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a b s t r a c t 

Structural complexity refers to the three-dimensional ar- 

rangement and variability of both biotic and abiotic com- 

ponents of an ecosystem. Metrics that characterize struc- 

tural complexity are often used to manage various aspects 

of ecosystem function, such as light transmittance, wildlife 

habitat, and biological diversity. Additionally, these metrics 

aid in evaluating resilience to disturbance events, including 

hurricanes, bark-beetle outbreaks, and wildfire. Recent ad- 

vances in wildland fire modelling have facilitated the inte- 

gration of forest structural complexity metrics into the QUIC- 

Fire model, enabling real-time prediction of fire spread and 

behaviour by simulating interactions between fire, weather, 

topography, and forest structure. While QUIC-Fire is designed 

to be highly adaptable, model performance depends on the 

availability and accuracy of local data inputs. Expanding the 

model’s usability across different regions can be facilitated 

by the availability of more comprehensive and high-quality 

data. Thus, the primary goal behind the data products we 

developed was to establish a basis for collaborative research 

across various disciplines, particularly within the focal areas 

of the Southern Research Station, such as forestry, wildland 

fire, hydrology, soil science, and cultural resources at Bent 
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Creek, Coweeta, Escambia, and Hitchiti Experimental Forests 

(EFs). 

Airborne laser scanning (ALS) was used to collect point-cloud 

data for each EF during the leaf-off season to minimize inter- 

ference from foliage. Subsequent processing of the raw lidar 

data involved outlier detection and filtering, ground and non- 

ground classification, and the computation of a variety of 

metrics representing various aspects of topography and forest 

structure at both the pixel-level and the tree-level. Pixel-level 

topographic data products include: digital elevation model 

(DEM), slope, aspect, topographic position index (TPI), topo- 

graphic roughness index (TRI), roughness, and flow direction. 

Forest structural-complexity metrics include canopy height, 

foliar height diversity (FHD), vertical distribution ratio (VDR), 

canopy rugosity, crown relief ratio (CRR), understory com- 

plexity index (UCI), vertical complexity index (VCI), canopy 

cover, mean vegetation height, and the standard deviation of 

vegetation height. Tree-level data products were computed 

from the point cloud using multiple algorithms to perform 

individual tree detection (ITD) and individual tree segmenta- 

tion (ITS). The datasets have been harmonized and are openly 

accessible through the USDA Forest Service Research Data 

Archive. 

© 2024 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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Specifications Table 

Subject Forestry 

Specific subject area Forest structural complexity data, tree detections, crown delineations, and 

topography 

Type of data Vector (GeoPackage), Raster (GeoTiff) 

Data collection Aerial laser scanning was collected in the winter/early spring during the 

leaf-off period using an aircraft-mounted Optech Galaxy T20 0 0 lidar sensor. 

Data source location Country: United States. 

Institution: US Forest Service, Southern Research Station. 

Bent Creek Experimental Forests: 35.050580, −83.450054 

Coweeta Experimental Forests: 31.007539, −87.078571 

Escambia Experimental Forests: 33.057078, −83.679620 

Hitchiti Experimental Forest: 35.484250, −82.633346 

Data accessibility Repository name: US Forest Service Research Data Archive 

Data identification number: 

https://doi.org/10.2737/RDS- 2024- 0019 

Direct URL to data: https://www.fs.usda.gov/rds/archive/catalog/RDS-2024-0019 

Raw ALS point-cloud data are located at 

https://app.box.com/s/4s3412g8mtky0hb6wb63a44epv08c22o 

Related research article none. 

. Value of the Data 

• These data are useful in characterizing and understanding forest structural complexity across

differing ecosystems within the southeastern US. These data include information related to

elevation, slope, aspect, topographic position index (TPI), topographic roughness index (TRI),

roughness, flow direction, canopy height, foliar height diversity (FHD), vertical distribution

ratio (VDR), canopy rugosity, crown relief ratio (CRR), understory complexity index (UCI), ver-

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2737/RDS-2024-0019
https://www.fs.usda.gov/rds/archive/catalog/RDS-2024-0019
https://app.box.com/s/4s3412g8mtky0hb6wb63a44epv08c22o
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tical complexity index (VCI), canopy cover, mean vegetation height, and the standard devia-

tion of vegetation height. 

• These data support research across several disciplines, including ecology, forestry, hydrology,

soil science, wildland fire science, and cultural resources. By providing detailed physical mea-

surements of forest structure, the data facilitates studies such as habitat suitability, species

distribution, environmental change impacts, and fire spread. 

• Researchers can utilize the forest structural complexity metrics to deepen their analyses,

replicate structural metrics for other forests, and extend their investigations into forest dy-

namics. Various methodological approaches can be applied to further explore this dataset. 

• By offering a detailed snapshot of current forest conditions, the data serve as a baseline for

ongoing and future longitudinal studies. Researchers can track changes over time, assess the

effectiveness of forest management practices, and study ecological responses to climatic vari-

ations. 

• These data also provide a valuable resource for educational programs focused on environ-

mental science and forest management. It allows students and trainees to work with real-

world data, enhancing their learning experience and preparing them for professional roles in

environmental and forestry sciences. 

2. Background 

This dataset [ 1 ] was created to support collaborative research effort s across several disci-

plines, including ecology, forestry, hydrology, soil science, wildland fire science, and cultural re-

sources. The motivation stems from a methodological need to enhance the precision of forest

dynamic models and wildland fire models, particularly QUIC-Fire, by incorporating metrics that

characterize forest structure, such as canopy height, topography, tree crowns, and bole height [ 2 ].

This model requires detailed spatial metrics to accurately simulate forest dynamics and fire be-

haviour. Metrics such as canopy height, topography, tree crowns, and bole height are crucial for

these simulations, as they directly influence model outputs on vegetation growth, species distri-

bution, and fire spread. By integrating such metrics into the models, the dataset aims to enhance

the precision of predictions and provide a more nuanced understanding of forest ecosystems and

fire dynamics. This enhanced modelling capability is intended to support more effective man-

agement practices and policy decisions in forestry and land management. The dataset thereby

serves as a valuable resource for researchers looking to apply robust modelling techniques to

complex ecological and environmental challenges. 

3. Data Description 

The data are stored in both raster- and vector-based formats and are projected to the Univer-

sal Transverse Mercator (UTM) coordinate system (EPSG:26916 and EPSG:26917). Raster data are

stored as GeoTiff (.tif) files and vector data are stored as GeoPackage (.gpkg) files. The data are

available for download via the USFS Research Data Archive [ 1 ] and the structure of the data are

described below ( Table 1 ). 

The structure of the sub-directories containing raster data is described below ( Table 2 ), using

Bent Creek as an example. 

Aspect refers to the orientation or azimuth of the terrain surface, measured clockwise in de-

grees from 0 to 360, where 0 is north-facing, 90 is east-facing, 180 is south-facing, and 270 is

west-facing [ 3 ]. Canopy cover is the proportion of the ground surface area that is covered by the

vertical projection of vegetation or tree canopy [ 4 ]. Canopy height model (CHM) is the height of

tree canopies derived from the highest elevation of a ground-normalized point cloud [ 5 ]. Crown

relief ratio (CRR) is the ratio of the vertical extent of a tree’s crown to its total height [ 6 ]. Digital

elevation model (DEM) is the terrain surface elevation above sea level [ 7 ]. Foliar height diversity
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Table 1 

Structure and description of the sub-directories containing raster- and vector-based data. 

Main directory Sub-directory Content type 

RDS-2024-0019_Metadata_Fileindex.zip Variable descriptions 

File index 

RDS-2024-0019_Supplements.zip R code 

Lidar metadata 

RDS-2024-0019_Data_BentCreek.zip Grids Raster data 

Vectors Vector data 

RDS-2024-0019_Data_Coweeta.zip Grids Raster data 

Vectors Vector data 

RDS-2024-0019_Data_Escambia.zip Grids Raster data 

Vectors Vector data 

RDS-2024-0019_Data_Hitchiti.zip Grids Raster data 

Vectors Vector data 

Table 2 

Description of the sub-directories containing raster-based data. 

Filename Variable Units 

aspect.tif Aspect degrees 

canopy_cover.tif Canopy cover % 

chm.tif Canopy height model meters 

crr.tif Crown relief ratio unitless 

dem.tif Digital elevation model meters 

fhd.tif Foliar height diversity unitless 

flowdir.tif Flow direction unitless 

roughness.tif Roughness meters 

slope.tif Slope degrees 

top_rug.tif Top rugosity unitless 

TPI.tif Topographic position index unitless 

TRI.tif Topographic roughness index unitless 

uci.tif Understory complexity index unitless 

vci.tif Vertical complexity index unitless 

vdr.tif Vertical distribution ratio unitless 

z_max.tif Maximum height of vegetation meters 

z_mean.tif Mean height of vegetation meters 

z_sd.tif Standard deviation of height meters 
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FHD) is the variation in vertical positions of foliage within a vegetation canopy, indicating the

resence of different layers or heights of leaves and branches in a plant community [ 8 ]. Flow di-

ection is the direction of the greatest drop in elevation, or the smallest rise if all neighbors are

igher [ 9 ]. Roughness is the irregularity and variation in elevation across a DEM [ 10 ]. Slope is the

teepness of the Earth’s surface [ 3 ]. Top rugosity is the degree of irregularity or variation in the

ertical profile of a vegetation canopy, reflecting the complexity and three-dimensional struc-

ure of the foliage distribution within the canopy layer [ 11 ]. Topographic position index (TPI)

he difference between the value of a cell and the mean value of its 8 surrounding cells [ 10 ].

opographic roughness index (TRI) is the mean of the absolute differences between the value

f a cell and its 8 surrounding cells [ 10 ]. Understory complexity index (UCI) is the structural

iversity and arrangement of vegetation at different vertical levels within a habitat, providing

nsights into the intricacy of the plant community’s three-dimensional organization and is lim-

ted to lidar returns ≤3 m [ 12 ]. Vertical complexity index (VCI) is the structural diversity and

rrangement of vegetation at different vertical levels within a habitat, providing insights into

he intricacy of the plant community’s three-dimensional organization [ 13 ]. Vertical distribu-

ion ratio (VDR) is the proportion of vegetation biomass or some other characteristic distributed

ithin specific height intervals of a plant community, revealing the vertical arrangement of fea-

ures such as leaves, branches, or vegetation density [ 14 ]. Z max is the maximum height of lidar
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Table 3 

Description of the sub-directories containing vector-based data. 

Filename Variable Units 

crowns_dalponte_lmf.gpkg treeID unitless 

canopy_cover % 

crr unitless 

fhd unitless 

top_rug unitless 

uci unitless 

vci unitless 

vdr unitless 

z_max meters 

z_mean meters 

z_sd square meters 

crown_area meters 

crown_diameter meters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

returns within the grid cell. Z mean is the average height of lidar returns within the grid cell. Z

sd is the standard deviation of lidar returns within the grid cell. 

The structure of the vector data is described below ( Table 3 ), using Bent Creek

“crowns_dalponte_lmf.gpkg” file as an example. Each sub-directory contains a total of four files, 

and each file contains the same number of variables ( N = 13). File names reflect the algorithms

utilized in tree detection and crown delineation; for instance, "crowns_dalponte_lmf.gpkg" indi-

cates that the tree detection step was performed via a manually defined local maximum filter

(lmf) and the Dalponte algorithm [ 3 ] was used to segment the point cloud for crown delineation.

Similarly, "crowns_silva_lmfauto.gpkg" denotes crown delineation with the Silva algorithm [ 15 ]

and tree detection using the lidR_plugins package’s lmfauto function [ 16 ]. 

4. Experimental Design, Materials and Methods 

4.1. Study area 

Lidar-derived data products were developed for four of the 84 US Forest Service’s network

of long-term Experimental Forests and Ranges (EFRs), including Bent Creek, Coweeta, Escambia,

and Hitchiti. Established in 1908, the EFRs is the longest-running ecological research network

in the US, providing an incredible wealth of records and knowledge regarding ecological change

in natural and managed forest and grassland ecosystems. Individual sites range in size from

47 to 22,500 ha and are hosted on a combination of both public and private lands. Moreover,

the network provides a home for long-term science and management studies in most of the

dominant land cover types across the US ( Fig. 1 ). 

4.2. Lidar data collection and processing 

ALS data acquisition for each EF was performed in the winter/early spring during the leaf-off

period using an aircraft-mounted Optech Galaxy T20 0 0 lidar sensor. Mean point density ranged

from 42 to 74 points m2 . Lidar data was provided by the vendor as laz files and geo georefer-

enced to the respective UTM (Universal Transverse Mercator) zone. Additional metadata is pro-

vided in Table 4 . Data processing was divided into three primary phases, including 1) point-

cloud cleaning and classification, 2) the generation of pixel-level metrics, and 3) tree-level met-

rics. All processing was performed in the R environment [ 17 ], primarily relying on package func-

tions from lidR [ 5 , 7 , 16 ], tidyverse [ 17,18 ], sf [ 19 ], and terra [ 9 ]. Processing was performed in

parallel using the lidR las catalog functionality on a Windows PC with 256 GB of RAM and an

AMD Ryzen Threadripper 3960 × 24-core processor. 
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Fig. 1. Aerial lidar coverage collected for a) Hitchiti, b) Bent creek, c) Coweeta, and d) Escambia experimental forests. 
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.3. Point-cloud classification and cleaning 

Lidar data inherently includes the presence of noise and irrelevant data. This noise can orig-

nate from various sources, such as atmospheric disturbances, sensor anomalies, or reflections

rom unintended surfaces. Thus, point-cloud cleaning improves the overall quality of the lidar

ataset and the resulting products. Classifying and cleaning lidar data reduces the volume of

on-essential data, which is not only beneficial for streamlining data storage but also for mini-

izing the computational resources required for processing and analysis. This section describes

he steps taken in order to clean the lidar point cloud. 

Point-cloud classification included identifying and classifying noise (i.e., outlier) as well as

uildings and powerlines. The statistical outlier removal (SOR) algorithm available in the lidR

lassify_noise function was used to identify and segment (classify) noise in the point cloud. For

ach point, SOR computes the mean distance to all its k-nearest neighbours. Lidar returns that

re farther than the average distance plus a number of times (multiplier) the standard deviation

re considered noise. In some instances, it may be necessary to perform two or more ‘sweeps’ to

lassify and remove noise. Shapefiles representing building footprints and powerlines were used

o identify and classify lidar returns to be removed from the workflow using the lidR classify_poi

unction. Shapefiles for building footprints and powerlines were queried from OpenStreetMap

OSM) [ 20 ] and merged into a single shapefile that was then used to segment the point cloud.

or this analysis, buildings and power lines were classified as noise and removed. This was done

o ensure that buildings and powerlines were omitted from the generation of pixel- and tree-

evel metrics ( Fig. 2 ). Classification of ground returns was performed using the cloth simulation

unction [ 21 ]. Duplicate points (lidar returns with coincident X, Y , and Z values) and degenerated

round points (coincident X and Y ) were also identified and removed. 
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Table 4 

Lidar acquisition parameters. 

Project name Bent creek Coweeta Escambia Hitchiti 

Min/Max Ground 

Elevation 

20 0 0′ −40 0 0′ 220 0′ –490 0′ 150′ –250′ 250′ −625′ 

Flight Altitude 5600′ 50 0 0′ 5400′ 40 0 0′ 
Distance Units Meters Meters Meters Meters 

CRS UTM 17N UTM 17N UTM 16N UTM17N 

Horizontal Datum NAD83 - 2011 NAD83 - 2011 NAD83 - 2011 NAD83 - 2011 

Vertical Datum NAVD88–Geoid18 NAVD88–Geoid18 NAVD88–Geoid18 NAVD88–Geoid18 

Scan FOV 30 30 30 18 

Flying Altitude AMSL 8250′ 8500′ 5600′ 1600′ 
Pulse Rate (kHz) 1500 1400 1500 585 

Scan Rate (Hz) 110 100 110 61 

Laser Power % HIGH/STD HIGH/STD HIGH/STD 100 

Swath Width 30 0 0′ 2700′ 2800′ 2100′ 
Planned Sidelap 30 % 30 % 30 % 30 % 

Mean Point Density 15 points/m2 15 points/m2 15 points/m2 NA 

Aircraft Piper Navajo 

Chieftain 

Piper Navajo 

Chieftain 

Piper Navajo 

Chieftain 

Piper Navajo 

Chieftain 

Date Flown 12/15/21 11/23/21 11/02/21 01/04/21 

Flight Speed ∼150 knots ∼150 knots ∼150 knots 

Base Station Type Trimble RTX Trimble RTX Trimble RTX Trimble RTX 

GPS/INS Notes POSpac v8.7 POSpac v8.7 POSpac v8.7 POSpac v8.7 

Boresight Calibration yes yes yes yes 

Minimum/Maximum 

Scan Angle Output 

±15 degrees ±15 degrees ±15 degrees ±15 degrees 

Actual Scan Angle 

Output 

full FOV full FOV full FOV full FOV 

Tile Layout 750 m tiles 750 m tiles 750 m tiles NA 

Class 1 Unclassified Unclassified Unclassified Unclassified 

Class 2 Ground Ground Ground NA 

Class 5 Vegetation Vegetation Vegetation NA 

Class 6 Building Building Building NA 

Class 7 Low Points Low Points Low Points NA 

Data Formats Created LAS v1.4 LAS v1.4 LAS v1.4 LAS v1.4 

Processing Notes minimal editing minimal editing minimal editing NA 

Number of Control 

Points Used in Analysis 

3 2 5 8 

Number of Control 

Points Eliminated from 

Original Set 

0 0 0 2 

Reasons for Point 

Removal 

N/A N/A N/A out of area 

Average Elevation 

Variation 

−0.001 −0.013 0.002 0.01 

Minimum Elevation Dz −0.003 −0.062 −0.052 −0.101 

Maximum Elevation Dz 0.001 0..37 0.920 0.016 

RMS 0.002 0.051 0.052 0.086 

Horizontal Accuracy < 1 m < 1 m < 1 m < 1 m 

 

 

 

 

 

 

 

4.4. Data products 

Both pixel-level and tree-level products were computed from the aerial lidar data to capture

a comprehensive representation of the forest structure [ 1 ]. The generation of pixel-level surface

models, such as elevation and canopy height models, provides an overview of the landscape,

while tree-level products, including individual tree detections and measurements, contribute to a

finer-grained understanding of tree attributes. This dual approach aims to leverage the strengths

of both pixel- and tree-level analyses for a more holistic assessment of the forest ecosystem.

To alleviate edge effects, both pixel- and tree-level data products extend 200 m beyond the

boundaries of the EF. 
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Fig. 2. Example of forest structural complexity metrics for the Hitchiti Experimental Forest. 
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.5. Pixel-level metrics 

A digital elevation model (DEM) with spatial resolution of 1 m2 was generated from the

leaned, non-height-normalized point cloud using the lidR grid_terrain function on points clas-

ified as ground returns. The DEM was then used with the terra packages terrain function to

enerate additional topography-related surface models, including slope, aspect, topographic po-

ition index (TPI), terrain ruggedness index (TRI), roughness, and flow direction. A 3 × 3 moving

indow was applied to all gridded data products to fill in potential NA values before exporting

s GeoTiff files. The point cloud was then height-normalized using the K-nearest neighbour algo-

ithm with the lidR normalize_height function, which was then used to generate pixel-level met-

ics regarding forest structure at 1 m2 resolution using the lidR pixel_metrics function ( Fig. 2 ).

orest structural metrics included canopy height (CHM), foliar height diversity (FHD), vertical

istribution ratio (VDR), top rugosity (top_rug), crown relief ratio (CRR), understory complex-

ty index (UCI), vertical complexity index (VCI), canopy cover, mean vegetation height (z_mean),

ax vegetation height (z_max), and standard deviation of vegetation height (z_sd). 

.6. Tree-level metrics 

Derivation of tree-level metrics consisted of three primary steps: 1) individual tree detection

ITD), 2) individual tree segmentation (ITS), and individual crown delineation (ICD). Individual

ree detection is the process of spatially locating trees and extracting height information. Indi-

idual tree segmentation is the process of segmenting (classifying) the point-cloud based on the

rees detected in the previous step. Once the point cloud is segmented, the crowns of individual

rees can be delineated, and tree-level metrics can be generated. Each of these three steps can
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be performed on a point-cloud or a canopy height model. Tree-level products were output using

the open, non-proprietary, standards-based, and platform-independent GeoPackage format. 

4.7. Individual tree detection 

With the lidR package, trees are detected by applying a Local Maximum Filter (LMF) to either

the point-cloud or a CHM. The processing of a point-cloud or a CHM is performed in a similar

manner. For a given point (or pixel), the algorithm analyses neighbourhood points or pixels,

checking if the processed point or pixel is the highest. A large window is preferable for tall trees

while a small window size is preferable for short trees because crown size is correlated with tree

height [ 22 ]. Because trees of variable sizes are often present in a single scene, a window size that

adapts to tree height is preferable. For this analysis, individual tree detection was performed on

the canopy height. model using two algorithms, both of which are based on the LMF approach

using a variable window size with the lidR locate_trees function. 

The window size of the first algorithm (lmf) was calculated by using a simple yet efficient

linear relationship starting with a minimum window size of 3 m if tree height is less than or

equal to 2 m, and gradually increases by 0.2 m for each incremental unit of tree height. However,

to prevent the window size from exceeding 6 m, an upper limit is imposed when tree heights

surpass 15 m. This modification ensures a balanced and controlled relationship between tree

height and window size, as very large window sizes typically detect fewer trees. 

The second algorithm, lmfauto, is still under development but is available with the lidRplug-

ins package and implements a fast, parameter-free individual tree detection algorithm optimized

for processing large areas efficiently [ 16 ]. It uses LMF in two steps or passes. The first pass per-

forms a very rough estimation of the number of trees using a fixed window size. Based on the

estimate from the first pass, it automatically computes a variable window size. According to the

documentation ( https://github.com/Jean-Romain/lidRplugins ), this algorithm is suitable for pro-

cessing large areas (e.g., forest scale) rather than small plots. 

4.8. Individual tree segmentation 

Individual tree segmentation using the lidR segment_trees function was performed on the

point cloud using two algorithms: 1) silva2016 [ 15 ] and 2) dalponte2016 [ 23 ]. The silva2016

algorithm is based on seed and voronoi tessellation, which is similar to the nearest neighbour

algorithm and requires a canopy height model and a set of individual seed points representing

the tree locations. The Dalponte2016 algorithm is a seeds and growing region algorithm and

requires a canopy height model and a set of individual seed points representing tree locations. 

These algorithms were chosen based on results reported by Tatum and Wallin [ 24 ]. While

each segmentation algorithm has its strengths and weaknesses, Tatum and Wallin [ 24 ] reported

that Dalponte2016 performed best during data-model evaluation, followed closely by silva2016.

Upon visual examination of the tree crowns, the authors reported that the crowns produced

by the Silva2016 algorithm tended to be slightly larger and often over-extended into the non-

canopy area (such as surrounding clearings, or inter-canopy gaps). Each ITS algorithm uses the

tree locations from ITD to segment the point cloud and assign unique IDs to each return in the

point cloud by inserting a new attribute named treeID in the LAS object header. 

4.9. Individual crown delineation and tree metrics 

The final step for derivation of tree-level metrics involves the delineation of tree crowns us-

ing the lidR crown_metrics function, which can be returned as a raster or a shapefile. For this

analysis, crown delineation was performed on the point cloud using the crown metrics function,

https://github.com/Jean-Romain/lidRplugins
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hich simultaneously computes a set of user-defined metrics for each delineated tree crown.

he same set of metrics derived at the pixel-level were calculated for each detected tree, in

ddition to crown area and mean crown diameter. Additionally, the generalized additive model

GAM) that was developed from the inventory data was used to predict bole height at the tree-

evel. 

imitations 

The size of the raw point-cloud data precluded storage on the USFS Research Data

rchive. Therefore, this data is accessible for download from box.com ( https://app.box.com/s/

s3412g8mtky0hb6wb63a44epv08c22o ). Additionally, the volume of the point-cloud data may

ose computational limitations. 
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