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Abstract
Rapid advancements in deep learning over the past decade have fueled an insatiable demand for efficient and
scalable hardware. Photonics offers a promising solution by leveraging the unique properties of light. However,
conventional neural network architectures, which typically require dense programmable connections, pose several
practical challenges for photonic realizations. To overcome these limitations, we propose and experimentally
demonstrate Photonic Neural Cellular Automata (PNCA) for photonic deep learning with sparse connectivity. PNCA
harnesses the speed and interconnectivity of photonics, as well as the self-organizing nature of cellular automata
through local interactions to achieve robust, reliable, and efficient processing. We utilize linear light interference and
parametric nonlinear optics for all-optical computations in a time-multiplexed photonic network to experimentally
perform self-organized image classification. We demonstrate binary (two-class) classification of images using as few as
3 programmable photonic parameters, achieving high experimental accuracy with the ability to also recognize out-of-
distribution data. The proposed PNCA approach can be adapted to a wide range of existing photonic hardware and
provides a compelling alternative to conventional photonic neural networks by maximizing the advantages of light-
based computing whilst mitigating their practical challenges. Our results showcase the potential of PNCA in advancing
photonic deep learning and highlights a path for next-generation photonic computers.

Introduction
Deep learning models have demonstrated remarkable

capabilities in numerous domains, ranging from computer
vision to natural language processing, scientific discovery,
and generative art1–4. However, as the complexity and
scale of these models continue to surge, a critical chal-
lenge emerges: the need for efficient and scalable hard-
ware solutions to handle the ever-increasing
computational demands. For example, recent trends show
that the compute requirements for deep learning models
are doubling approximately every 5–6 months5. This is far
outpacing improvements in conventional digital electro-
nic computers, which has spurred the use of application-
specific hardware accelerators such as Graphics

Processing Units and Tensor Processing Units6. In this
context, the convergence of deep learning with photonics
has emerged as a promising frontier, poised to redefine
the landscape of neural network computation. By lever-
aging the distinct characteristics of light, photonic hard-
ware can unlock unprecedented processing speeds,
parallelism, and energy efficiencies that surpass the cap-
abilities of traditional electronic architectures7,8. To
enable this new paradigm of photonic deep learning,
much of the focus so far has been on developing the
fundamental devices needed for crucial neural network
operations. Indeed, there have been impressive demon-
strations of photonics for linear operations such as matrix
multiplication and convolutions9–11, as well as nonlinear
activation functions such as rectified linear unit12–14.
These photonic building blocks are now comparable to or
surpass their electronic counterparts in certain important
computing metrics.
However, studying system-level architectures for

photonic neural networks (PNNs) beyond single devices
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is also of vital importance. This is crucial since photo-
nics and electronics operate in entirely different
regimes15. The computational advantages of photonic
building blocks can quickly diminish when used to
implement conventional neural network architectures
that were optimized for digital electronics16. Advancing
photonic deep learning towards end-to-end and scalable
photonic systems requires properly considering neural
network architectures that can benefit from imple-
mentation with specific photonic hardware. One
important hurdle is that conventional deep learning
architectures such as Multi-layer Perceptrons (MLPs)
and Convolutional Neural Networks (CNNs), which
have so far been mainstays for PNNs, require densely-
connected layers with large numbers of parameters,
which are challenging to realize in typical photonic
platforms and current demonstrations of PNNs. For
example, integrated PNNs can possess fast input update
rates (>1 GHz) but feature a small number of pro-
grammable parameters (<103)9,10,14, whereas free-space
PNNs can contain a large number of parameters (>106)
but have slow input update rates (<10 kHz)17–19. Finally,
PNNs are usually operated with fixed weights that can-
not be rapidly updated in real-time. This constraint
makes it difficult for PNNs to efficiently implement the
complex structures of modern deep learning models and
also poses reliability concerns when generalizing to out-
of-distribution data.

To overcome these apparent disparities between pho-
tonics capabilities and conventional neural network
architectures, we propose and experimentally demon-
strate a novel type of PNN based on Neural Cellular
Automata (NCA)20. Cellular automata (CA) are compu-
tational models composed of a lattice of cells with states
that follow an update rule, which defines how the state of
a cell evolves over time based on the states of its neigh-
boring cells (Fig. 1a)21,22. Inspired by biological systems,
the local interactions between cells governed by the
update rule gives rise to complex phenomena and emer-
gent patterns at the global-scale23 (Supplementary Infor-
mation Section I). Unlike conventional human-designed
update rules, NCA (Fig. 1b) harness the complex
dynamics of cellular automata by using modern deep
learning techniques to learn the local update rules needed
to perform specific tasks such as regenerating patterns20,
self-classifying images24, and texture generation25. Our
Photonic Neural Cellular Automata (PNCA) combines
the advantages of photonic hardware with NCA to achieve
self-organized image classification (Fig. 1c). The PNCA
leverages a completely different methodology for com-
puter vision tasks compared to previous PNNs based on
MLPs or CNNs. This enables noise-robust processing, as
well as convenient measures of uncertainty for identifying
anomalies and out-of-distribution data. Furthermore,
PNCA achieves parameter-efficient solutions since the
photonic hardware can operate with fixed weights and
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Fig. 1 Introduction to PNCA. a Cellular Automata (CA) consist of computational units called cells, which update states according to interactions
with neighboring cells. These microscopic local cell interactions can lead to emergent phenomena such as self-organization at the macroscopic scale,
and even a global state agreement. b Neural Cellular Automata (NCA) encode the local update rules for CA using artificial neural networks and can be
trained using modern deep learning techniques to perform tasks, such as image classification through collective agreement of cells. c Photonic
Neural Cellular Automata (PNCA) directly implement NCA in physical systems by harnessing the speed and interconnectivity of analog photonic
hardware, which includes linear operations via light interference and nonlinear activations via nonlinear optics. This endows photonic neural
networks with the robust, reliable, and efficient information processing capabilities of NCA, hence overcoming several practical challenges facing
light-based computing
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only needs to encode the parameters for local update rules
instead of global network weights. The proposed PNCA
approach can be generalized to suit a wide variety of
existing photonic hardware, which can potentially greatly
increase the functionality of PNNs and addresses several
important challenges facing photonic deep learning.

Results
PNCA architecture
The key concepts of the general PNCA architecture are

shown in Fig. 1, which can be adapted to suit a wide range
of different photonic hardware platforms (e.g., see Sup-
plementary Information Section II). For computer vision
tasks, each pixel in the input image corresponds to a cell
in the PNCA. Cells are designated as either alive or dead
through an alive masking procedure. This can be done by
setting a threshold for the initial pixel value, below which
the cell is considered dead. Only alive cells are actively
updated by the PNCA, whereas dead cells can influence
the updates of alive cells but are otherwise quiescent. The
cell state updates according to a rule that depends on the
cells in a local m-cell neighborhood. For example, Fig. 1a
shows the prototypical Moore neighborhood composed of
the cell and the 8 cells that surround it. Other types of
local cell neighborhoods are also possible. In the PNCA,
the optical field corresponding to each cell is split into m
optical paths to define the desired m-cell neighborhood
for the local update rule. The local update rule for the
PNCA is encoded by the photonic hardware (Fig. 1c),
which accepts the m inputs given by the m-cell neigh-
borhood and outputs the next cell state. Although Fig. 1a
only shows each cell state having a single channel, this can
also be extended to multiple channels (e.g., RGB color
image channels) by increasing the inputs and outputs
accordingly. In general, the programmable photonic
hardware contains feed-forward layers with linear opera-
tions which can be implemented through meshes of
Mach–Zehnder interferometers9, photonic crossbar
arrays10, micro-ring resonator weight banks26, or other
linear photonic devices11,14. In addition, there must also
be layers performing nonlinear activations such as pho-
tonic devices based on optoelectronic measurement-
feedback14,27 or nonlinear-optical crystals12,13. This kind
of feed-forward programmable photonic hardware speci-
fying a single input-output function has been used in
previous PNNs. However, for PNCA, the key difference is
that the photonic hardware only needs sparse connections
and enough parameters to encode for the local update
rule, which is usually orders-of-magnitude fewer than the
number of parameters needed to encode global network
weights in fully-connected layers for MLPs or CNNs. In
other words, the parameter-efficient PNCA architecture
can enable existing PNN hardware with relatively few
parameters to perform larger and more complicated tasks

than otherwise possible in conventional neural network
architectures. Furthermore, this local update rule can
more easily tolerate the use of fixed weights after training
since every cell follows the same update rule. Note that
the weights/parameters encoding the local update rule for
cells do not vary across cell index or time step iteration,
which avoids the need for costly parameter updates in
photonic hardware. Finally, the output is recurrently fed
back to update the cell state for the next iteration. This
can be accomplished by photodetection and electro-optic
feedback or by using all-optical feedback lines (e.g., see
Supplementary Information Section IV).
Unlike conventional CA with discrete cell states21, NCA

use cell states that are continuous-valued20, which allows
the model to be end-to-end differentiable and compatible
with gradient-descent based learning algorithms. In this
work, we consider the task of self-organized image clas-
sification. The target output after the final iteration is to
have every alive cell in the state that corresponds to the
class label for the input image. The alive cells must form
this collective agreement through only the local interac-
tions defined by repeated iteration of the update rule. This
can be interpreted as a kind of recurrent neural network,
which can be trained (Fig. S3) using the standard
backpropagation-though-time algorithm28. Using a cell-
wise L2 loss was found to give better performance com-
pared to cross-entropy loss of labels, which is more
commonly used for image classification tasks20. The
training can either be done in situ by performing
the forward pass in PNCA to more accurately capture the
physics, or completely digitally by simulating the photonic
hardware with noise29,30.

Experimental realization of PNCA
We used a time-multiplexed scheme and commercially-

available optical-fiber components to experimentally
demonstrate proof-of-concept for a simple version of
PNCA as shown in Fig. 2. Each cell state is given by the
amplitude of a laser light pulse generated by a mode-
locked laser with a fixed repetition rate such that the cells
are inputted one at a time in a flattened 1D lattice by
raster scanning across the 2D image. In this way, each cell
occupies a time-bin site in a synthetic temporal dimen-
sion31. Therefore, distances in a real-space lattice corre-
spond to time-differences in the temporal dimension and
cells at different lattice sites can be made to interact by
using temporal delay lines.
The pulse amplitude/phase representing the cell state is

set using an electro-optic modulator (EOM), and the
pulse is then split between 3 temporal optical delay lines
with relative delays T1 and T2 chosen to enforce the
desired 3-cell local neighborhood shown in Fig. 2b. In this
simple example, the local update rule is encoded by a
single perceptron neuron shown in Fig. 2c, which consists
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of a linear dot product followed by a nonlinear activation
function. The dot product is achieved by coherent inter-
ference of the optical delay lines, each equipped with a
variable optical attenuator (VOA) to program the desired
weights, which can be either positive (in-phase/con-
structive interference) or negative (out-of-phase/destruc-
tive interference). The nonlinear activation is performed
using pump-depleted second harmonic generation (see
Supplementary Information Section VI) in a reverse-
proton exchange periodically-poled lithium niobate
waveguide32. This produces a sigmoid-like function as
shown in Fig. 2d. Thus, the computations in the local
update rule are achieved all-optically. Overall, the local
update rule contains only 3 programmable parameters,

but can still perform complex tasks. Finally, the cell state
is measured using a photodetector, stored on a field-
programmable gate array (FPGA), and electro-optically
re-injected for the next iteration after alive-cell masking.
A crucial aspect of photonic hardware is that it is analog

and noisy. A key advantage of the PNCA architecture is
that it is robust to noise due to the self-organizing nature
of the cell states. We rigorously characterized the noise
and errors in our PNCA implementation, which arises
from three main operations: (1) the input cell state due to
thermal and electronic noise in the EOM, (2) the linear
dot product due to phase noise and imperfect pulse
temporal overlap in the coherent interference, and (3) the
nonlinear activation due to thermal noise and
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photorefractive effects in the PPLN. We characterized
these errors using 200 test images. The expected vs.
measured amplitudes of alive cells in these images are
shown in Fig. 3. The mean and standard deviation of the
errors (expected amplitude−measured amplitude)
achieved in our system are typical of photonic hardware,
and we show that this is tolerable for the PNCA archi-
tecture due to its noise-robustness.

Self-organized image classification
We trained the experimental PNCA to perform binary

image classification using the fashion-MNIST dataset
consisting of 28 × 28 pixel gray-scale images of clothing
items33. For example, Fig. 4a shows how the PNCA can
classify images of sneakers and trousers. The alive cell
masking is performed by designating any pixel with initial
value α > 0.1 as an alive cell, and all other pixels as dead
cells with constant value of zero. Each input image was
iterated for t= 21 time steps in the PNCA, which was
sufficient for the cells to reach an approximate global
agreement. The alive cells self-organize to have state
values close to zero (unity) for images of sneakers (trou-
sers). Finally, the predicted image label is obtained in
postprocessing (see Supplementary Information Section
III) by performing global average pooling of the final alive
cell states followed by softmax classification. In this case, a
global average closer to zero (unity) indicates that the
predicted image label is sneaker (trouser).
The training procedure was performed digitally using an

idealized simulation model of the PNCA that had no
noise. The confusion matrix for the idealized model is
shown in Fig. 4b, which yielded a final test accuracy of
99.4%.
Next, the trained model parameters were frozen, and

the model was tested again but with additional simulated

Gaussian noise for each operation, matching the noise
characteristics shown in Fig. 3. The confusion matrix for
the noisy model is shown in Fig. 4c, which has a slightly
lower final test accuracy of 97.7%. The trained model
parameters were implemented in the experimental PNCA
by appropriately tuning the VOAs. The confusion matrix
for the experimental result tested on the same 200 images
(100 for each class) used to characterize the noise in Fig. 3
is shown in Fig. 4d and has a final test accuracy of 98.0%.
This experimental test accuracy is in close agreement with
the simulated noisy model, which shows that the PNCA
operates as desired and can successfully tolerate the use of
noisy photonic hardware. No special training or noise
regularization techniques were used for the PNCA. We
emphasize that the robustness emerges through the local
interactions between cells forming a global agreement.
Therefore, even if one cell fails, the collective state can
still persist (Supplementary Information Section VIII).

Out-of-distribution data
Furthermore, conventional neural networks are prone

to making overconfident predictions and failing to
generalize to out-of-distribution data34. This lack of
reliability is especially problematic for photonic deep
learning in which the weights are fixed and online
learning is not practical. The NCA approach addresses
this shortcoming by using the average state value of all
alive cells as a built-in measure of uncertainty. We
experimentally demonstrated this for PNCA by using
the same network as before that was trained on images
of sneakers and trousers. Now, we test the PNCA on
images of bags, which is an out-of-distribution class that
the PNCA was not exposed to during training. The
distributions for the alive cell averages of the sneaker,
trouser, and bag classes are shown for the initial test
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images in Fig. 5a. It clearly shows that the initial dis-
tributions for alive cell averages closely overlap between
all classes. Upon iteration of the local update rule that
was learned during training, the PNCA is able to suc-
cessfully separate the distributions for sneaker and
trouser, with final alive cell averages of 0.1743 and
0.8742, respectively, as shown in Fig. 5b. In this case, the
difference between the final alive cell average and zero/
one indicates the uncertainty in the prediction. How-
ever, the final alive cell average for out-of-distribution
test images of bags is 0.5682, which is close to 0.5 and
means that the cells did not reach a global agreement.
This shows that the PNCA can use the alive cell average
as a proxy for uncertainty and to detect out-of-
distribution data. Unlike for conventional neural net-
work architectures, neither special training/inference
techniques nor additional training data are required.

Simulated benchmarks
In the current experimental implementation of PNCA,

we represented the local update rule using only a single
neuron with 3 parameters. However, the PNCA archi-
tecture can also be used with more advanced PNN

hardware that can represent the local update rule using a
greater number of neurons/parameters. In general, a
greater number of neurons/parameters can allow for
more complicated tasks and higher classification accuracy
while the hardware complexity remains far less demand-
ing than other neural network architectures. Table 1
shows the simulated binary classification accuracy of the
proposed PNCA with different numbers of neurons/
parameters encoding the local update rule (see Methods).
The simulated PNCA was tested on different classes
within the fashionMNIST dataset, as well as other similar
benchmark datasets including EMNIST (28 × 28 grayscale
images of handwritten letters)35, MNIST (28 × 28 grays-
cale images of handwritten digits)36, and CIFAR10
(32 × 32 RGB images of animals and vehicles)37. The
corresponding classification accuracies for conventional
MLPs with different numbers of hidden neurons/para-
meters are also shown for reference. It can be seen that
the PNCA requires far fewer parameters and achieves
comparable (or sometimes even better) classification
accuracy to MLPs across a wide variety of examples.
Therefore, the PNCA architecture may provide an effi-
cient way for PNNs with only few parameters14 to
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increase their task performance with minimal changes to
existing hardware.

Discussion
We note that CA with simple rules and only nearest-

neighbor connections are known to be Turing-universal
models of computation38. This means that CA can, at
least in principle, compute any function that a fully-
connected network (neural or otherwise) can compute.
There is no fundamental loss of computational power or
information processing ability imposed by the sparsity.
Therefore, given enough time, the PNCA approach
(albeit with more advanced input encoding schemes)
must be able to achieve at least the same accuracy as
conventional neural networks such as MLPs. However,
in practice, the time steps are truncated to be finite,
which means the classification accuracy may not always
be the same as MLPs. It is difficult to determine a priori
on which examples the PNCA will perform better/worse
compared to MLPs. In the proposed PNCA architecture,
the maximum throughput is ultimately limited by the
speed of the nonlinear activation function. We chose to
utilize ultrafast nonlinear optics since it can be orders of
magnitude faster than digital electronics for performing
nonlinear activations. The reverse-proton exchange
PPLN waveguide32 used in the experiment utilizes
strong χ(2) optical nonlinearity and has a phase-matching
bandwidth of ∼100 GHz, which determines the max-
imum possible computational clock rate. This is an
important step towards achieving end-to-end PNNs
since it is much faster than other nonlinear activation

methods utilizing optoelectronics14, slower optical
nonlinearities39,40, or spectral shaping41. Note that in
our experiment, we used optoelectronic conversions
after the PPLN nonlinear activation to perform feedback
between iterations, however, this was not a fundamental
limitation and can in principle be replaced by an all-
optical feedback loop in the form of a sufficiently long
optical fiber (see Supplementary Information Section
IV). The scalability and performance can be further
improved by using nanophotonic PPLN waveguides,
which were recently demonstrated to achieve a max-
imum speed >10 THz and energy of ∼10 fJ per nonlinear
activation13.
In summary, we have proposed and experimentally

demonstrated a novel approach to photonic deep
learning based on PNCA. It addresses several system-
level challenges in previous PNNs and can serve as a
general architecture for a wide variety of photonic
hardware platforms. In particular, we showed that
PNCA enables noise-robust image classification through
local interactions between cells with an inherent mea-
sure of uncertainty based on alive cell averages. More-
over, the efficient PNCA model encoding requires
orders of magnitude fewer parameters compared to
MLPs or CNNs. Our single perceptron neuron rule
encoding can be straightforwardly extended to a shallow
neural network with a greater number of programmable
parameters to perform more complicated and larger-
scale computer vision tasks. For example, we focused on
binary image classification for simplicity, but it is pos-
sible to perform image classification with more classes
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(e.g., the full 10-class MNIST image classification) if the
number of output neuron channels is increased (e.g., see
Supplementary Information Section II). Furthermore, we
only used standard backpropagation training and did not
employ any special training or regularization techniques.
More advanced noise-aware or physics-aware training
schemes29 are also compatible with the PNCA archi-
tecture and may further increase performance. We used
a time-multiplexed photonic network based on a syn-
thetic temporal dimension, however, it is also possible to
use an analogous PNCA approach based on other syn-
thetic dimensions such as frequency dimensions40,42. In
addition to robustness to noise, it has also been pre-
viously shown that NCA are generally robust against
sudden changes or failures in the underlying cell
states20,24. This fault-tolerance property has not yet been
explored for optical implementations and can be an
interesting avenue for future work on PNCA. Our work
therefore highlights a clear path to advancing photonic
deep learning based on PNCA and paves the way for
next-generation photonic computers.

Materials and methods
Experimental setup
A more detailed schematic of the experimental setup is

shown in Fig. S1. A femtosecond laser source (Menlo-
Systems FC1500-250-WG) produces pulses of light at a
fixed repetition rate of ∼250MHz. The light pulses are
filtered using a 200 GHz band-pass filter with center
wavelength ∼1550 nm to stretch the pulse length to ∼5 ps
and reduce the effects of dispersion. The light pulses are
photodetected (MenloSystems FPD610-FC-NIR) as a
reference clock signal for the FPGA (Xilinx Zynq Ultra-
Scale+ RFSoC) to eliminate timing drift between the
optical and electronic signals. The FPGA drives an EOM
(IXblue MXAN-LN-10) that is used to modulate the
amplitude of the light pulses. The light pulses are split
into a 3-path interferometer by cascading 50:50 optical
fiber splitters. Two paths of the interferometer have delays
+1TR and +28TR, respectively, relative to the shortest
path, where TR is the repetition period of the light pulses.
The relative delays in each arm are set using a combina-
tion of optical fiber patch cords and free-space delay

Table 1 Simulated benchmarks

Dataset Classes PNCA Multi-layer perceptron

1 neuron,

10 params.

10 neurons,

111 params.

100 neurons,

1101 params.

784→ 1→ 1, 787

params.

784→ 10→ 1,

7861 params.

784→ 100→ 1,

78,601 params.

fashionMNIST

(28 × 28,

grayscale)

trouser/sneaker 99.4 99.9 99.9 99.8 99.9 99.9

t-shirt/pullover 87.0 93.5 94.1 94.0 95.8 96.8

coat/sandal 98.8 99.3 99.3 99.7 99.8 99.8

dress/boot 94.7 98.0 98.2 99.8 99.9 99.9

shirt/bag 89.5 95.6 95.8 95.0 95.2 97.3

EMNIST

(28 × 28,

grayscale)

A/B 83.7 99.5 99.5 95.3 97.5 98.1

C/D 97.4 98.5 98.6 98.5 98.5 99.6

P/Q 89.3 97.8 98.0 97.7 98.9 99.1

R/S 87.9 96.1 96.5 96.6 98.3 99.6

Y/Z 99.0 99.3 99.3 96.4 98.3 98.6

MNIST

(28 × 28,

grayscale)

one/two 99.4 99.5 99.5 98.6 99.5 99.7

three/four 99.3 99.6 99.7 98.5 99.6 99.7

five/six 95.0 97.4 97.4 95.1 95.3 97.6

seven/eight 91.2 99.1 99.3 96.5 98.3 99.1

nine/zero 90.1 96.5 96.6 98.2 99.0 99.4

CIFAR10

(32 × 32, RGB)

automobile/bird 83.0 88.8 89.7 60.1 80.7 84.7

dog/truck 78.6 90.4 90.5 78.9 80.2 86.1

horse/ship 77.3 84.7 85.6 72.9 78.9 85.2

Image binary classification accuracy (%) for PNCA with 1, 10, and 100 neurons (10, 111, and 1101 parameters), respectively, for examples of classes in datasets:
fashionMNIST (28 × 28 grayscale images of fashion items), EMNIST (28 × 28 grayscale images of handwritten letters), MNIST (28 × 28 grayscale images of handwritten
digits), and CIFAR10 (32 × 32 RGB images of animals and vehicles). The corresponding accuracy for a conventional multi-layer perceptron (MLP) with 1, 10, and 100
hidden layer neurons (787, 7861, and 78,601 parameters), respectively, is also shown for reference
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stages. Tuning the free-space coupling efficiency also acts
a VOA to set the relative amplitude weight in each arm.
The output of the 3-arm interferometer is tapped using a
90:10 optical fiber splitter. The 10% tap is photodetected
(Newport New Focus Model 2053) and used as an elec-
tronic locking signal input to a proportional-integral
derivative controller (Red Pitaya). The electronic locking
signal output is amplified (Thorlabs Piezo Controller
MDT693B) and drives fiber phase-shifters (General Pho-
tonics FPS-002-L) that stabilize the relative phases of each
delay arm. The 90% output of the 3-arm interferometer is
amplified using an erbium-doped fiber amplifier (Thor-
labs Fiber Amplifier 1550 nm PM) and filtered using a
200 GHz band-pass filter to reduce the amplified spon-
taneous emission noise. The amplified light pulses pass
through a 40 mm long reverse-proton exchange PPLN
waveguide32 that is heated to ∼52 °C with a thermocouple
controller. The PPLN waveguide contains a wavelength
division multiplexer on the output to separate the fun-
damental harmonic centered at ∼1550 nm and the second
harmonic centered at ∼775 nm. The second harmonic
output is dumped and the fundamental harmonic is
photodetected (Thorlabs DET08CFC). The final photo-
detected signal is read as a time trace using an oscillo-
scope (Tektronix MSO6B) and light pulse amplitude
values are stored on the FPGA to be electrooptically
reinjected. A single photodetector can be used for tasks
only requiring positive-valued inputs/outputs, such as the
image classification tasks considered in this work. How-
ever, the electro-optic feedback scheme can also handle
negative-valued outputs by instead using a local-oscillator
with balanced photodetector. All optical fiber paths are
single-mode polarization-maintaining (PM)

Photonic neural cellular automata model
The NCA comprises a lattice of cells indexed by lattice

site number i2N with states xi 2 Cd , where d is the
number of channels for each cell. Each cell interacts
locally in an m-cell neighborhood Mi according to a fixed
update rule. We consider discrete-time synchronous
updates t2N for cells:

xi t þ 1ð Þ ¼ f θ xmi1 tð Þ; xmi2 tð Þ; xmi3 tð Þ; ¼ð Þ ð1Þ
where mi1;mi2;mi3; ¼ 2 Mi are the lattice sites in the
local neighborhood of the ith cell and f θ : ðCdÞm ! Cd is
the local update rule. The local update rule is parameter-
ized by {θ} and is differentiable so that it can be trained
using modern deep learning techniques. For example, f θ
can represent a neural network. The key aspect is that the
update rule f θ is the same for all cells and all time steps.

We experimentally demonstrated a simple version of
NCA implemented directly on analog photonic hardware,
which we call PNCA. In PNCA, lattice sites are

represented by laser light pulses in time bins of a synthetic
temporal dimension with a fixed repetition period TR and
cell states are represented by the complex amplitude of
the light pulses. For simplicity, we consider a single image
channel d= 1 and the local update rule f θ encoded by a
single perceptron neuron with an m= 3 neighborhood as
shown in Fig. 2b, c. The temporal delay lines T1=+1TR

and T2=+28TR set the desired local cell neighborhood
and the VOAs in each arm of the 3-arm interferometer set
the desired weights {w0,w1,w2} ∈ [−1, +1]. The PIDs are
used to enforce a relative phase of 0 for constructive
interference, or conversely a relative phase of π for
destructive interference. Therefore, at the output of the
3-arm interferometer, the combined result of the delay
lines, VOAs, and phases can be summarized as a linear
dot product or sliding convolutional filter:

yi tð Þ ¼ w0xi tð Þ þ w1xiþT1 tð Þ þ w2xiþT2 tð Þ ð2Þ
where the result of the linear operation yi tð Þ is fed into a
PPLN to perform a nonlinear activation function:

xi t þ 1ð Þ ¼ g yi tð Þð Þ ð3Þ
where g is the sigmoid-like function shown in Fig. 2d. The
PNCA approach is very general and Eq. (1) can be
implemented using more complicated photonic hardware
platforms with different cells neighborhoods, more
neurons, deeper layers, and more programmable para-
meters (see Supplementary Information Section II).

Experimental procedure
The input modulator was calibrated by using a sequence

of 200 consecutive light pulses and performing a linear
voltage sweep of the input EOM, which was DC-biased
open. The peak pulse amplitude or maximum value in
each time bin (i.e., pulse repetition period) of the mea-
sured time trace was used to construct a look-up table for
the voltage-to-light amplitude conversion. To input a
specific 28 × 28 fashion-MNIST image, the 2D-pixel map
was unrolled column-wise to form a 784 × 1 vector of
input cell values. Alive masking was applied such that any
initial pixel value < 0.1 was designated as a dead cell. The
accuracy of the input operation was checked by measur-
ing the difference between the measured input cell states
and the expected value, such as shown in Fig. S2. The
aggregate results are shown in Fig. 2a. Each desired weight
in the linear dot product was set by tuning the coupling
efficiency of a free-space section contained within each
VOA in the 3-arm interferometer. Note that the VOAs
were completely passive and did not consume any power.
The optical power was directly measured in each arm to
roughly tune the attenuation factor, and then fine-tuning
of the weight was performed by checking the result of the
linear interference matched the expected value like in
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Fig. S2. A standard Pound–Drever–Hall locking scheme
was used to stabilize the relative phases in each delay arm
to either 0 or π to ensure coherent interference. It is also
possible to make use of the full complex amplitude of
light, although we restricted our attention to only real
values. The relative delays in each temporal delay line was
set roughly using optical fiber patch cords, then fine-
tuned using free-space delay stages to ensure maximal
temporal overlap between interfering light pulses. The
aggregate results of the linear dot product or convolution
operation are shown in Fig. 2b. The temperature of the
PPLN was fine-tuned around 52 °C until maximal average
power was measured on the output second-harmonic
given a small input fundamental harmonic average power
∼1mW. The PPLN nonlinear activation function shown
in Fig. 2d was measured using a sequence of consecutive
light pulses with linearly increasing input amplitude. To
ensure stable operation over long-periods of time (>12 h)
throughout the experiment, we regularly check that the
calibrated PPLN nonlinear activation function remains
the same and does not change significantly due to photo-
refractive or thermal effects. The measured values for
PPLN nonlinear activations were also compared against
the expected simulated values as shown in Fig. S2. The
aggregate results of the PPLN nonlinear activation
operation are shown in Fig. 2c. To perform self-organized
image classification using the experimental PNCA, the
input modulator was first calibrated. Then, the PPLN
nonlinear activation function was measured, and a
simulated digital model of the PNCA was trained (see
“Model Training”) to determine the optimal weights to be
set in the temporal delay lines. The light pulse amplitudes
were stored digitally on the FPGA in between iterations,
however, the iteration feedback can also be performed all-
optically using an optical fiber cavity (Supplementary
Information Section IV).

Model training
The PNCA can be trained using the standard

backpropagation-through-time algorithm (Fig. S3) for
recurrent neural networks if a differentiable model of the
update rule f θ is known. The goal is to learn the

parameters {θ} for a particular task such as self-organized
image classification. We consider a cell-wise L2 loss at
each time step:

L ¼ 1
T

XT

t¼1

1
N

XN

i¼1

kxiðtÞ � zik2 ð4Þ

where zi is the target state for the ith cell. The parameter
values are updated using stochastic gradient descent:

θ½lþ1� ¼ θ½l� � α∇Lðθ l½ �Þ ð5Þ
where l is the epoch number and α > 0 is the learning rate.
The gradient ∇L is calculated by unrolling the network in
time for T time steps and applying the chain rule or
automatic differentiation. More complicated gradient-
based optimization such as stochastic gradient descent
with momentum or adaptive moment estimation can also
be used to perform parameter updates. We trained a
PNCA to perform binary image classification of sneakers
and trousers classes from the fashion-MNIST dataset
using 5000 training and 420 validation images for each
class, learning rate of α= 0.002, and 200 training epochs.
An example of a training curve is shown in Fig. S4.

Simulation procedure
For the simulated benchmarks, we considered PNCA

using the classic Moore neighborhood (composed of the
current cell plus its 8 neighboring cells in a square lattice).
The local update rule fθ was encoded by a 2-layer fully-
connected network 9→N→ 1, where N is the number of
hidden neurons. The simulation parameters are shown
below in Table 2. For the CIFAR10 dataset examples, we
applied the same local update rule channel-wise to each
RGB input channel for the images, then averaged over the
channels for the final classification. For the simulated
MLPs used for comparison, we used a 2-layer fully-con-
nected network 784→N→ 1, where N is the number of
hidden neurons. We used clipped ReLU nonlinear acti-
vation function f(x) = min(1,max(0,x)) to ensure that the
final output probability is in range [0,1]. Each MLP was
trained using binary cross-entropy loss, the same number

Table 2 Simulated benchmark parameters

Dataset Iterations Alive cell

threshold

Training images per

class

Validation images per

class

Test images per

class

Learning rate Epochs

fashionMNIST 25 0.1 5000 420 1000 0.01 500

EMIST 15 0.1 500 420 500 0.01 1000

MNIST 10 0.1 5000 420 800 0.01 1000

CIFAR10 10 0.15 500 420 500 0.005 2000
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of training/validation/test images as for the corresponding
PNCA, learning rate of 0.0001, and 500 epochs. The
images were flattened column-wise to form the input to
the MLPs and we resampled the images to be 28 × 28
grayscale for CIFAR10 since MLPs can only accept inputs
with a fixed dimension, whereas PNCA can handle arbi-
trary image input sizes
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