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Abstract 

Background Homologous recombination deficiency (HRD) is recognized as a pan‑cancer predictive biomarker 
that potentially indicates who could benefit from treatment with PARP inhibitors (PARPi). Despite its clinical signifi‑
cance, HRD testing is highly complex. Here, we investigated in a proof‑of‑concept study whether Deep Learning (DL) 
can predict HRD status solely based on routine hematoxylin & eosin (H&E) histology images across nine different 
cancer types.

Methods We developed a deep learning pipeline with attention‑weighted multiple instance learning (attMIL) to pre‑
dict HRD status from histology images. As part of our approach, we calculated a genomic scar HRD score by combin‑
ing loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large‑scale state transitions (LST) from whole 
genome sequencing (WGS) data of n = 5209 patients across two independent cohorts. The model’s effectiveness 
was evaluated using the area under the receiver operating characteristic curve (AUROC), focusing on its accuracy 
in predicting genomic HRD against a clinically recognized cutoff value.

Results Our study demonstrated the predictability of genomic HRD status in endometrial, pancreatic, and lung 
cancers reaching cross‑validated AUROCs of 0.79, 0.58, and 0.66, respectively. These predictions generalized well 
to an external cohort, with AUROCs of 0.93, 0.81, and 0.73. Moreover, a breast cancer‑trained image‑based HRD clas‑
sifier yielded an AUROC of 0.78 in the internal validation cohort and was able to predict HRD in endometrial, pros‑
tate, and pancreatic cancer with AUROCs of 0.87, 0.84, and 0.67, indicating that a shared HRD‑like phenotype occurs 
across these tumor entities.

Conclusions This study establishes that HRD can be directly predicted from H&E slides using attMIL, demonstrating 
its applicability across nine different tumor types.
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Background
Homologous recombination (HR) is a DNA repair mech-
anism that ensures genomic integrity after DNA dou-
ble-strand breaks (DSBs), a common occurrence during 
the cell cycle [1]. The lack of this process, referred to as 
homologous recombination deficiency (HRD), results in 
defective DNA break repair leading to increased somatic 
copy number alterations and genomic instability, thereby 
driving malignant transformation and cancer develop-
ment [2]. According to the genomic definition of HRD, its 
prevalence varies among different tumor types, ranging 
from 0% in thymoma or thyroid cancer to as high as 70% 
in ovarian cancer [3]. Within the biological and clinical 
context of HRD, poly(ADP-ribose)-polymerase (PARP) 
plays an essential role in repairing single-strand DNA 
breaks (SSDBs) via base excision repair and by acting as 
a key compensatory mechanism within this process [4]. 
Under proficient HR conditions, PARP inhibition leads 
to the accumulation of unrepaired SSDBs, which subse-
quently convert into DSBs. HR can repair these DSBs, 
thus preserving genomic integrity and cell viability. Con-
versely, in HRD tumors, PARP inhibition induces DSBs 
that remain unrepaired, resulting in direct cytotoxicity. 
This interplay is the basis of synthetic lethality, elicit-
ing the importance of HRD as a biomarker that can aid 
in identifying patients who might benefit from PARP 
inhibitor (PARPi) therapy across several tumor types, 
such as breast, ovarian, prostate, and pancreatic cancers 
[5–8]. Moreover, clinical trials have underscored the sig-
nificance of PARPi in improving disease-free survival by 
increasing platinum sensitivity, notably in ovarian and 
breast cancer, as well as in other tumor types [4, 9, 10]. 
Nevertheless, the benefits of PARPi therapy are signifi-
cantly constrained by the challenges in diagnosing HRD, 
given the diverse and varying comprehensiveness of the 
current HRD assessment strategies.

These assessments can be broadly categorized into 
three main groups: genetic, genomic, and functional 
testing (Fig. 1A). Among these, genetic HRD tests pri-
marily focus on identifying oncogenic germline muta-
tions in the Breast Cancer genes 1 and 2 (BRCA1/2), 
which are commonly observed in breast, prostate, and 
pancreatic cancer [11, 12]. At the same time, relying 
solely on BRCA1/2-related mutations to diagnose HRD 
risks overlooking cases [13], particularly because HRD 
can also arise from other mechanisms, such as epige-
netic modifications, as well as germline and somatic 
mutations in genes associated with or outside the HRR 

pathway [14]. For instance, in ovarian cancer, up to 10% 
of patients demonstrate HRD without BRCA1/2 muta-
tions [15]. Another key indicator of HRD is genomic 
instability, which is evident via patterns in structural 
variants such as loss of heterozygosity (LOH), telomeric 
allelic imbalance (TAI), and large-scale state transitions 
(LST) [11, 16]. When these alterations are widespread 
across the genome, they contribute to a quantifiable 
genomic instability score (GIS) [13, 17]. Genomic HRD 
tests harness whole genome sequencing and single 
nucleotide polymorphism (SNP) array data to iden-
tify LOH, TAI, and LST markers and have proven to 
be effective in predicting the benefits of PARPi ther-
apy in randomized clinical trials [18–20]. Biologically, 
this method provides a comprehensive assessment of 
genomic instability due to HRD. Hence, for this study, 
we mainly focused on the genomic HRD test (Fig. 1A). 
However, due to its complexity, GIS has yet to be 
implemented in routine diagnostics in clinical work-
flows [12, 13, 21]. Therefore, the gold standard for iden-
tifying what is known as the genomic “scar” of HRD, 
currently comprises the combination of different algo-
rithms such as scarHRD, HRDetect, and CHORD [22–
24]. It is important to mention that in addition to these 
genetic consequences, HRD can also result in func-
tional repercussions, which can be assessed through 
non-DNA-based functional tests, such as the RAD51 
focus formation assays [25–27]. The U.S. Food and 
Drug Administration (FDA) has approved HRD tests, 
like FoundationOne CDx (Foundation Medicine, Inc., 
Cambridge, MA) and myChoice CDx (Myriad Genetics 
Laboratories, Inc., Salt Lake City, UT), which utilize a 
combination of BRCA1/2 mutations and LOH or GIS 
for diagnostic results [11, 12, 28]. However, the absence 
of uniform pan-cancer cut-off values for categorizing 
HRD cases remains a challenge in HRD testing [29, 
30], often leading to suboptimal patient classification. 
This underscores the need for more clinical research 
to define cancer-specific HRD cut-offs. Within the 
last decade, the field of artificial intelligence (AI) has 
yielded powerful methods such as deep learning (DL), 
which allow features to be quantitatively extracted from 
whole slide images (WSIs). These DL tools have ena-
bled the detection of genetic alterations directly from 
histopathological image data [31–33]. Some examples 
include the prediction of phenotypic changes attrib-
uted to single mutations [34, 35], as well as DNA insta-
bility mechanisms such as microsatellite instability 
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(MSI), from routine histopathology WSIs stained with 
hematoxylin and eosin (H&E) [36, 37]. Today, several 
DL models have received regulatory approval and are 
available for diagnostic use in Europe and the USA 

[38]. Although previous studies have shown promis-
ing results in predicting HRD from WSI in cancers 
such as breast and ovarian, they have not investigated 
the extent to which HRD might be predictable as a 

Fig. 1 Experimental design and study overview. A Overview of the different Homologous Recombination Deficiency (HRD) scores, their content, 
and assessment methods. B Workflow of our deep learning (DL) pipeline. A total of n = 9517 whole slide images (WSI) were processed and trained 
with an attention‑based multiple instance learning (attMIL) approach. The statistical endpoint was the Area under the receiving operating curve 
(AUROC). C Study design for the three main experiments (internal fivefold cross‑validation, tumor‑wise external validation, and cross‑cancer 
external validation) conducted and cohort overview for patients and tumor types included from The Cancer Genome Atlas (TCGA, n = 4113 
patients) and Clinical Proteomic Tumor Analysis Consortium (CPTAC, n = 452 patients). Abbreviations: BRCA, breast invasive carcinoma; CRC, 
colorectal cancer; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous 
cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; HRR, 
Homologous recombination repair. This figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative 
Commons Attribution 3.0 unported licence
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pan-cancer biomarker in multiple cancer types [39, 40]. 
For this reason, we propose that tumor phenotypes, 
visible in histological WSIs, may also indicate genomic 
HRD status, which can be identified using DL models.

In this study, we developed a proof-of-concept DL 
model based on “attention-based Multiple Instance 
Learning” (attMIL) and weakly supervised training using 
no spatial labels or manual annotations [33], for the pre-
diction of HRD status directly from H&E WSIs. HRD 
ground truth was obtained through the use of scarHRD, 
a comprehensive method which assesses a variety of 
genomic changes [3, 22] in order to calculate an HRD 
score (Fig. 1B), as well as a widely recognized clinical cut-
off point as our benchmark to address the complex and 
somewhat discordant landscape of current HRD testing 
[3, 41]. We then trained and evaluated the DL classifi-
ers via cross-validation within a large cohort of n = 3881 
patients from The Cancer Genome Atlas (TCGA), across 
nine different types of solid tumors. The models were 
then externally validated with an independent valida-
tion dataset (n = 452) in a tumor-wise and cross-cancer 
experimental approach (Fig. 1C) among four various can-
cer types. Taken together, our experimental results pro-
vide direct evidence that genomic HRD can be detected 
with DL from routine histology across different tumor 
types. This method may offer a new diagnostic approach 
that meets the clinical need for a cost-effective, rapid, and 
universally applicable HRD test, improving patient strati-
fication and treatment options.

Methods
Data acquisition
Initially, data from 4735 patients for nine tumor types 
within The Cancer Genome Atlas (TCGA), and 474 
patients from four tumor types from the Clinical Prot-
eomic Tumor Analysis Consortium (CPTAC; Fig.  1C) 
were retrieved through https:// www. cbiop ortal. org/. 
The tumor types included in this study were breast can-
cer (TCGA-BRCA, n = 1058), colorectal cancer (TCGA-
CRC, n = 580), hepatocellular carcinoma (TCGA-LIHC, 
n = 364), lung adenocarcinoma (TCGA-LUAD, n = 536, 
CPTAC-LUAD, n = 111), lung squamous cell carcinoma 
(TCGA-LUSC, n = 497; CPTAC-LUSC, n = 109), ovarian 
serous cystadenocarcinoma (TCGA-OV, n = 520), pan-
creatic adenocarcinoma (TCGA-PAAD, n = 177; CPTAC-
PAAD, n = 153), prostate adenocarcinoma (TCGA-PRAD, 
n = 488), and uterine corpus endometrial carcinoma 
(TCGA-UCEC, n = 515; CPTAC-UCEC, n = 101; Addi-
tional File 1: Fig. 1A, B). Image data and corresponding 
clinical data were available in TCGA-BRCA for n = 1005, 
TCGA-CRC for n = 496, TCGA-LIHC for n = 348, 
TCGA-LUAD for n = 460, CPTAC-LUAD for n = 106, 
TCGA-LUSC for n = 451, CPTAC-LUSC for n = 108, 

TCGA-OV for = 90, TCGA-PAAD for n = 173, CPTAC-
PAAD for n = 139, TCGA-PRAD for n = 391, TCGA-
UCEC for n = 467, and CPTAC-UCEC for n = 99, thus 
resulting in a total n = 4333 (TCGA n = 3881, CPTAC 
n = 452, Fig.  1C, Additional File 1: Fig.  1A, B) patients. 
Data from TCGA-BRCA corresponding to Riaz et  al.’s 
study [42], was retrieved for additional experiments on 
BRCA1/2 mutational status. Estrogen receptor data for 
the subgroup analysis were available only for n = 661 
patients in the TCGA-BRCA cohort.

Image preprocessing
Formalin-fixed, paraffin-embedded (FFPE) tissue slides 
were downloaded for the TCGA cohorts from the GDC 
Portal (https:// portal. gdc. cancer. gov/), and frozen tis-
sue slides for the CPTAC cohort from The Cancer Imag-
ing Archive (https:// www. cance rimag ingar chive. net/). 
Images were first tessellated into patches with an edge 
length of 256  µm and a resolution of 224 × 224 pixels. 
Secondly, the patches for each cohort were color nor-
malized using the Macenko spectral matching technique 
[43] to enforce a standardized color distribution across 
the cohorts. Prediction models were trained using our 
in-house open-source DL pipeline “marugoto,” accessible 
at https:// github. com/ Kathe rLab/ marug oto. The pipe-
line consists of a self-supervised learning (SSL) model, 
leveraging ResNet50, a deep convolutional neural net-
work pretrained with ImageNet weights and fine-tuned 
on a pan-cancer dataset of approximately 32,000 WSIs. 
The model extracts a 2048-dimensional feature vector 
for each patch per patient [44]. To obtain patient-level 
predictions, 512 × 2048 feature matrices, referred to 
as MIL bags, were constructed. This is done by concat-
enating 512 feature vectors randomly selected for each 
patient. These matrices were fed into an attMIL frame-
work with the following architectures: 512 × 256 and 
256 × 2 (Fig. 1B) [45, 46]. To ensure the robustness of our 
findings, we also performed the same experiments using 
another pretrained vision transformers encoder called 
UNI [47], https:// github. com/ mahmo odlab/ UNI), fol-
lowed by a transformer-based multi-head self-attention 
DL-model as previously already published [48] under: 
https:// github. com/ Kathe rLab/ marug oto/ tree/ trans for-
mer. We refer to this second method as the transformer-
based DL model. The transformer-based DL-model was 
trained under the same conditions to allow for a compar-
ison of results.

Calculation of HRD scores
For patient-wise calculation of a genomic HRD score, 
single nucleotide polymorphism (SNP) data, generated 
by the allele-specific copy number analysis of tumors 
(ASCAT) algorithm were downloaded from the Genomic 

https://www.cbioportal.org/
https://portal.gdc.cancer.gov/
https://www.cancerimagingarchive.net/
https://github.com/KatherLab/marugoto
https://github.com/mahmoodlab/UNI
https://github.com/KatherLab/marugoto/tree/transformer
https://github.com/KatherLab/marugoto/tree/transformer
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Data Commons (GDC) Portal: https:// portal. gdc. can-
cer. gov/ (accessed 06/15/2022) for all cohorts. The HRD 
score was calculated using scarHRD (https:// github. 
com/ sztup/ scarH RD), as described in previous studies 
[3, 22]. ScarHRD determines HRD using whole genome 
sequencing data in the form of SNP arrays to calculate 
the three subscores LOH, LST, and TAI. The sum of these 
subscores composes the patient-wise HRD score (Fig. 1A) 
[49]. The cut-off values for the different subscores were 
previously defined by Abkevich et  al. for LOH, Popova 
et al. for LST, and Birkbak et al. for TAI [18–20]. By sum-
ming up the LOH, LST, and TAI scores, patients can be 
binarized into HRD high (HRD-H) and HRD low (HRD-
L) groups at a cut-off of 42, which has been also used in 
other studies and clinical trials [3, 30, 41, 50], as well as 
in our analysis. For CPTAC, the respective data were 
only available for the CPTAC-3 cohort (Additional File 1: 
Fig. 1A, B).

Experimental design
In our study, we performed three main experiments 
(Fig.  1B). To assess the baseline predictability of HRD 
from routine histology, we first trained a classifier using 
five-fold-cross-validation within each of the nine tumor 
entities mentioned above in the TCGA cohorts (inter-
nal validation). This was achieved by randomly splitting 
each cohort at the patient level, creating non-overlap-
ping training and test sets for model training. The split-
ting ratio was 60:20:20 for the training, validation, and 
test splits in all the experiments. Internal validation was 
performed in a fivefold cross-validated design, so that no 
data leakage from the training to the test set occurred. 
This process was repeated individually for each cancer 
type in the TCGA cohorts. A weighted cross-entropy loss 
function was used to assist the model with the imbal-
anced dataset. Secondly, we deployed the five-fold-cross 
models trained in the first experiments on the same 
tumor type from the CPTAC cohorts as an external vali-
dation. By utilizing this approach, we circumvented any 
potential claims of selecting the model with the highest 
AUROC in the external validation. Finally, we trained 
an HRD classifier on the TCGA-BRCA cohort, which 
had the highest number of patients, and deployed it on 
all other TCGA cohorts (CRC, LIHC, LUAD, LUSC, 
PRAD, PAAD, OV, UCEC) as well as on all CPTAC 
cohorts (LUAD, LUSC, PAAD, UCEC). In our study, we 
aimed to evaluate the performance of the models using 
the AUROC, which is commonly used for assessing the 
accuracy of binary classification tasks. Our primary 
statistical endpoint was the AUROC ± 95% confidence 
interval (CI) and Area under the precision-recall curve 
(AUPRC; Additional File 2: Table 1). To further assess the 
performance of each model, we used a two-sided t-test 

to compare the patient-level prediction scores between 
the HRD-H and HRD-L patient groups as defined by the 
ground truth and reported the p-values, assuming a sig-
nificance level of < 0.05 as statistically significant, with-
out correction for multiple testing (Additional File 2: 
Table 1). As a final step to obtain a more in-depth under-
standing of the TCGA-BRCA cohort, we uploaded our 
custom HRD-H and HRD-L ground truths and predicted 
subgroups in cBioPortal to examine the characteristics 
of these patients in the TCGA-BRCA PanCancer Atlas 
cohorts.

Explainability
To visualize our model’s output, we created high-res-
olution heatmaps displaying the spatial distribution of 
the attention and prediction scores on the original WSI. 
We extracted the image feature vectors for 32 × 32 pix-
els from the WSI using the RetCCL convolutional neural 
network. Attention and classification scores were calcu-
lated for each image region and normalized across the 
patient cohort. Based on these scores, color heatmaps 
were generated for each patient. Red color indicates 
high attention or a positive classification and blue color 
indicates low attention or a negative classification. To 
ensure the interpretability of the underlying morphology 
alongside with the attention and classification scores, we 
reconstructed the final attention and classification heat-
maps separately by blending the raw color heatmaps with 
the image features. This approach allows us to interpret 
the output of our model in a way that is easy to under-
stand and provides insight into the underlying morphol-
ogy of the tumor.

Results
HRD is predictable from histology with attmil
First, we investigated whether DL could predict HRD sta-
tus from H&E-stained slides within nine different cancer 
types from the TCGA cohort. We used cross-validation 
on the patient level to train and test an attMIL-based 
DL model within each cohort. According to our data-
set, the incidence of HRD ranged from 3% in PRAD and 
up to 63% in OV (Additional File 1: Fig. 1C). We found 
that in five out of the nine cancer types, the mean pre-
diction AUROC was above 0.6, and the 95% CI of the 
fold-wise HRD prediction AUROCs remained above 
the null hypothesis of 0.5. Among these, HRD predic-
tion reached statistical significance, with a p-value below 
0.05 for three cancer types: UCEC (AUROC 0.79 ± 0.04, 
p = 0.0008), BRCA (AUROC 0.78 ± 0.02, p < 0.0001) 
and LUAD (AUROC 0.66 ± 0.05, p = 0.02; Fig.  2A). The 
AUPRC values are reported in Additional File 2: Table 1. 
The prediction of HRD was not possible in LUSC, LIHC, 
as their AUROCs did not exceed the baseline (0.55 ± 0.04, 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://github.com/sztup/scarHRD
https://github.com/sztup/scarHRD
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0.56 ± 0.14) (Additional File 3: Fig. 2 A–I, Additional File 
2: Table 1). For the tumor types PAAD, OV, and PRAD, 
the AUROCs ranged from 0.58 ± 0.22 to 0.6 ± 0.09 to 
0.76 ± 0.22. Taken together, these data demonstrate that 
DL can predict HRD status from histology images alone 
for several tumor types.

HRD is predictable from H&E staining with attmil 
in an independent test set
A key part of successfully developing deep learning 
models is to externally validate them using WSIs from 
patient cohorts that are completely separate from 
the training set [51]. Hence, for our external valida-
tion experiments, we deployed the models obtained 

from the cross-validation training on TCGA to ana-
lyze cohorts from the CPTAC dataset corresponding 
to the same cancer type. External validation cohorts 
in CPTAC were available for UCEC, PAAD, LUAD, 
and LUSC. In these external validation experiments, 
the prediction performance was better than that in the 
internal validation experiments. Once again, the best 
performance was obtained in UCEC, with an AUROC 
of 0.93 ± 0.07, p = 0.01. In LUAD the performance 
improved, yielding an AUROC of 0.73 ± 0.11 and a sig-
nificant p-value of 0.03. In the case of PAAD, where the 
internal validation was unsuccessful (internal validation 
AUROC 0.58 ± 0.22), the external validation resulted in 
an improved AUROC reaching 0.81 ± 0.14, albeit with 

Fig. 2 Comparison of the area under the receiving operating curve (AUROC) for internal and tumor‑wise external validation experiment models. 
Boxplot displaying the distribution of the AUROC and p‑value (*p > 0.05; **p ≤ 0.05; ***p ≤ 0.01) for A internal fivefold cross‑validation experiment 
of The Cancer Genome Atlas (TCGA) and tumor‑wise external validation on the Clinical Proteomic Tumor Analysis Consortium (CPTAC); B AUROCs 
for the cross‑cancer external validation experiment of the TCGA breast invasive carcinoma cohort (TCGA‑BRCA) on the TCGA and CPTAC cohort. The 
horizontal line indicates the median, whereas each box represents the interquartile range (IQR) between the first and third quartiles. The whiskers 
extend from the box to the minimum and maximum values, considering 1.5 times the IQR. Abbreviations: BRCA, breast invasive carcinoma; CRC, 
colorectal cancer; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous 
cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; UCEC, uterine corpus endometrial carcinoma



Page 7 of 14Loeffler et al. BMC Biology          (2024) 22:225  

a p-value of 0.07. Meanwhile, in LUSC, no improve-
ment in performance was observed in the external 
validation set compared to the internal training set 
(AUROC 0.57 ± 0.01, p = 0.23, Fig. 2A, Additional File 3: 
Fig.  2  J–M). Together, these data show that DL-based 
classifiers for genomic HRD status generalize beyond 
the training cohort.

HRD classifier trained on TCGA‑BRCA detects HRD 
across various types of cancer
As our next step, we aimed to investigate whether 
HRD-related morphological features within a specific 
cancer type are able to predict HRD status in another 
cancer type. Thus, providing insight as to whether a 
shared set of morphological features across diverse 
cancer types could potentially allow a pan-cancer 
pathology-based prediction system for HRD status. To 
test this hypothesis, we applied our trained HRD clas-
sifiers in a cross-cancer experimental design. The HRD 
classification model was trained with the TCGA-BRCA 
cohort and deployed on all other cohorts obtained 
from the TCGA and CPTAC datasets. Surprisingly, 
the BRCA-based model was able to significantly pre-
dict genomic HRD from non-BRCA tissue in UCEC, 
PRAD, CRC, and LUAD. For three of those cohorts, the 
external deployment of a BRCA-based model resulted 
in higher prediction AUROCs than did the respec-
tive internal validation experiments, with AUROCs 
of 0.70 ± 0.02, p < 0.001 in TCGA-UCEC; 0.84 ± 0.07, 
p = 0.004 in TCGA-PRAD, 0.65 ± 0.03, p = 0.04 in 
TCGA-CRC and 0.87 ± 0.1, p = 0.05 in CPTAC-UCEC, 
respectively (Fig. 2B). For LUAD and OV, the AUROCs 
remained with 0.62 ± 0.03 for TCGA-LUAD, 0.66 ± 0.06 
for CPTAC-LUAD and 0.61 ± 0.03 in TCGA-OV in a 
similar range to the internal validation results (Addi-
tional File 4: Fig. 3A–L). Together, these data show that 
a classifier trained on BRCA is able to predict HRD sta-
tus from histology in other tumor types, suggesting a 
shared “HRD morphology.”

To benchmark our results, we compared the perfor-
mance of our attMIL with a transformer-based approach. 
In the internal cross-validation, the attMIL approach 
outperformed the transformer-based DL model in five 
out of nine experiments. In the tumor-wise external vali-
dation analysis the attMIL performed better in two out 
of four experiments. In the cross-cancer approach, the 
transformer-based approach outperformed the attMIL in 
six out of thirteen experiments. In summary, the trans-
former-based DL model yielded similar AUROCs com-
pared to the attMIL approach, confirming the robustness 
of our initial findings. Detailed results of this comparison 
are provided in Additional File 2: Table 1.

Molecular and histomorphological characterization 
of TCGA‑BRCA HRD‑H and HRD‑L patients
Finally, we investigated which molecular and morpholog-
ical patterns were associated with the ground truth and 
DL-predicted genomic HRD status. In order to acquire 
a detailed analysis, we used the TCGA-BRCA cohort as 
it was the largest one available. We observed that in the 
HRD-H subgroup, 45% of the patients were classified as 
basal-like breast cancers, 11% as HER2-enriched, 15% as 
Luminal A, and 26% as Luminal B. In contrast, only 7% 
of the cases in the HRD-L subgroup were basal-like, 7% 
were HER2-enriched, 64% were Luminal A, and 18% were 
Luminal B (Fig.  3A) [52]. Within our predicted groups, 
we observed a similar distribution among the BRCA sub-
types (Fig. 3B).

To confirm that our model predicts HRD based on the 
phenotypic differences between estrogen receptor-neg-
ative (ER −) and ER-positive (ER +) breast cancer sam-
ples, we calculated the receiving operating curve (ROC) 
and precision-recall curve (PRC) for the following sub-
groups: ER + /HER2 + , ER + /HER2 − , ER − /HER2 + , 
ER − /HER2 − achieving AUROCs of 0.66 ± 0.3, 0.8 ± 0.09, 
0.72 ± 0.43, and 0.62 ± 0.11 (Additional File 5: Fig. 4A–H) 
indicating HRD could be predicted detached from mor-
phological subtypes. Our analysis of the mutational land-
scape of both the HRD-H and HRD-L ground truths 
revealed that TP53 had the highest alteration frequency 
(67%) in the HRD-H ground truth group, which was 
significantly greater than in the HRD-L group (20%), 
following alterations in the large TTN (26% vs. 14%) 
gene. In contrast, the most enriched alterations in the 
HRD-L subgroup were observed for the genes PIK3CA 
(39%), CDH1 (16%), GATA3 (14%), and MAP3K1 (11%), 
whereas the prevalences of PIK3CA, CDH1, GATA3, 
and MAP3K1 in the HRD-H subgroup were 19%, 2%, 
6%, and 1%, respectively (Fig. 3C). For the HRD-H pre-
diction subgroup, alteration frequencies for TP53 were 
significantly higher at 77% (Fig.  3D). Such divergences 
were not as noticeable in the HRD-L prediction group. 
These findings imply alteration frequencies between the 
two subgroups differ consistently across both the ground 
truth and prediction data. Moreover, we compared 
the HRD-H prediction score to the alteration status of 
somatic and germline mutations in the BRCA1/2 genes, 
whereupon we saw that there was a significant differ-
ence between the mutant and wild-type cases for BRCA1 
germline and BRCA2 somatic mutations (Fig. 3E). Meth-
ylation data indicated that the HRD-H group had most 
of its methylation alterations in the N-shore portion 
of the BRCA1 promoter region, whereas those in the 
HRD-L group were mainly located in the S-shore por-
tion (Additional File 5: Fig.  4I). Lastly, we proceeded to 
investigate the histomorphological patterns associated 
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with the presence of HRD through whole slide predic-
tion heatmaps of the model trained on TCGA-UCEC and 
deployed on CPTAC-UCEC (Fig.  4A–C). Our findings 
revealed that high grade, fibrosis, hemorrhage, and lym-
phocytic infiltration are consistent features predictive of 
HRD across various tumor types, as shown in Fig. 4 for 
TCGA-BRCA and TCGA-UCEC, particularly in the top 
predicted HRD-H tiles for the top three patients in the 
internal cross-validation model. Fibrosis was observed 
in HRD-H cases, particularly in BRCA (Fig. 4D). Moreo-
ver, hemorrhagic necrosis especially adjacent to tumor 
tissue and tumor stroma was consistently observed as 
highly predictive areas in the true HRD-H cases across 

various cancer types and less seen in the HRD-L cases. 
(Additional File 6–8: Fig.  5–7). This is consistent with 
previously published findings where lymphocyte infiltra-
tion, fibrosis, and high tumor cell density are observed in 
HRD-H patients in BRCA [40]. In summary, these data 
show that known HRD morphology characteristics were 
found in our DL-based top predicted HRD-H patients.

Discussion
HRD has recently emerged as an important biomarker 
for targeted treatment in solid tumors [12, 53]. How-
ever, the assessment of HRD, although better defined for 
patients with gynecological tumors, remains challenging 

Fig. 3 Molecular characterization of The Cancer Genome Atlas breast cancer (TCGA‑BRCA) cohort. A Distribution of breast cancer subtypes 
for the homologous recombination deficiency high (HRD‑H) and low (HRD‑L) ground truth subgroups. B Distribution of the breast cancer subtypes 
for the HRD‑H and HRD‑L deep learning (DL) predicted subgroups. C Alteration frequency for several genes of the HRD‑H and HRD‑L ground truth 
subgroups. D Alteration frequency for several genes of the HRD‑H and HRD‑L within cohort internal results prediction subgroups. E Grouped 
boxplots comparing the homologous recombination deficiency high (HRD‑H) prediction scores with the mutational status (mutated = MUT, 
wildtype = WT) for the somatic and germline alterations of the BRCA1/2 genes. The central line represents the median value, while the box ranges 
between the first and third quartiles (IQR), and the whiskers extend to the lowest and highest values within 1.5 times the IQR. The y‑axis represents 
the deep learning (DL) HRD‑H prediction values. An independent t‑test was performed to calculate the p‑values (*p > 0.05; **p ≤ 0.05; ***p ≤ 0.01). 
This figure was created using https:// www. cbiop ortal. org/ [59, 60]

https://www.cbioportal.org/
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in clinical routine. This, in part, can be attributed to high 
costs, limited availability, and the lack of comparable 
HRD detection methods. In this context, a pan-cancer 
test for HRD by DL-based image analysis of histopathol-
ogy slides could be a useful pre-screening tool for the 
identification of HRD tumors, all the while reducing the 
load of genetic tests.

In this study, we demonstrated that DL can predict 
HRD status from histological WSIs across nine tumor 
types in within-cohort and external validation experi-
ments. Interestingly, our findings revealed that a BRCA-
based classifier could also detect HRD from H&E slides 
across diverse tumor entities. As expected, the HRD 
prediction was significantly lower in tumors with a low 
prevalence of HRD. Moreover, our classifier could also 
identify histomorphological characteristics such as 
hemorrhagic necrosis at tumor margins, lymphocyte 
infiltration, fibrosis, and high tumor cell density which 

are associated with HRD in BRCA [40]. Thus, validat-
ing the efficacy of our model. Nevertheless, despite hav-
ing trained our classifier solely on BRCA, its consistent 
identification of HRD-associated morphological pat-
terns across different tumor entities reiterates the value 
of our tool for broader applications. In contrast to pre-
vious studies, we have shown a pan-cancer DL-based 
prediction model consisting of a more comprehensive 
genomic HRD score calculated from LOH, TAI, and LST 
as ground truth directly from H&E tumor slides [39, 40].

Our morphological analysis revealed that UCEC or 
PAAD achieved better predictive results compared to 
LUSC or LIHC, a trend previously observed in pan-can-
cer studies [35, 54]. Tumors with a complex structure, 
such as adenocarcinomas, may be more morphologi-
cally susceptible to genetic alterations than solid tumors 
with a rather syncytial pattern. HRD-H tumors eventu-
ally barely resemble glandular tissue, which might be 

Fig. 4 Visualization of predicted homologous recombination deficiency high (HRD‑H) tumor samples. A Whole slide image (WSI) of an HRD‑H 
predicted patient (ID: C3L‑00358–21) from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) uterine corpus endometrial carcinoma 
(UCEC) cohort with magnification. B Attention heatmap for the same patient with magnification. C Classification Heatmap for the same patient 
with magnification. D Top predicted tiles for top three homologous recombination deficiency high (HRD‑H) patients in The Cancer Genome Atlas 
(TCGA) breast invasive carcinoma (BRCA). E Top predicted tiles for three HRD‑H patients in the CPTAC‑UCEC cohort
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their main distinctive feature and thus a potential expla-
nation for this constellation. Nevertheless, additional 
studies consisting of larger patient cohorts are needed 
to confirm these findings. Upon closer inspection of the 
TCGA-BRCA subgroups, it was revealed that predicted 
HRD-H is more common in triple-negative BRCA, which 
is known for its poor prognosis and resistance to conven-
tional chemotherapy. In line with their ground truths, the 
majority of those patients were predicted to be HRD-H 
by our classifier (Fig.  3A, B) [52]. Furthermore, clear 
molecular pathological differences were found in the two 
subgroups. Specifically, the HRD-H subgroup is charac-
terized by TP53 alterations, while the HRD-L subgroup 
has a higher frequency of PIK3CA alterations, suggest-
ing an interactive effect between the TP53 mutated cases 
and HRD-H patients [55, 56]. This is particularly true 
for BRCA1 mutated cancers, where HRD-H was pre-
dicted significantly better than in BRCA1 wildtype cases 
(Fig. 3E) [57].

Recently, the European Medicine Agency (EMA) and 
FDA granted the first approval of the use of PARPi ther-
apy for HRD-positive and BRCA -WT ovarian cancer 
patients based on the PAOLA-1 study [15, 41]. Clinical 
trials with promising interim data are also underway for 
other tumor entities and further approval is expected in 
the future. Despite the evident link between HRD and 
BRCA1/2 mutations, it is now well established that the 
total number of HRD-H patients significantly exceeds the 
total number of BRCA -mutated patients in various can-
cer types [24, 58]. Patients who fall into this diagnostic 
gap can be identified with comprehensive HRD testing, 
as proposed in our study. These approaches, including 
the AI-based screening methods we have applied here, 
can complement BRCA1/2 testing as a biomarker test 
for PARPi use. Driving diagnostic routines towards phe-
notype-based, rather than inconsistent molecular alter-
ation-based HRD detection methods, might extend our 
ability to identify patients who may benefit from PARPi, 
and potentially enroll them in clinical trials. Through this 
proof of concept study, we have demonstrated that an 
HRD morphology is indeed present across diverse tumor 
types and can be detected through histology slides, thus 
potentially serving as an HRD pan-cancer marker. Pro-
spective trials conducted in a two-step approach, where 
an AI-based HRD score can be evaluated for its use as 
a biomarker to guide treatment decisions, could poten-
tially lead to lower sequencing requirements and cost 
reduction.

Limitations
It is important to note that our study has its limitations. 
First, the sample sizes of our cohorts, particularly for the 
validation CPTAC dataset, were relatively small. This 

small sample size may affect the robustness and statistical 
power of our findings. Moreover, the variation in the dis-
tribution of HRD prevalences between tumor types can 
result in class imbalances. Although we applied weighing 
techniques during the model training process to address 
the effect of imbalanced datasets on the accuracy of our 
classifiers, this could still impact the statistical power of 
the results, as well as the generalisability of our models 
within a larger population. We observed higher AUROCs 
in the validation cohort, which may be attributed to 
the smaller size and higher class imbalance in the test 
set. Thus, reiterating the importance of utilizing larger 
patient cohorts as a requirement to validate our find-
ings. Furthermore, the quality of the data from the TCGA 
and CPTAC cohorts may vary, which can also poten-
tially impact the accuracy of our predictions. In order 
to implement this approach within a clinical routine set-
ting as a pre-screening tool, further analysis with differ-
ent DL models on larger datasets is necessary. Potential 
biases stemming from data variability and model limita-
tions should also be addressed in future research. Future 
studies should extend to populations from different eth-
nicities such as Asian and African populations, which 
are likely underrepresented in this study. Moreover, due 
to the unavailability of germline data, we had to limit 
our approach by focusing solely on the use of a genomic 
HRD score. Lastly, we were constrained to utilize a non-
cancer-specific binarization cut-off, since a consensus for 
clinically validated HRD cut-offs for each tumor type has 
yet to be developed.

Conclusions
Our findings provide evidence that DL has the potential 
to not only contribute to but also improve diagnostic 
HRD testing. This could potentially save time and costs 
as well as improve patient outcomes by identifying sub-
groups who may benefit from targeted therapy. Current 
clinical practices face challenging factors such as high 
cost, time consumption, lack of availability, and incon-
sistency in HRD status screening methods. These logis-
tic, analytic, and financial challenges contribute to the 
partial identification of cancer patients who may benefit 
from PARPi therapy and to the limited genetic testing, 
which is further compounded by the panoply of HRD sta-
tus assessment methods whose interassay concordance is 
limited. With the aid of AI, we have the opportunity to 
identify these subgroups and improve patient outcomes. 
The practical implications of our findings suggest that 
integrating AI-driven HRD testing into clinical decision-
making processes can enhance personalized medicine.
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Additional File 1: Figure 1. Homologous recombination deficiency 
prevalences across the cohorts. (A) Overview of the total patient count 
(n=573) in the CPTAC cohort before merging the image data with the 
molecular data and afterward. (B) Overview of the total patient count 
(n=5,155) in the TCGA cohort before merging the image data with 
the molecular data and afterward. (C) Distribution of the homologous 
recombination deficiency high (HRD‑H) and low (HRD‑L) patient number 
among the different tumor types of The Cancer Genome Atlas (TCGA) and 
Clinical Proteomic Tumor Analysis Consortium (CPTAC). Abbreviations: 
BRCA=breast invasive carcinoma; CRC=colorectal cancer; LIHC=liver 
hepatocellular carcinoma; LUAD=lung adenocarcinoma; LUSC=lung 
squamous cell carcinoma; OV=ovarian serous cystadenocarcinoma; 
PAAD=pancreatic adenocarcinoma; PRAD=prostate adenocarcinoma; 
UCEC=uterine corpus endometrial carcinoma.

Additional File 2: Table 1. Raw statistical results. All raw experimental 
results related to Figure 2, including receiving operating curve (ROC) 
with 95% confidence interval (CI), Precision‑Recall Curve (PRC) with 

95% confidence interval (CI), p‑values and Homologous recombination 
deficiency (HRD) high (HRD‑H) and HRD‑low (HRD‑L) patient numbers 
based on the ground truth, for internal 5‑fold cross‑validation on The 
Cancer Genome Atlas (TCGA) external validation on Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) for both attMIL and transformer‑
based approaches.. [Supplementary_Table_1_All_statistical_results.xlsx] 
in separate file.

Additional File 3: Figure 2. Receiving operating curve for the Internal 
Validation and tumor‑wise external validation. The Receiving operating 
curve (ROC) and p‑value (*p > 0.05; **p ≤ 0.05; ***p ≤ 0.01) are shown for 
the five‑fold internal cross‑validation experiments for each of the models 
in The Cancer Genome Atlas (TCGA) for the Homologous recombina‑
tion deficiency (HRD) binary score for (A) TCGA‑BRCA, (B) TCGA‑CRC, (C) 
TCGA‑LIHC, (D) TCGA‑LUAD, (E) TCGA‑LUSC, (F) TCGA‑PAAD, (G) TCGA‑
PRAD, (H) TCGA‑OV, (I) TCGA‑UCEC; Roc curves for the external validation 
on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) for each 
previously trained model for (J) CPTAC‑LUAD, (K) CPTAC‑LUSC, (L) CPTAC‑
PAAD, (M) CPTAC‑UCEC. Abbreviations: BRCA=breast invasive carcinoma; 
CRC=colorectal cancer; LIHC=liver hepatocellular carcinoma; LUAD=lung 
adenocarcinoma; LUSC=lung squamous cell carcinoma; OV=ovarian 
serous cystadenocarcinoma; PAAD=pancreatic adenocarcinoma; 
PRAD=prostate adenocarcinoma; UCEC=uterine corpus endometrial 
carcinoma.

Additional File 4: Figure 3. Receiving operating curve for the cross‑can‑
cer external validation. The Receiving operating curve (ROC) p‑value (*p > 
0.05; **p ≤ 0.05; ***p ≤ 0.01) are shown for the cross‑cancer external vali‑
dation experiments for each model trained on The Cancer Genome Atlas 
(TCGA) breast cancer (BRCA) cohort for the Homologous recombination 
deficiency (HRD) binary score on (A) TCGA‑CRC, (B) TCGA‑LIHC, (C) TCGA‑
LUAD, (D) CPTAC‑LUAD, (E) TCGA‑LUSC, (F) CPTAC‑LUSC, (G) TCGA‑OV, (H) 
TCGA‑PAAD, (I) CPTAC‑PAAD, (J) TCGA‑PRAD, (K) TCGA‑UCEC, (L) CPTAC‑
UCEC. Abbreviations: BRCA=breast invasive carcinoma; CRC=colorectal 
cancer; LIHC=liver hepatocellular carcinoma; LUAD=lung adenocar‑
cinoma; LUSC=lung squamous cell carcinoma; OV=ovarian serous 
cystadenocarcinoma; PAAD=pancreatic adenocarcinoma; PRAD=prostate 
adenocarcinoma; UCEC=uterine corpus endometrial carcinoma.

Additional File 5: Figure 4. Subgroup analysis and overview the BRCA1 
promotor methylations in TCGA‑BRCA. The Receiving operating curve 
(ROC) and Precision Recall curve (PRC) are shown for the five‑fold internal 
cross‑validation experiment for each of the models in The Cancer Genome 
Atlas ‑ breast cancer (TCGA‑BRCA) cohort for the Homologous recombina‑
tion deficiency (HRD) score. ROC curve is represented for the four different 
subgroups (A) estrogen receptor positive (ER+) and HER2+ (B) ER+ and 
HER2‑ (C) ER negative (ER‑) and HER2+ (D) ER‑ and HER2‑. The PRC curve 
is shown for (E) ER+/HER2+, (F) ER+/HER2‑, (G) ER‑/HER2+, (H) ER‑/HER2‑. 
(I) Sketched representation of the occurring promotor methylations 
(accessed with HM27 and HM450) in the BRCA1 gene for the ground truth 
Homologous recombination deficiency high (HRD‑H) and low (HRD‑L) 
subgroups.

Additional File 6: Figure 5. Morphological features of Homologous 
recombination deficiency in breast and endometrial cancer. Whole Slide 
Image (WSI) and classification heatmap (ground truth: Homologous 
recombination deficiency high (HRD‑H) and low (HRD‑L) and prediction: 
HRD‑H) with magnifications of two different regions. The model was 
trained on The cancer genome atlas (TCGA) breast invasive carcinoma 
(BRCA) cohort and deployed cross cancer wise. Top true positive predicted 
patients are shown for (A) TCGA‑BRCA, (B) Clinical Proteomic Tumor Analy‑
sis Consortium (CPTAC) uterine corpus endometrial carcinoma (UCEC) and 
(C) TCGA‑UCEC. 

 Additional File 7: Figure 6. Morphological features of Homologous 
recombination deficiency in pancreatic and prostate adenocarcinoma. 
Whole Slide Image (WSI) and classification heatmap (ground truth: 
Homologous recombination deficiency high (HRD‑H) and low (HRD‑L) 
and prediction: HRD‑H) with magnifications of two different regions. 
The model was trained on The cancer genome atlas (TCGA) breast 
invasive carcinoma (BRCA) cohort and deployed cross cancer wise. 
Top true positive predicted patients are shown for (A) TCGA pancreatic 

https://doi.org/10.1186/s12915-024-02022-9
https://doi.org/10.1186/s12915-024-02022-9
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adenocarcinoma (PAAD), (B) Clinical Proteomic Tumor Analysis Consor‑
tium (CPTAC) pancreatic adenocarcinoma (PAAD) and (C) TCGA prostate 
adenocarcinoma (PRAD).

Additional File 8: Figure 7. Comparison of Homologous recombination 
deficient and proficient tissue slides. Whole Slide Images (WSIs) compar‑
ing Homologous recombination deficient high (HRD‑H) and low (HRD‑L) 
patients in three different tumor types of The cancer genome atlas (TCGA). 
(A) TCGA. BRCA HRD‑H, (B) TCGA‑ BRCA HRD‑L, (C) TCGA ‑ UCEC HRD‑H, 
(D) TCGA‑UCEC HRD‑L, (E) TCGA‑PRAD HRD‑H, (F) TCGA‑PRAD HRD‑L. 
Abbreviation: breast invasive carcinoma (BRCA), uterine corpus endome‑
trial carcinoma (UCEC), prostate adenocarcinoma (PRAD).

Additional File 9: Table 2. Homologous recombination deficiency 
score Tables. Training data and calculated homologous recombination 
deficiency score (HRD) out of the three subscores loss of heterozygosity 
(LOH), telomeric allelic imbalance (TAI) and large‑scale state transitions 
(LST) available as continuous (HRDsum) and binary (HRD_Binary) target 
with a chosen cut‑off of HRD‑L=42 for patients of The Cancer Genome 
Atlas (TCGA, Sheet1) and Clinical Proteomic Tumor Analysis Consortium 
(CPTAC, Sheet2). 

Additional File 10: Table 3. Weblink for customized Homologous recom‑
bination deficiency (HRD) subgroups. Weblink for accessing the clinical 
and molecular characteristics in both the ground truth and prediction 
Homologous recombination Deficiency (HRD) subgroups at www.cbio‑
portal.org for The Cancer Genome Atlas breast cancer (TCGA‑BRCA) Pan 
Cancer Atlas 2018 study and the TCGA‑BRCA Firehose Legacy cohort.
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