2 component
TFs EZH2 and SUZ12, were common between MG (Table S15) and
AST (Table S16) wPGSA results (Fig. 4E and Fig. S9B), suggesting
that increased PRC2 activity may underlie the increased inflam-
matory responses observed in KPNA4 deficient cells.
Finally, we performed cross-validation for our results with a

previously reported dataset from Kpna4 deficient neural cells
(dorsal root ganglion, Marvaldi et al. [30]), and found similar
enrichment of PRC2 component TFs in genes downregulated by
Kpna4 deficiency following tissue damage (day 7; Fig. S9E, F and
Table S18). This further supports that Kpna4 deficiency increases
PRC2 activity and globally suppresses gene expression.

DISCUSSION
In this study, we demonstrated for the first time that an importin
α4 (Kpna4) deficient mouse line exhibits increased anxiety-related
behaviors, decreased social interaction, decreased avoidance
learning, and decreased prepulse inhibition. As the previous study
associating KPNA4 to schizophrenia in postmortem samples had
suggested contributions of KPNA4 deficiency in the downregula-
tion of NF-κB pathways in patients [6], we assessed the expression
of NF-κB genes as well as downstream proinflammatory cytokines
in KO mice. Contrary to initial predictions based on the study [6],
we found that Kpna4 deficiency did not decrease NF-κB nuclear
localization, but instead causes an increase, along with increasing
proinflammatory responses in KO tissues and cells. Moreover, this
proinflammatory increase was rescued by addition of not only full
length, but also transport-deficient (ΔIBB) mutants. We have
previously demonstrated that this ΔIBB mutant of importin α can
migrate to the nucleus by independently of importin β1 and Ran
[43]. In addition, our immunohistochemical analysis demonstrated
that importin α4 was observed in the nucleus of mouse brain
tissue, suggesting that disruption of chromatin regulatory func-
tions, not nuclear transport dysfunction, from importin α4
deficiency induces increased proinflammatory responses in
correlation to abnormal behavior in mice. Finally, we examined
gene expression in sorted adult glial cells from KO mice, finding
evidence supportive of increased PRC2 activity underlying the
perturbations in gene expression due to Kpna4 deficiency.
In this study, we found altered behavioral characteristics in KO

mice in anxiety-like behavior (OFT, EPM), social interaction, passive
avoidance (IA), and PPI. This is in line with the initial report in
Roussos et al. [6] that KPNA4 deficiency associates to higher risks
of schizophrenia and decreased PPI. Two previous studies [8, 30]

Fig. 3 Importin α4 depletion increases proinflammatory responses in cell culture and is suppressed by reintroduction of WT or transport-
deficient (ΔIBB) KPNA4. A Immunofluorescence analysis of p65 (RELA) in Kpna4−/− astrocytes. Nuclear translocation of p65 in response to
30min TNF-α stimulation was observed in the primary astrocytes established from KO and WT mice. B Fluorescence intensity ratio of nuclear
vs cytoplasmic p65 in (A) (n= 50 cells each). mRNA expression levels of C Il1-β and D Il-6 (/β-Actin) in KO and WT primary astrocytes after 3 h
stimulation with TNF-α (n= 7 each). E Immunofluorescence analysis of RCC1, TDP-43, STAT3, MeCP2 in (unstimulated) KO and WT MEFs. Time-
course changes of F Il1-β (n= 3 each bar) and G Il-6 (n= 2 each bar) mRNA expression in KO and WT astrocytes. H Schematic representation of
importin α4 (KPNA4)-WT and ΔIBB mutant transfected to KO cells. Expression levels of I Il1-β and J Il-6 (/β-actin) in KO MEFs transfected with
EGFP-importin α4 (Impα4)-WT, EGFP-Impα4-ΔIBB, or EGFP control after 1 h stimulation with TNF-α (KO n= 5, Impα4-WT n= 5, Impα4-ΔIBB
n= 4). Bar graphs represent mean ± SEM. Violin plots represent median (solid line), first and third quartiles (dotted line). B Post-hoc Sidak’s
test: ****P < 0.0001. C, D Mann–Whitney test: ***P < 0.001. F, G Dunnett’s test (vs 0 h) *P < 0.05. I, J Dunn’s test *P < 0.05.
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Fig. 4 RNAseq analysis of Kpna4−/− microglia reveal alterations genes regulated by polycomb repressor complex. A Outline of FACS
experiments from KO and WT mice (created with BioRender.com.). B Volcano plot of genes with altered expression in KO MGs in comparison
to WT. Horizontal axis: log2 fold change, vertical axis: −log10 p value, colored points: genes with p ≤ 0.05 and |Fold Change| ≥ 2. C Enrichment
analysis on MG downregulated gene list. Dotted line: adj.P= 0.05. D Volcano plot of wPGSA on MG data. Each point indicates each TF,
horizontal axis: wPGSA t score, vertical axis: log10 P.Val. (BH adjusted). Colored points: TFs with padj ≤ 10E− 5 and |tscore| ≥ 4. E Venn diagram
indicating TFs with significant enrichment in wPGSA in MG and AST.
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have performed behavioral testing on Kpna4 deficient mice. In
particular, Panayotis et al. [8] have examined three behaviors
(locomotion, anxiety-related behavior, and acoustic startle
response), and have found alterations in home cage activity
(higher and lower in KO than in WT in dark and light phases,
respectively), no alteration in anxiety-like behavior, and increased
startle response. Moreover, Malvaldi et al. [30] found decreased
pain responses in KO mice. The discrepancy between our results
and the past studies may be due to differences in experimental
protocol, where the past studies have performed behavioral
analysis during the “dark” phase of the light cycle, as well as
differences in background substrains of the KO mice used (C57BL/
6JJcl vs C57BL/6OlaHsd). Notably, as KO mice have been reported
to exhibit decreased pain responses, the decreased latency to
enter the shock paired chamber observed in our IA experiments
may be due to attenuated pain response instead of deficits in
avoidance learning.
From examination of schizophrenia postmortem patients,

Roussos et al. [6] found NF-κB downregulation and significant
association of KPNA4 genetic elements in the patient group. This
lead to the prediction that KPNA4 deficiency results in depletion of
NF-κB factors from the nucleus, along with downregulation of
NF-κB downstream genes including proinflammatory cytokines.
This is contrastive to the inflammation hypothesis of schizo-
phrenia, arising from observations that patients show neural
and/or systemic proinflammatory upregulation, especially during
acute phases [44–48]. In respect to this, the authors predicted that
the downregulated NF-κB signaling in postmortem brains (chronic
patients) may have resulted from compensatory NF-κB pathway
suppression after initial activation during acute phases [6]. In our
examination of NF-κB and proinflammatory cytokine expression in
relatively young Kpna4 deficient mice (8–10 weeks), we observed
an increase in RelAmRNA expression, as well as repeated evidence
of increased expression of proinflammatory cytokines (after
stimulation) in Kpna4 deficient cells collected from embryonic or
relatively young mice (10 weeks). These observations support the
prediction that KPNA4 deficiency increases NF-κB signaling in
younger patients during acute phase schizophrenia, in line with
the inflammation hypothesis. Examination of NF-κB signaling
during senescence in aged Kpna4 deficient mice may provide
insight on such age- and phase-related discrepancies.
Notably, in contrast to the latest meta-analysis supporting

systemic inflammatory activation in both acute and chronic stages
of schizophrenia [44], we did not observe signs of systemic
inflammation from our cytokine measurements (Fig. S5). Thus, the
observed effects of Kpna4 deficiency on inflammatory increasing
are likely cell type specific. Varying nuclear transport pathways
and/or epigenetic states may produce different outcomes even
when similar pathways (e.g. NF-κB, PRC2) are affected, as seen in
Thiele et al. [29], where Kpna4 deficient lung cells exhibited NF-κB
downregulation and hindered antiviral response. As KPNA4
deficiency-induced proinflammatory activation seems to be
mostly brain-specific, additional risk factors (e.g. increased
lymphocytic activity [44]) are likely present in schizophrenic
patients, which enable aberrant propagation of neuroinflamma-
tory episodes to the rest of the body, resulting in systemic
inflammation.
Considering that Kpna4 deficiency alone did not result in

exclusion of p65 from the nucleus in mice, contribution from
redundant nuclear import pathways may sustain the import of
nuclear proteins necessary for essential cellular functions such as
inflammation. There is extensive evidence demonstrating redun-
dancy in both classical [25, 26, 49, 50] and non-classical [50]
nuclear import of NF-κB proteins, and depletion of Kpna4 may not
be sufficient to hinder import of a specific nuclear protein. Near-
complete exclusion of essential TFs from the nucleus seem to be
lethal, as we previously demonstrated that mice deficient in both
Kpna4 and Kpna3 (known as major transporters of NF-κB [25])

were not viable [21]. Moreover, as transfection with a nuclear
transport-deficient mutant (ΔIBB) was sufficient for reversing the
proinflammatory increase, such increases may be a result of direct
gene regulatory functions, rather than the nuclear transport
functions, of importin αs.
In our analysis of gene expression perturbations in Kpna4

deficient MG and Ast cells, we found prominent enrichment of
binding sites for PRC2 components (EZH2, SUZ12, JARID2, etc.) in
genes downregulated in KO. PRC2 is a chromatin modifying
complex mainly known for repressive H3K27 methylation and has
a plethora of roles in cellular functions such as neural differentia-
tion, immunoinflammatory regulation, and tumor regulation [51].
Its enrichment in downregulated genes suggest that Kpna4
deficiency results in increased PRC2 activity. KPNA4 has been
identified as a binding partner for PRC2 component EZH2 [52],
and its cellular depletion may alter EZH2 functionality to increase
repressive activity of PRC2. Moreover, we revealed that rescue of
the ΔIBB mutant was sufficient in reversing increases in
proinflammatory responses, which implies that the immunosup-
pressive effects of importin α4 are mediated through direct gene
regulatory functions, rather than transport. This is in agreement
with our proteomics analysis in a previous study, which implied
reduction of active chromatin states due to Kpna4 deficiency. This
reduction can be explained by increased PRC2 activity causing
aberrant silencing of widespread loci [21]. In regard to increased
immunoinflammatory activation in KO glial cells, we observed
enrichment of TFs responsible for immunoinflammatory activation
(FLI1, ELF1, ASH2L, ETV6) upstream of genes upregulated in KO
cells. Increased PRC2 activity has been found to alter microglial
polarization towards a proinflammatory (M1-like) status and
induces upregulation of proinflammatory cytokines [53], which
have been observed in our KO cells. The precise molecular
interactions that mediate PRC2 hyperactivity in Kpna4 deficient
cells, and the implications in behavioral regulation is still unknown
and calls for further detailed examination. However, there is
accumulating evidence that increased immunoinflammatory
activity [46, 54–56], as well as repression of gene expression
(decreased gene expression [57], increase in histone deacetylase
and/or repressive histone modifications [58–60]) are involved in
the pathology of schizophrenia and/or schizophrenia-associated
behaviors, and Kpna4 KO mice may provide a useful tool to
understand the molecular basis of behavioral dysregulation
triggered by neuroinflammation.
A previous study has demonstrated significant enrichment of

AP1 family factors in genes downregulated by Kpna4 deficiency, as
well as decreased nuclear localization of c-fos in Kpna4 deficient
peripheral sensory neurons [30]. However, we were not able to
observe enrichment of c-fos or other AP1 factors in our analysis of
expression patterns in FACS sorted adult glial cells. This may
suggest that specific regulatory roles of importin α4 exist in
various neural cell types, which are defined by varying expression
patterns of different nuclear transport factors and cargo. Further
studies are required for understanding the correlation between
the expression and function of importin α4 in different cells and
tissues.
Our results emphasize the roles of importin α4 in behavioral

and neuroinflammatory regulation in relation to psychiatric
disorders. Furthermore, as two other importin α subtypes
(Kpna11,2 and Kpna33–5) have been associated to psychiatric
disorders, further understanding and comparison of subtype
specific cargo binding capabilities and non-transport functions
may be important in uncovering the molecular pathology of
psychiatric disorders. Additionally, as exportin 7, an importin
β family nuclear transport factor, is coded in one of the top
schizophrenia-associated loci [61], further insight of relationships
between nucleocytoplasmic transport and behavior is necessary
to undercover the functions of nuclear import factors in the
pathology of psychiatric disorders.
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MATERIALS AND METHODS
Animals
Heterozygous (Het), and homozygous (KO) importin α4 (Kpna4) knockout,
as well as wild type (WT) mice on a C57BL6/JJcl (CLEA Japan Inc., Tokyo,
Japan) background were generated by mating male and female Kpna4 Het
mice [21]. All animal experiments complied with institutional guidelines by
the Institutional Safety Committee on Recombinant DNA Experiments (Nos.
04219 and 04884) at Osaka University, (No. 110083) and (No. DNA-420) at
NIBIOHN, Animal Experimental Committee of the Institute for Protein
Research at Osaka University (Nos. 29-02-1 and R04-01-1), the Animal Care
and Use Committee of Kyoto University (No. MedKyo17071), and animal
research committees of NIBIOHN (No. DS26-34).

Behavioral tests
The behavioral tests were administered to two different cohorts. Cohort 1
was administered the open field test (OFT), elevated plus maze (EPM),
Y-maze, social interaction test, inhibitory avoidance (IA), in the above order.
Cohort 2 was administered the prepulse inhibition (PPI) test and used for
tissue collection. Behavioral tests were administered following previously
reported general procedures with minor modifications [9, 10, 31, 32, 62].
Detailed protocols on behavioral testing, along with dissection, qRT-PCR,

immunoblotting, cell culture, and RNAseq analysis are described in the
Supplementary Materials. Detailed statistics including ANOVA details are
available in the Supplemental Statistics file.

DATA AVAILABILITY
Any datasets and code which are a part of this study are available from the
corresponding author upon reasonable request. Files from our RNAseq experiments
have been reposited to Gene Expression Omnibus (GEO) as GSE264180.
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