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A B S T R A C T

Introduction: Narcolepsy and obstructive sleep apnea syndrome (OSA) are relevant causes of excessive daytime 
sleepiness (EDS); although different for etiopathogenesis and symptoms, differential diagnosis is sometimes 
difficult, and guidelines are lacking concerning their management when coexisting in a same patient.
Methods: A narrative review of the literature was realized including PubMed, Scopus and Embase, aimed to 
regroup studies and case reports evaluating epidemiology, clinical and instrumental features and treatment of 
patients presenting comorbid NT1 and OSA. Moreover, a snowball search on the pathophysiology underpinnings 
of the association of the two disorder was realized.
Results: For adults, the prevalence of OSA in NT1 ranged from 24.8 % to 51.4 %. No studies were found con
cerning the treatment of EDS in double-diagnosis patients, but only case reports; these latter and the experience 
on patients with either NT or OSA suggest that modafinil, methylphenidate, pitolisant and solriamfetol are 
effective.
Discussion: Adults with NT1 showed a higher prevalence of OSA compared to the general population, but the 
reach of the results reviewed here is limited by the retrospective design of most of the studies and by the 
inhomogeneous utilization of diagnostic criteria. The association with OSA is likely to be explained by the 
involvement of orexin in hypercapnic-hypoxic responses: a deficit of orexin may promote obstructive events 
during sleep. Open questions warrant further investigation, especially orexin’s involvement in other sleep dis
orders associated with EDS, and the more appropriate treatment for the OSA-narcolepsy comorbidity.

1. Introduction

Obstructive sleep apnea (OSA) is a widespread disorder influenced 
by multiple factors, encompassing anatomical constriction and reduced 
muscle tone essential for preserving upper airway patency. The chronic 
sleep fragmentation stemming from recurrent intermittent hypoxia and 
cortical arousal manifests as excessive daytime sleepiness (EDS) [1]. The 
pathophysiology of OSA also relies on a chronic low-grade inflamma
tion: sleep fragmentation related to sleep apnea and cyclic hypoxia are 
considered to induce a dysregulation of interleukin 6 (IL 6) and tumor 
necrosis factor alfa (TNF-alfa) [2].

Curiously, research studies show patients with OSA experience 
persistent sleepiness despite adequate treatment with nasal continuous 
positive airway pressure (CPAP) suggesting the possibility of a missing 

link.
Narcolepsy is a lifelong non-progressive neurological disease char

acterized by dysregulation of the sleep-wake cycle with multiple in
trusions of rapid eye movement (REM) sleep. The classic tetrad of 
symptoms associated with narcolepsy; EDS, cataplexy, sleep paralysis, 
and hypnagogic hallucinations are often accompanied by disrupted 
nocturnal sleep. The International Classification of Sleep Disorders 
(ICSD-3) characterizes narcolepsy type 1 (NT1) by the presence of cat
aplexy and distinguishes type 2 by the absence of this phenomenon and 
the assessment of orexin levels [3].

The etiopathogenesis of NT1 seems to rely on the T-cell mediated 
destruction of hypocretin cells in the lateral hypothalamus, a process 
that could be promoted by a molecular mimicry between infectious or 
vaccinal and endogenous epitopes [4–6]; the infections with H1N1 
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influenza and streptococcus pyogenes, and influenza vaccination have 
been described as a trigger for NT1 [7–9].

Investigations into the association between orexin levels and EDS in 
the general population using the Epworth Sleepiness Scale (ESS) yielded 
inconclusive results, with no association found with the human leuco
cyte antigen (HLA) DQB10602 allele, but spectral analysis revealing 
differences in sleep propensity among individuals with OSA who were 
HLA-DQB10602-positive and HLA-DQB1*0602-negative [10].

For both OSA and NT1 an association with genetic factors was 
described. For NT1, stronger evidences are related to the HLA system, 
mainly involving the haplotype DQB1*06:02, but also, less commonly, 
other alleles, such as DQB1*03:02, DQB1*03:01, DQB1*06:03, 
DQB1*05:01 and DQB1*06:01. The other main genes involved are the T- 
cell receptor alfa chain gene, the purinergic receptor subtype 2Y11, 
catepsin H and the tumor necrosis factor ligand superfamily member 4 
(TNFSF4) [11].

For OSA, replicated candidate gene findings are an association with 
the − 308G/A polymorphism of the TNF-alfa gene, with the rs1409986 
polymorphism in the Prostaglandin E2 receptor EP3 subtype (PTGER3) 
and the rs7030789 polymorphism of the Lysophosphatidic acid receptor 
1 (LPAR1) [12]. Moreover, genome-wide association studies (GWAS) 
produced non-replicated findings [13,14].

While a heightened incidence of OSA has been suggested in adults 
diagnosed with NT1, the intricate mechanisms linking narcolepsy and 
OSA, as well as the impact of OSA on daytime sleepiness, remain areas of 
ongoing investigation and have not been fully elucidated [15]. Beyond 
the distinctive features of cataplexy and hypnagogic hallucinations, both 
narcolepsy and OSA manifest with EDS as a predominant clinical char
acteristic. Sleep fragmentation, disruptions in sleep continuity, fatigue, 
and weight gain are additional shared clinical manifestations as docu
mented by Drake [16] and Paudel et al. [17].

From a historical perspective, the initial documentation of comorbid 
sleep-disordered breathing focused on the observation of central sleep 
apnea in patients diagnosed with narcolepsy. Coccagna and colleagues 
[18] described hypersomniac-hypoventilation syndrome characterized 
by central periodic breathing at the onset of sleep, with spontaneous 
remission of sleep-disordered breathing over time. The authors posited a 
potential involvement of the brainstem in explaining the abnormalities 
in sleep-related breathing, obesity, and hypersomnia. Building on this 
foundation, Guilleminault and collaborators [19] conducted a study on 
two narcolepsy-cataplexy patients, uncovering central apnea episodes 
lasting 20–90 s during stages N1, N2, and REM. Additionally, Kales and 
colleagues [20] reported a case of a narcoleptic patient intolerant to 
methylphenidate due to cardiac dysrhythmias, successfully managed 
with propranolol, which alleviated EDS, cataplexy, and sleep apnea 
characterized by 30–70 central apneic episodes per hour, and in a sub
sequent case, from an autopsy of a 17-year-old obese boy with narco
lepsy symptoms, Drake [16] presented findings attributing his demise to 
a potential overlap of narcolepsy and OSA as evidenced by cardiomegaly 
and right ventricular enlargement. During the same year, Kales and 
colleagues [21] investigated the prevalence of sleep apnea in a cohort of 
50 narcoleptic patients with cataplexy, revealing only one severe case of 
sleep apnea. Subsequently, Chokroverty and colleagues [22] examined 
16 narcoleptic patients through polysomnographic recordings and 
multiple sleep latency tests (MSLT), identifying a spectrum of apnea 
types, including purely central, both central and obstructive, and mixed 
apnea. Importantly, neither obesity nor advancing age emerged as sig
nificant factors in the development of sleep apnea within this limited 
case series.

These early reports collectively underscored the association between 
sleep-disordered breathing, predominantly characterized by a central 
pattern, and various narcoleptic phenotypes. Confirming a diagnosis of 
narcolepsy can indeed pose challenges. In the absence of clear indicators 
such as cataplexy and the presence of orexin deficiency or specific HLA 
markers, the potential for misdiagnosis of narcolepsy in comorbidity 
with SDB may not be disregarded. It is noteworthy that MSLT in 

untreated OSA might yield false-positive results for narcolepsy due to 
reduced sleep latency, especially when patients report atypical cata
plexy [17]. The comorbidity between OSA and narcolepsy may exhibit 
bidirectional influences. In a noteworthy case [23], the complexities of 
diagnosis became evident when managing the concurrent presence of 
narcolepsy and OSA. In this scenario, narcolepsy was identified in an 
individual undergoing CPAP treatment for OSA, after the discovery of a 
low orexin level, assessed for persisting of EDS. Notably, the MSLT failed 
to reveal sleep onset REMs (SOREMPs). The absence of REM sleep 
during daytime testing was attributed to apneic events, potentially 
compromising the sensitivity and specificity of MSLT, particularly in 
cases marked by a high frequency of apneic events. Aguilar and col
leagues [24], described the case of a 28-year-old who exhibited severe 
mandibular retrognathia, EDS, snoring, apnea, a history of cocaine 
abuse, and severe OSA. The initial PSG indicated an AHI of 25.9/hr, but 
the patient initially declined CPAP therapy; some months later he 
accepted this treatment, albeit without improvement in EDS. During a 
follow-up clinical visit, the patient disclosed a history of sleep attacks, 
sleep paralysis, and cataplexy throughout his life. A PSG recorded with 
CPAP was succeeded by an MSLT, which uncovered a notably low sleep 
latency (2 min) and three SOREMPs. The presence of the 
HLA-DQB1*0602 allele and an undetectable cerebral spinal fluid (CSF) 
orexin level ultimately confirmed the diagnosis of narcolepsy.

Factors such as obesity and those associated with orexin dysfunction 
could heighten the susceptibility of narcoleptic patients to OSA. 
Conversely, OSA may induce a secondary narcoleptic-like condition 
through mechanisms involving chronic intermittent hypoxia and 
heightened arousal during sleep, thereby causing direct damage to 
orexinergic neurons [25].

Individuals presenting at sleep centers with EDS, alongside comorbid 
OSA, may be diagnosed solely with OSA, potentially leading to an 
oversight of the coexisting presence of narcolepsy.

A narrative review of the literature was conducted using PubMed, 
Scopus, and Embase, to evaluate epidemiology, clinical and instru
mental features, and treatment of patients presenting comorbid NT1 and 
OSA. Furthermore, a snowball search on the pathophysiological un
derpinnings of the association of the two disorders was conducted. Fig. 1
outlines the content of the present review.

2. Prevalence

The estimated prevalence of OSA in the general population is re
ported to range between 15 and 30 % in males and 10–15 % in females, 
as substantiated by various studies and secondary analyses [26,27]. The 
prevalence of NT1 is estimated at 0.02–0.05 % across Western countries 
[11,28]. According to literature data, the prevalence of OSA in in
dividuals with NT1 has been documented within the range of 24.8 %– 
51.4 % (see Table 1).

In a research study involving 1000 patients exhibiting EDS, 46 in
dividuals were diagnosed with Narcolepsy NT1 and OSA. Notably, the 
diagnosis of narcolepsy was conclusively established after the successful 
resolution of OSA through CPAP therapy. Corroborating the findings, 
the severity of OSA exhibited a positive correlation with body mass 
index (BMI). However, intriguingly, the severity of EDS, as assessed 
through the MSLT, did not demonstrate improvement with CPAP 
intervention [29]. In a subsequent study, a cohort of 133 consecutive 
narcoleptic patients was systematically assessed between the years 1991 
and 2007. Among these individuals, 33 patients were identified as 
having comorbid OSA with an Apnea-Hypopnea Index (AHI) ≥ 10 
events per hour). Notably, this subgroup exhibited characteristics such 
as older age, male gender, and a higher BMI [30].

In a retrospective chart review study of 102 narcoleptic patients, 
twenty-nine of them (28.5 %) had a comorbid OSA confirmed by poly
somnography. Treatment with CPAP demonstrated a statistically sig
nificant improvement in Epworth Sleepiness Scale (ESS) scores over one 
year of follow-up [31]. Another study involved 100 consecutive subjects 
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diagnosed with NT1, and it was revealed that 24 % of the participants 
exhibited comorbid OSA. The severity of OSA in this cohort varied, 
encompassing cases ranging from mild to severe [32]. Similarly, find
ings from another study by Nevsimalova et al. [33] highlighted that 
severe OSA, characterized by an AHI exceeding 30/hr, was exclusively 
observed in narcoleptic patients aged 40 and above. In a retrospective 
population study in the United States conducted by Black and colleagues 
[34], the prevalence of comorbid OSA in narcoleptic patients was re
ported to be 51.4 %. In a controlled retrospective national study, which 
specifically focused on NT1, sleep apneas were identified as significant 
comorbidity, both occurring before and persisting after the diagnosis of 
NT1, with a 44.5 [13.1–151.3] odds ratio [35]. A Japanese study in 
Japan involved 141 adults with narcolepsy, revealing that 39.7 % of 
them had comorbid OSA [36]. Individuals with OSA in this cohort were 

characterized by advanced age, higher BMI, an increased prevalence of 
cataplexy, lower sleep efficiency, and a higher arousal index.

Few studies have investigated the comorbidity between narcolepsy 
and OSA in children. Filardi and colleagues [37] observed that the 
prevalence of OSA in narcoleptic children was 13.6 %, reaching its peak 
at the same age as observed in children without narcolepsy. A case 
report described a 4-year-old girl with moderate OSA, where the diag
nosis of comorbid narcolepsy was established following adeno
tonsillectomy [38]. Similarly, in a case reported by Almbaidheen & 
Bodur [39], improvement in EDS was noted with modafinil after ade
notonsillectomy for severe OSA in a child with NT1.

Fig. 1. The overlap between OSA and NT1.

Table 1 
Clinical features and multiple sleep latency test (MSLT).

Reference N OSA 
(%)

Age (Yrs) Sex 
(F)

CSF 
Orexin 
(pmol/L)

Cataplexy 
(yes)

HLA 
DQB1* 
0602

ESS BMI (kg/m2) MSLT

SL 
(min)

REM latency 
(min)

SOREMPs 
(N)

App 
1990

46 28 Na 34.5 
%

Na 46.5 % Na Na Na Na

Sansa 
2010

133 24.8 38.6 ±
16.4

34 % Na 78 % Na 17.7 ± 4.3 23.9 
±4.7

2.1±
1.8

4.8 ± 2.7 3.2 ± 1.4

Pataka 
2012

102 28.5 45.7 ±
16.5

60 % Na 74.5 % 84.3 % 18.3 ± 4 27.9 
±5.8

4.5±
3.2

3.9 ± 3.2 2.7 ± 1.1

Frauscher 
2013

100 24 39 
[16–78]

44 % Na 87 % 93 % 18 
[10–24]

26.2 
[18.2–43]

10.7±
3.2

Na 4 (0–5)

Jennum 
2013

757 Na 40.3 ±
35.8

53.6 
%

Na Na Na Na Na Na

Nevsimalova 
2013

117 30.77 47.8 ±
17.2

Na Na 79.5 % 84.7 % 18.0 ± 3.4 Na 2.7±
2.1

Na 3.4 ± 1.1

Black 
2017

9312 51.4 46.1 ±
13.3

59.2 
%

Na 20.3 % Na Na Na Na

Hoshino 
2019

141 39.4 30.7 ±
12.7

31.9 
%

Na 26 % Na 14.8 ± 5.1 23.3 
±4.3

2.3±
1.6

4.9 ± 2.7 3.2 ± 1.1

Filardi 
2020

38 13.6 11.66 ±
3.77

34.2 
%

32.70 ±
43.26 pg

Na 100 % 15.53 ±
3.53

24.39 
±5.09

2.70 
±2.35

Na 4.58 ± 0.83

Data expressed as mean ± standard deviation or median [range]; N number of subjects with narcolepsy; AHI apnea-hypopnea index; BMI body mass index; CSF 
cerebrospinal fluid; ESS Epworth sleepiness scale; SL sleep latency; SOREMP sleep onset REM period. *the study only included OSA patients undergoing adeno
tonsillectomy for OSA.
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3. Pathogenesis

In the 1920s, Constantin von Economo, a distinguished Viennese 
neurologist, systematically examined post-mortem brain lesions in in
dividuals who had succumbed to encephalitis lethargica. He hypothe
sized that the lateral hypothalamus functions as a critical center for the 
origination of a primary wake-promoting signal.

Orexin-A and orexin-B, identified as endogenous peptide ligands 
targeting orphan G-protein-coupled receptors (OX1 and OX2 receptors) 
by T. Sakurai et al., in 1998 [40], intricately modulate various physio
logical processes such as sleep, energy homeostasis, respiratory func
tion, and reward-seeking behaviors. The activity of orexin neurons is 
subjected to regulatory influences, wherein glucose and leptin (the 
satiety hormone) exert inhibitory effects, while ghrelin (the hunger 
hormone) stimulates their activity. Notably, selective ablation of orexin 
cells results in diminished energy expenditure, ultimately contributing 
to the development of obesity, as elucidated by Williams and Burdakov 
[41]. While predominantly expressed in the lateral hypothalamic area of 
the brain, orexin peptides have also been identified in peripheral tissues, 
as documented by Heinonen and colleagues [42].

The relatively small population of orexin neurons, numbering in the 
thousands, extensively projects envelop nearly every region of the brain, 
excluding the cerebellum. These projections notably impact the reticular 
activating system’s pivotal components and the attention-promoting 
regions of the cortex, thereby augmenting arousal, a phenomenon in
tegral to fight-or-flight responses. Orexin firing is subject to inhibition 
by other arousal systems, such as noradrenaline and serotonin, sug
gesting the existence of a negative feedback loop.

Furthermore, impulses originating from the lateral hypothalamus 
exert a persistent facilitatory influence on the respiratory center, pro
jecting specifically to the pre-Botzinger region of the rostral ventrolat
eral medulla and to phrenic motoneurons, as expounded by Williams 
and Burdakov [41]. In mouse animal models, the optogenetic activation 
of the circuit connecting the lateral hypothalamus to the pre-Botzinger 
complex induced sighing and tachypnea, while its pharmacologic inhi
bition suppressed both responses [43]. Overall, findings suggest a role of 
the circuit on ventilation, but its implication in sleep-related obstructive 
events remains to be determined. Physiologically, orexin neurons 
demonstrate a depolarization response and increased electrical activity 
under conditions of physiological acidosis, while alkalosis induces hy
perpolarization and inhibits orexin cell firing. The orexinergic system 
actively stimulates the ventilatory response to CO2. Orexin knockout 
mice exhibit diminished cardiovascular and respiratory responses, 
which can be partially restored through orexin administration. 
Conversely, the selective orexin-1 receptor antagonist SB-334867 re
duces the hypercapnic response in wild-type mice, as evidenced by Deng 
and colleagues in 2007 [44]. Spinieli et al. [45] observed a reduced 
ventilatory and behavioral response to hypoxia in rats undergoing an 
orexin receptor 1 and 2 blockade with suvorexant; these data suggest 
that orexin participate in the peripheral chemoreflex.

A study conducted by Han et al. [46] revealed a blunted hypoxic 
responsiveness in individuals with NT1 and healthy carriers of the HLA 
DQB1*0602 allele compared to non-carriers, providing additional in
sights into the complex interplay of the orexinergic system in respiratory 
and cardiovascular regulation.

There is a proposed mechanism suggesting that orexin activation of 
the genioglossus muscle results in the dilation of upper airways, and 
consequently, the loss of orexin in NT1 may facilitate OSA. Conversely, 
the possibility exists that OSA may contribute to the development of 
narcolepsy through long-term damage to the orexin systems [25,47]. In 
addition, it was proposed that intermittent hypoxia, as provoked by 
recurrent apneas, could determine a disruption of the immune system, 
due to an increased T-helper 17 to regulatory T cells ratio, to an increase 
in interleukin 4 and other inflammatory citochines [48], and to an in
crease in diversity and clonotypes of T-cell receptors [49]. By mean of 
these immune processes, intermittent hypoxia has the potential to 

trigger an autoimmune damage affecting the orexin neurons [50,51], in 
line with multiple lines of evidence on the role of T-cell activity 
imbalance in the pathogenesis of NT [52,53].

Contrary to concerns about the potential respiratory side effects of 
orexin-receptor antagonists, commonly used in insomnia treatment, 
clinical trials and daily experiences suggest that they do not significantly 
impact breathing regulation. No relevant effects on AHI, respiratory 
disturbance index (RDI), or oxygen saturation were detected for 
laborexant [54,55] and daridorexant [56], even in patients with chronic 
pulmonary disease [57] or OSA [58]. Additionally, experimental mol
ecules in this category showed no significant respiratory side effects 
[59].

Conflicting evidence surrounds plasma orexin levels in OSA patients, 
with some studies reporting lower levels compared to non-OSA groups 
[60], while others indicate an increase in plasma orexin-A levels in OSA 
subjects [61]. Further complexity is introduced by studies showing 
elevated orexin-A levels in OSA patients experiencing EDS [62]. Con
flicting evidence arises from a study analyzing CSF orexin levels in se
vere OSA subjects, which found no significant differences compared to 
controls and NT2 patients [63].

In addition, impact of effective therapies for OSA, such as CPAP and 
adenotonsillectomy, on orexin levels in patients remains unclear [64]. 
On the contrary, studies on young obese adults undergoing bariatric 
surgery revealed a significant increase in plasma orexin levels, accom
panied by improvements in clinical symptoms, a reduction in AHI, 
arousal index, and daytime sleepiness [65].

Metabolic syndrome and obesity represent another relevant line of 
evidence concerning the pathogenesis of OSA and NT1, and could ac
count for the association of the two disorders. Orexin modulates growth 
hormone [66] and cortisol secretion [67], upregulates leptin [68], 
downregulates prolactin and improves insulin sensitivity [69]. There
fore, orexin deficiency affects endocrine function, leading to a reduced 
food-specific satiety [70], to an increased food intake and to a metabolic 
dysregulation [69,71], which in turns can provoke weight gain and 
diabetes. Neural correlates of the dysregulated food intake in NT1 were 
studied, and associated with decreased dorsal medial prefrontal cortex 
responses during general executive control and enhanced ventral medial 
prefrontal cortex responses during food-driven attention [72]. These 
findings could account for the strong association between obesity and 
NT1. However, the complex interplay of the abovementioned hormones 
and their link to obesity in NT1 remains to be elucidated, since patients 
with NT1 did not demonstrate a reduced metabolic rate [73], neither a 
reduced baseline level of ghrelin and leptin [74] compared to healthy 
controls.

NT1-related weight gain provokes a deposition of fat in the tongue 
and in the tissue surrounding the pharynx, increasing the upper airways 
collapsibility and potentially causing OSA [75].

Also, the other way around, OSA is a main risk factor for metabolic 
syndrome. The association was explained based on a mechanism of 
intermittent hypoxia, which provokes an increased sympathetic acti
vation with impaired blood pressure, an increased hepatic glucose 
output, and insulin resistance through adipose tissue inflammation, 
pancreatic β-cell dysfunction and hyperlipidemia. Consequent obesity 
can increase the risk of NT1 [76].

4. Treatment of EDS in narcolepsy with comorbid OSA

EDS has been identified as a significant detriment to the quality of 
life, as evidenced by the Europe 2016–2017 National Health and Well
ness Survey, which assessed the impact of sleepiness on the quality of life 
of individuals with various sleep disorders. Patients with OSA (n =
2277) narcolepsy (n = 48), or a combination of both conditions (n = 23) 
exhibited a substantial decrease in quality-of-life scores compared to 
individuals with non-pathological sleepiness [77]. This underscores the 
crucial need for effective management of EDS associated with OSA 
and/or narcolepsy.
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The guidelines of the European Sleep Research Society on the man
agement of narcolepsy indicates pharmacological and non- 
pharmacological approaches as effective on multiple symptoms di
mensions. For excessive daytime sleepiness in adults scheduled naps, 
modafinil, pitolisant, sodium oxybate (SO), solriamfetol, methylpheni
date and amphetamine derivatives are indicated; in children the same 
interventions except for pitolisant and solriamfetol are also recom
mended. For cataplexy antidepressants as clomipramine and venlafaxine 
are indicated in both adults and children, while SO and pitolisant in 
adults only [78].

Despite the use of CPAP for OSA, a surprising finding reveals that 38 
% of patients using CPAP for more than 7 h still exhibited objective 
sleepiness, as demonstrated by Weaver and colleagues [79]. Addition
ally, some patients, despite achieving adequate adherence to CPAP, may 
remain undertreated for rapid eye movement (REM)-predominant OSA, 
contributing to persistent EDS. The consequences of OSA, including 
chronic sleep deprivation and hypoxia-reoxygenation, may result in 
persistent adverse effects on wake-activating neurons, as suggested by 
Javaheri & Javaheri [80].

The efficacy of stimulants in treating EDS in narcoleptic patients with 
comorbid OSA has not been rigorously studied through randomized 
controlled trials (RCTs), but evidence from distinct groups suggests that 
modafinil, commonly used in narcolepsy monotherapy, can improve 
both objective and subjective sleepiness in patients with OSA experi
encing refractory sleepiness despite compliant CPAP use [80]. Pitolisant, 
a selective histamine H3 receptor antagonist/inverse agonist, has gained 
approval for alleviating symptoms of EDS in both NT1 and OSA based on 
several clinical trials [81,82]. A meta-analysis pooling data from four 
RCTs indicated that pitolisant significantly reduced EDS, increased 
mean sleep latency, and improved quality of life scores without signif
icant adverse effects, except for insomnia [83]. Solriamfetol, a dopamine 
and norepinephrine reuptake inhibitor, received approval in 2019 for 
treating EDS in OSA and narcolepsy. It demonstrated efficacy in TONES 
studies and has advantages such as reduced abuse risk, renal excretion, 
and a favorable drug interaction profile compared to other medications 
[81,84]. Moreover, solriamfetol demonstrated a favorable effect on 
body weight, in patients with NT1 or OSA, with a dose dependent 
pattern [85]. However, notable adverse effects include headaches, 
anxiety, decreased appetite, and nausea. Solriamfetol should be used 
cautiously in certain patient populations, including those with cardio
vascular instability, a history of bipolar disorder or psychosis, and those 
taking monoamine oxidase inhibitors [80]. An intriguing study revealed 
that individuals with NT1 did not experience worsening daytime 
sleepiness with the development of concomitant OSA [14]. Further
more, stable nasal CPAP treatment did not lead to improvements in sleep 
latency during MSLT in these patients [86]. Moreover, another study 
found that CPAP therapy did not yield a significant improvement in EDS 
for most patients with NT1 and OSA, implying that OSA might not play a 
substantial role in exacerbating the severity of EDS in narcolepsy [30].

5. The controversial respiratory effect of sodium oxybate for 
treatment of NT1

The precise mode of action of SO remains uncertain, with suggested 
mechanisms including an increase in serotonin turnover, interaction 
with opioid systems, and potential agonism of gamma-aminobutyric 
acid B (GABA-B) receptors, as posited by Alshaikh and colleagues 
[87]. However, concerns have been raised regarding the impact of SO on 
co-existing sleep-related breathing disorders, particularly OSA, despite 
contradictory findings in the literature.

An improvement in central sleep apnea (CSA) was documented in a 
case report by Mamelak & Webster [88], where a patient with narco
lepsy and central sleep apnea showed clear amelioration following SO 
treatment. Conversely, two cases involving patients with NT1 and co
morbid heart diseases reported acute deleterious effects on breathing, 
leading to OSA. In one case, the respiratory event returned to baseline 

after SO withdrawal, while the other case necessitated CPAP use to 
normalize sleep breathing [89]. Interestingly, an opposite effect was 
observed in a 64-year-old man with OSA and narcolepsy, where SO 
administration resulted in a significant reduction of AHI from 32.3 to 
13.2/hr [90]. However, in two other cases of narcolepsy with refractory 
cataplexy, SO use was associated with the occurrence of severe OSA, 
requiring CPAP therapy, in order to avoid discontinuation of SO [87].

In a case study involving patients with OSA, the acute effects of SO on 
sleep-disordered breathing were investigated. The administration of 9g/ 
night sodium oxybate did not worsen OSA, but changes in central apnea 
and significant oxygen desaturations were observed in some patients, 
suggesting potential adverse effects on breathing [91]. However, the 
duration of desaturations was brief and clinically insignificant in most 
cases. Two additional investigations did not confirm the acute and 
deleterious effects of short-term use of 4.5g/night SO on patients with 
OSA concerning AHI and oxygen saturation [92,93]. Remarkably, the 
use of high doses of SO in OSA has not been extensively studied and 
warrants caution. It is emphasized that if a narcoleptic patient with 
comorbid sleep apnea or heart disease requires SO, administration 
should be conducted under polysomnographic control to monitor po
tential effects on sleep-disordered breathing.

In an adult patient with comorbid NT1, OSA and REM sleep behavior 
disorder (RBD) with concomitant onset, SO exerted an effect on muscle 
activity during REM sleep, improving RBD symptoms. However, SO also 
provoked and increase in the periodic limb movement (PLM) index and 
in nocturnal moaning when the patient was not using CPAP [94]. A 
favorable effect of SO was also described in both idiopathic [95] and 
Parkinson disease related [96] RBD. In contrast with these reports, a 
long-term study on 23 patients with NT1 treated with SO described 2 
cases of RBD, possibly induced by the medication at a dose of 4.5g [97] 
indicating that the effect of SO is controversial also on RBD.

A beneficial effect of SO on OSA could be mediated by its favorable 
effect on the body mass index BMI. In patients with NT1, SO was 
consistently determining a weight decreases from obese to overweight 
or normal weight, and from overweight to normal weight, both in pe
diatric [98–100] and adult [101] populations. An increased lipolysis was 
advocated as the SO mechanism of action in this respect [102].

6. Discussion

The prevalence of OSA in patients affected by NT1 range between 
24.8 % and 51.4 %, compared to a a range between 10 and 30 % in 
general population. These results corroborate the hypothesis that NT1 
increase the risk to develop OSA, although the literature data are not 
conclusive, considering the relatively small sample size of the studies, 
the heterogeneity in diagnosis, assessment, and severity of OSA.

More in details, the studies included in the present review had some 
limitations: the AHI threshold to diagnose OSA was of 5/h32,33,36, 10/ 
h30, 15/h31 or 1/h37, and it was not explicit in three studies [29,34,35]. 
Four studies [29–32] had a retrospective design, while a prospective 
longitudinal one would have been optimal. Notwithstanding the limits 
of these review, we recommend to screen OSA in patients with NT1, over 
time, since the risk increase with aging, also taking into account the 
multiple cardiovascular risks in relation to comorbid obesity and to 
chronic treatment with stimulants.

In addition, literature data on comorbid OSA and narcolepsy in 
children are scarce, and it is not possible to have any conclusive results.

In any case, this association could be underpinned by the role of 
orexin in hypercapnic-hypoxic responses. The deficiency in orexin is 
supposed to contribute to the manifestation of obstructive events during 
sleep. Likewise, the prevalent coexistence of obesity in both OSA and 
NT1 implies a plausible connection. Although obesity may offer a partial 
explanation for this association, unresolved questions demand further 
exploration. In the context of NT1, the pronounced correlation with OSA 
might be elucidated by the active participation of orexin in the 
hypercapnic-hypoxic response, with its deficiency potentially 
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contributing to obstructive events during sleep. In contrast, the associ
ation between OSA and narcolepsy type 2 is less clearly delineated.

There is limited information available regarding the efficacy of 
stimulants in patients with narcolepsy who either have comorbid OSA or 
residual EDS after OSA treatment. These gaps in knowledge necessitate 
further exploration. In adult patients diagnosed with OSA and EDS, or 
those experiencing persistent EDS despite receiving appropriate CPAP 
therapy, narcolepsy screening should be considered. The intricate 
overlap of symptoms emphasizes the significance of adopting a 
comprehensive and nuanced diagnostic approach. This involves a 
meticulous clinical evaluation and when warranted, additional testing 
to ensure accurate differentiation between these conditions. In the 
absence of established guidelines administering effective treatment for 
OSA is recommended before establishing a definitive diagnosis of nar
colepsy. Furthermore, if NT1 is suspected, assessing CSF orexin levels 
may offer benefits in situations where the results of the MSLT could 
potentially yield false negatives, particularly in patients with OSA, 
experiencing persistent EDS, and using medications that suppress REM 
sleep.
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Martínez P. Long-term follow-up on the effects of sodium oxybate on daytime 
sleepiness and sleep architecture in patients with narcolepsy type 1. Rev Neurol 
2023;76(2):35–40. https://doi.org/10.33588/rn.7602.2022315.

[98] Dauvilliers Y, Lammers GJ, Lecendreux M, et al. Effect of sodium oxybate on body 
mass index in pediatric patients with narcolepsy. J Clin Sleep Med 2024;20(3): 
445–54. https://doi.org/10.5664/jcsm.10912.

[99] Ponziani V, Pizza F, Zenesini C, Vignatelli L, Pession A, Plazzi G. BMI changes in 
pediatric type 1 narcolepsy under sodium oxybate treatment. Sleep 2021;44(7). 
https://doi.org/10.1093/sleep/zsaa295.

[100] Mignot E, Morse AM, Profant J, et al. Effects of sodium oxybate on body mass 
index in pediatric participants with narcolepsy. Pediatrics 2021;147(3_ 
MeetingAbstract):301–2. https://doi.org/10.1542/peds.147.3MA3.301.

[101] Schinkelshoek MS, Smolders IM, Donjacour CE, et al. Decreased body mass index 
during treatment with sodium oxybate in narcolepsy type 1. J Sleep Res 2019;28 
(3). https://doi.org/10.1111/jsr.12684.

[102] Donjacour CEHM, Aziz NA, Overeem S, Kalsbeek A, Pijl H, Lammers GJ. Glucose 
and fat metabolism in narcolepsy and the effect of sodium oxybate: a 
hyperinsulinemic-euglycemic clamp study. Sleep 2014;37(4):795–801. https:// 
doi.org/10.5665/sleep.3592.

S. Miano et al.                                                                                                                                                                                                                                   Sleep Medicine: X 8 (2024) 100126 

8 

https://doi.org/10.1093/sleep/4.1.105
https://doi.org/10.1016/j.sleep.2007.11.018
https://doi.org/10.1016/j.sleep.2007.11.018
https://doi.org/10.1007/s11325-009-0316-9
https://doi.org/10.1007/s11325-009-0316-9
https://doi.org/10.1016/j.sleep.2009.06.006
https://doi.org/10.1007/s11325-009-0320-0
https://doi.org/10.1164/ajrccm/145.6.1378
https://doi.org/10.1212/WNL.0000000000003389
https://doi.org/10.1212/WNL.0000000000003389
https://doi.org/10.1097/WNF.0b013e318193e394
https://doi.org/10.1097/WNF.0b013e318193e394
https://doi.org/10.1001/jamaneurol.2015.2904
https://doi.org/10.33588/rn.7602.2022315
https://doi.org/10.5664/jcsm.10912
https://doi.org/10.1093/sleep/zsaa295
https://doi.org/10.1542/peds.147.3MA3.301
https://doi.org/10.1111/jsr.12684
https://doi.org/10.5665/sleep.3592
https://doi.org/10.5665/sleep.3592

	Comorbidity of obstructive sleep apnea and narcolepsy: A challenging diagnosis and complex management
	1 Introduction
	2 Prevalence
	3 Pathogenesis
	4 Treatment of EDS in narcolepsy with comorbid OSA
	5 The controversial respiratory effect of sodium oxybate for treatment of NT1
	6 Discussion
	Funding
	Institutional review board statement
	Informed consent statement
	CRediT authorship contribution statement
	Declaration of competing interest
	References


