
Xu et al. Chinese Medicine          (2024) 19:140  
https://doi.org/10.1186/s13020-024-01014-9

REVIEW

Applications of nanomaterials 
with enzyme‑like activity for the detection 
of phytochemicals and hazardous substances 
in plant samples
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Abstract 

Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing 
methods to ensure their safety and quantify their active components are of significant importance. Recently, nanoma‑
terials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including col‑
orimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances 
in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active 
ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings 
and challenges of the actual sample analysis were discussed.
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Background
Plants, such as Chinese herbal medicines (CHMs) and 
edible plants, play crucial roles in human life [1]. The bio-
active components in plants, namely phytochemicals, are 
important for human health and disease prevention. They 
usually have antioxidant capacity that protects cells from 
oxidative stress, as well as anti-inflammatory, antibacte-
rial, and anti-tumor activities to prevent diseases like 
cancer, inflammatory bowel disease, and metabolic syn-
drome [2–4]. To date, various analytical techniques have 
already been used to analyze phytochemicals, including 

high-performance liquid chromatography (HPLC), mass 
spectrometry (MS), capillary electrophoresis (CE), gas 
chromatography (GC) [5, 6], etc. Although these meth-
ods are accurate and sensitive, sample handling is sophis-
ticated with long analysis time and high cost. Thus, the 
development of novel, rapid, and selective approaches for 
the analysis of phytochemicals in plants and their extracts 
is of great importance for quick and on-site detection.

Furthermore, plants are frequently exposed to a vari-
ety of chemicals that are harmful to the human body, 
impacting their usability. For instance, inappropriate dis-
charge of industrial wastewater leads to the accumula-
tion of heavy metal ions in the soil, which will inevitably 
be absorbed by plants during planting. Excessive intake 
of heavy metal ions is prone to cause neurological dis-
orders, kidney and liver damage, cardiovascular disease, 
and cancer [7, 8]. Therefore, the Chinese Pharmacopoeia 
(2020 edition) has set limits for heavy metals in Chinese 
medicinal materials and tablets of plant species: arsenic 
(2  mg/kg), cadmium (1  mg/kg), copper (20  mg/kg) lead 
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(5  mg/kg), and mercury (0.2  mg/kg) [9]. In addition, 
organophosphorus pesticides (OPs) are widely used to 
protect plants from pests during cultivation, giving rise 
to the presence of excessive pesticide residues [10]. Once 
entering the human body, they irreversibly inhibit cho-
linesterase activity, posing a hazard to the cardiovascu-
lar, nervous, and respiratory systems [11]. In response, 
the Ministry of Agriculture and Rural Affairs of China 
has established the maximum residue limits (MRLs) of 
OPs in food. For example, apples’ MRLs of dichlorvos, 
glyphosate, and chlorpyrifos are 0.1, 0.5, and 1  mg/kg, 
respectively (GB 2763–2021) [12]. Furthermore, it should 
also be noted that plants may become contaminated by 
certain toxins during storage, such as mycotoxins. These 
toxins are highly carcinogenic and difficult to be com-
pletely removed during processing because of their ther-
mal stability [13]. The current analytical methods for 
detecting heavy metal ions, OPs, and mycotoxins, includ-
ing HPLC, GC–MS, atomic absorption spectrometry 
(AAS), inductively coupled plasma mass spectrometry 
(ICP-MS), and ultra-performance liquid chromatogra-
phy-tandem mass spectrometry (UPLC-MS/MS), require 
complex pretreatment and specialized operations [8, 10, 
14]. Therefore, there is a necessity to develop simple, effi-
cient, and sensitive methods to detect these hazardous 
substances in plants for on-site and rapid inspection.

Nanozymes are a type of nanomaterials that exhibit 
enzyme-like activities, including metals (Au, Ag, Pt, Pd, 
etc.), metal oxides (CeO2, Fe3O4, Mn3O4, CuO, etc.), 
carbon-based compounds (carbon nanotubes, graphitic 
carbon nitride, carbon dots, etc.), and other nanoma-
terials (e.g., metal–organic frameworks (MOFs), cova-
lent organic frameworks (COFs), metal sulfides, etc.) 
[15–17]. The enzyme-like activity of currently reported 
nanozymes can be mainly divided into two catego-
ries, oxidoreductase such as peroxidase (POD), oxidase 
(OXD), laccase (LAC), and superoxide dismutase (SOD), 
and hydrolase such as nuclease, esterase, phosphatase, 
and protease. Table 1 summarizes the functions of com-
monly reported nanozymes. Nanozymes have been 
widely used in the field of biomedicine, environmental 

monitoring, and food safety for their remarkable advan-
tages of high stability, low cost, controllable activity, and 
easy storage [18, 19]. Most significantly, the nanozyme-
based sensor offers the advantage of a shorter detection 
time that can fulfill the requirements of real-time detec-
tion [20–22]. For instance, Wang et al. [23] developed a 
manganese-based nanozyme that enabled rapid quanti-
tative analysis of glutathione within 1 min. Xu et al. [24] 
synthesized copper-cobalt bimetallic nanozymes and 
combined with a smartphone and hydrogel kit to achieve 
real-time monitoring of perfluorooctane sulfonate 
(PFOS) in lake water. The approach offers a simpler 
instrument and quicker build-up compared to traditional 
methods like HPLC. Herein, this review aims to sum-
marize recent advancements in applying nanomaterials 
with enzyme-like activity to detect phytochemicals and 
hazardous substances in plants (Fig. 1). Firstly, the appli-
cation of nanozymes for detecting active phytochemicals 
was introduced, including gallic acid, tannic acid, ascor-
bic acid, rutin, atropine, quercetin, astragaloside-IV, and 
licorice. Secondly, advancements in the utilization of 
nanozymes for detecting hazardous substances in plants 
were presented, such as organophosphorus pesticides, 
heavy metal ions, and mycotoxins. Finally, the challenges 
and prospects in nanozyme-based detection of plant 
samples were discussed. This paper may provide useful 
information for readers to understand the design, per-
formance, and application of nanozymes, to develop effi-
cient, rapid, highly sensitive, and selective methods for 
detecting target components in actual plant samples. 

Detection of phytochemicals
Phytochemicals are biologically active secondary metab-
olites produced by plants for self-protection, including 
carotenoids, polyphenols, alkaloids, saponins, and oth-
ers [25], which are obtainable from a variety of sources, 
such as herbs, vegetables, fruits, and teas [26]. Most of 
them exhibit potent antioxidant activity and contribute 
to reducing the risks of heart disease, cancer, diabetes, 
and other diseases [25, 27]. However, plants are intricate 
systems containing a multitude of substances, making it 

Table 1  Summary of functions of currently reported nanozymes

POD, peroxidase; OXD, oxidase; LAC, laccase; SOD, superoxide dismutase; TMB, 3, 3’, 5, 5’-tetramethylbenzidine

Activity Catalytic function Refs.

POD Catalyzing H2O2 to produce reactive oxygen species, and, subsequently, oxidizing the substrate (e.g., TMB) [29, 32, 35, 36, 42, 51]

OXD Activating O2 to yield reactive oxygen species, and then oxidizing the substrate (e.g., TMB) [28, 37, 38, 47]

LAC Oxidizing polyphenols and polyamines [39, 46, 145]

SOD Catalyzing the disproportionation of superoxide anion radical (O2
−) to H2O2 and O2 [143]

Phosphatase Hydrolyzing phosphate monoesters to remove the phosphate group from the substrate molecule, 
and generating phosphate ions and free hydroxyl groups

[124, 125, 128, 129]
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challenging to achieve specific analysis and identifica-
tion of the target phytochemicals. Table  2 summarizes 
some of the studies on the detection of phytochemicals in 
plants by nanozyme-based methods.

Direct detection
Gallic acid (GA) and tannic acid (TA) are a class of natu-
ral phenolic compounds widely found in fruits and teas 
with various biological activities, such as antioxidant, 
anticancer, anti-mutagenesis, and antiviral [28–31]. The 
nanomaterials with POD-like and OXD-like activities can 
catalyze the oxidation of the substrate 3, 3’, 5, 5’-tetra-
methylbenzidine (TMB) to generate blue oxidized TMB 
(ox-TMB) in the presence of H2O2 and O2, respectively. 
GA and TA can inhibit the oxidation of TMB due to their 
antioxidant property, realizing colorimetric detection 
of them. Besides, instead of complicated pretreatment, 

these active ingredients can be directly detected in the 
real samples through a simple water extraction. Perovs-
kite is a type of transition metal oxide, some of which pos-
sess splendid catalytic activity. Chen et al. [29] developed 
a simple colorimetric method to detect GA based on 
the POD-like activity of LaFeO3 microspheres, which is 
a typical perovskite, with a linear range of 0.67–40.8 µM 
and a limit of detection (LOD) of 0.4  µM. In addition, 
the established method was used in the determination 
of GA in diet tea, green tea, and pharyngitis tablets with 
good recoveries of 95.65–102.10% and RSD (n = 3) less 
than 4.00%. The activity of nanozymes plays a vital role 
in detecting phytochemicals, which can affect the detec-
tion sensitivity. Combining carbon-based materials with 
perovskite can enhance their catalytic performance. Liu 
et  al. [32] synthesized the heterojunctions composed of 
strontium titanate (SrTiO3) and reduced graphene oxide 

Fig. 1  Review of nanozymes-based detection of phytochemicals and hazardous substances in plants
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Table 2  Summary of detection of phytochemicals in plants based on nanozymes

Nanozyme/activity Analyte Method Sample LOD(µM) Linear range(µM) Refs.

Cu-Guo NRs/LAC Rutin Colorimetric Propolis, Rutin-
containing dietary 
supplement tablets, 
urine, and blood 
serum

0.114 0.77–54.46 [46]

CTF–1/OXD Rutin Chemiluminescence Tablets and Flos 
Sophorae 
Immaturus

0.015 0.03–0.25 [47]

Fe3O4@MOF/
Dextrin/POD

Atropine Fluorescence Datura stramonium 
and D. innoxia

2.27 μg/L 1–600 μg/L [40]

Fe3O4@Zn/Mg MOF/
POD

Atropine Chemiluminescence Datura stramonium 
and D. innoxia

0.02 μg/L 5–600 μg/L [48]

Iron oxide/POD Glycyrrhizic 
acid/liquiritin/
licochalcone A/
isolicoflavonol

Colorimetric sensor 
array

Glycyrrhiza uralensis – 1–200 [56]

Mb(CuII)-AuNPs/POD 
and PPO

Gallic acid Electrochemistry Black tea, grapes, 
and oranges

0.27 1–1000 [34]

LaFeO3/POD Gallic acid Colorimetric Green tea, diet tea, 
and pharyngitis 
tablets

0.4 0.67–40.8 [29]

N-Mn3O4 NSps/OXD Gallic acid Colorimetric Black tea and green 
tea

0.028 5–30 [28]

VB6/POD Gallic acid/H2O2 Colorimetric Oolong tea, black 
tea, and green tea/
Milk

4.1/12.1 10–50/50–600 [146]

CoOOH nanorings/
OXD

Gallic acid Colorimetric Green tea 0.025 0.25–20 [37]

CeO2/Co3O4@NCH/
POD

Quercetin/H2O2 Colorimetric Yinxingye 
Dispersible Tablets

1.19/86 7–22/400–1000 [42]

Cu-TA NSs/LAC Quercetin Colorimetric Green pepper, dill, 
and red onion

0.064 0.35–32.09 [39]

Ar-MoO3NPs/POD Quercetin/
resveratrol/
curcumin/gallic 
acid/ellagic acid

Fluorescence Apple, orange, 
and grape

12.22/61.89/38.89/21.5/16.25 2–232/2–270/39–
400/2–309/39–309

[44]

AuNCs-p-h/POD Tea polyphenols Colorimetric Huangshan 
Maofeng, Tongqin 
green tea, Sanxia 
Jianhao, and Lipton 
tea

0.01 0.01–10 [147]

Cu/CN/POD Tannic acid Colorimetric Green tea and Pu’er 
tea

0.03 0.09–3.2 [30]

SrTiO3-rGO/POD Tannic acid Colorimetric Green tea 
and Oolong tea

0.056 1–100 [32]

Fe-HHTP/POD Tannic acid Colorimetric Teas (Green tea 
and Pu’er tea) 
and red wines (La 
suerte and Great 
wall)

0.5 0.5–100 [31]

CuS HNCs/POD Tannic acid Colorimetric/ 
photothermal/RGB

Green tea, red tea, 
and Oolong tea

0.08/0.13/0.25 1–20/1–10/1–10 [35]

MnO2/GQD/OXD Gallic acid/tannic 
acid/ascorbic acid

Colorimetric Mango juice, lemon 
juice, and black tea

0.07/0.28/0.69 5–25/1–5/6–80 [38]
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(rGO), which facilitate photo-generated charge trans-
fer under ultraviolet irradiation, resulting in an excellent 
POD-like activity. It is noted that the affinity for TMB of 
SrTiO3-rGO composites is 19 times higher than that of 
natural horseradish peroxidase (HRP). Meanwhile, the 
colorimetric quantitative detection of TA shows a lower 
LOD of 0.056 µM, which has been successfully applied to 
detect TA in green tea and Oolong tea.

Atomic doping is also one of the methods to enhance 
enzyme-like activity. Furthermore, oxygen vacancies 
(OVs) are a kind of metal oxide defects, which are formed 
by the detachment of oxygen from the lattice of metal 
oxides in a specific external environment (e.g., high tem-
perature). OVs can provide rich active sites and high sur-
face energy to improve the catalytic activity of nanozymes 
[33]. Zhou et al. [28] prepared a raspberry-like nitrogen-
doped Mn3O4 nanospheres (N-Mn3O4 NSps) with OVs, 
which exhibited enhanced OXD-like activity (Fig.  2). 

The senor based on N-Mn3O4 NSps showed excellent 
reproducibility, stability, and interference resistance 
for detecting GA with a linear range of 5–30 µM and a 
lower LOD of 0.028 µM, which is feasible for the detec-
tion of GA both in green tea and black tea with the RSD 
(n = 5) within 3.27%. Furthermore, a platform based on 
the smartphone was implemented for GA detection with 
a LOD of 0.047 µM.

In addition, the electrochemical assay has also been 
exploited for the quantification of GA. Based on gold 
nanoparticles, Chen et al. [34] developed a peptide-modi-
fied dual mimetic enzyme sensor for the detection of GA. 
The construction mechanism relied on the active center 
of the methanobactin (Mb) structure that can capture 
Cu(II), resulting in the coordinated complex Mb(CuII) 
with polyphenol oxidase (PPO)- and POD-like activities. 
After the addition of GA, the sensor with surface-mod-
ified gold nanoparticles and Mb(CuII) exhibited a high 

Table 2  (continued)

Nanozyme/activity Analyte Method Sample LOD(µM) Linear range(µM) Refs.

Pd-Pt-Ru/POD Ascorbic acid/H2O2 Colorimetric Drinks, foods, 
and herbs 
(Cornus officinalis, 
Cynanchum 
otophyllum, 
Dioscorea bulbifera, 
and Eriobotryae 
Folium)

1.13/2790 2–12/5000–4 × 104 [36]

MIP@PDA/CuO NPs/
POD

Astragaloside-IV Colorimetric Huangqi Granules 
and Ganweikang 
Tablets

0.000991 mg/mL 0.000341–1.024 mg/
mL

[51]

POD, peroxidase; OXD, oxidase; LAC, laccase; PPO, polyphenol oxidase; NPs, nanoparticles; NSs, nanosheets; AuNPs, gold nanoparticles; N-Mn3O4 NSps, nitrogen-
doped Mn3O4 nanospheres; Ar-MoO3NPs, molybdenum trioxide nanoparticles by Argon cold plasma surface modification; Cu-Guo NRs, Cu-guanosine nanorods; 
Cu/CN, carbon nitride-supported Cu single-atom nanozymes; rGO, reduced graphene oxide; Fe-HHTP, Fe-2, 3, 6, 7, 10, 11-Hexahydroxytriphenylene; HNCs, hollow 
nanocages; GQD, graphene quantum dot; AuNCs-p-h, protein conjugated gold nanoclusters under heating conditions; NCH, N-doped hollow carbon microspheres; 
Cu-TA, Cu-tannic acid; Mb, methanobactin; CTF-1, covalent triazine framework; MOF, metal–organic framework; MIP, molecularly imprinted polymer; PDA, polymerized 
dopamine; VB6, vitamin B6

Fig. 2  Schematic diagram of detecting GA based on N-Mn3O4 NSs. Reprinted with permission from [28]
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oxidation peak with a peak potential of 0.79 ± 0.05 V. Sub-
sequently, the developed method was employed to detect 
GA in three real samples, including grapes, oranges, and 
black tea, with recoveries of 96.76–100.95% and RSD 
(n = 3) less than 5%.

To explore additional response mechanisms is an 
effective approach to improve the detection selectivity. 
The 2,3,6,7,10,11-Hexahydroxytriphenylene (HHTP) is 
a highly conjugated triol ester that can coordinate with 
a metal-based node to form two-dimensional porous 
expansion frameworks known as metal catecholates 
(M-CATs). Inspired by the structure of M-CATs, Wu 
et  al. [31] prepared a Fe-HHTP amorphous nanomate-
rial with POD-like activity through an one-step self-
assembly strategy. The colorimetric method based on 
Fe-HHTP can rapidly detect TA within the linear range 
of 0.5–100  µM with a LOD of 0.5  µM, which was suc-
cessfully used to measure TA content in tea and red wine 
samples. Remarkably, the inhibition of TA on the color 
reaction was resulted not only from its antioxidant abil-
ity but also from the formation of a Fe3+-TA complex. 
However, GA and AA still exhibited certain interference 
on the detection of TA. To further address this issue, Wu 
et  al. [35] developed a colorimetric/photothermal dual-
mode analysis method for TA detection based on the 
light-enhanced POD-like activity and high photothermal 
property of CuS hollow nanocages (CuS HNCs) (Fig. 3). 
TA inhibited the oxidation of TMB and effectively cap-
tured the thermal holes generated by CuS HNCs under 

NIR irradiation, which suppressed the reaction system’s 
photothermal effect. The established method exhibited 
better selectivity and higher interference resistance from 
GA and AA.

However, most of the above methods failed to iden-
tify GA or TA with absolute specificity because of the 
interference of other antioxidants in the samples. Alter-
natively, similar methods were applied to detect total 
antioxidant capacity (TAC) in the actual samples. He 
et  al. [36] designed a Pd–Pt-Ru nanozyme with good 
POD-like activity, which was used to detect ascorbic acid 
(AA) and H2O2 in the ranges of 2–12 µM and 5–40 mM 
with the LOD values of 1.13  µM and 2.79  mM, respec-
tively. The method was applied in the evaluation of 
TAC of drinks (iced tea and green tea), foods (orange, 
lemon, and tomato), and herbs (Cornus officinalis, Cyn-
anchum otophyllum, Dioscorea bulbifera, and Eriobot-
ryae Folium). The results demonstrate that orange and 
C. officinalis have a higher TAC. Based on the OXD-like 
activity of cobalt oxyhydroxide (CoOOH) nanorings, 
Zhang et  al. [37] developed a colorimetric sensor with 
smartphone assistance for the detection of antioxidants 
in green tea (Fig.  4). The detection mechanism is the 
decomposition of CoOOH nanorings into Co2+ after the 
addition of antioxidants, resulting in a decrease of cata-
lytic activity. The established method exhibited high sen-
sitivity with a LOD of 0.025 µM. Moreover, a smartphone 
can be used as a readout, and the content of total antioxi-
dants in green tea was measured to be 2.55 µM, which is 

Fig. 3  Schematic mechanism for dual-mode detection of TA based on the CuS HNC probe. Reprinted with permission from [35]
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close to the result of Folin’s method. Meanwhile, Murilo 
et  al. [38] synthesized the manganese dioxide/graphene 
quantum dot (MnO2/GQD) composites with excellent 
OXD-like activity, which was applied to detect the total 
antioxidants in fresh lemon juice, black tea, and mango 
juice, with recovery values of 95–105%. It is noteworthy 
that the system can differentiate different antioxidants by 
treating the obtained data through principal components 
analysis (PCA).

Detection after sample pretreatment
Some active ingredients, such as quercetin and rutin, are 
insoluble in water, so long-time alcohol extractions are 
needed. During the preparation of real samples, Davoodi-
Rad et al. [39] dried the vegetable samples at 60 °C for 4 h, 
then ground them into powder. A portion of the powder 
was mixed with methanol and stirred for 24 h, finally fol-
lowed by filtration, washing, and dilution. Additionally, 
several plants, like Datura stramonium, contain diverse 
components. Therefore, the detection of specific com-
ponents in them requires complex extraction processes. 
The preparation of Datura samples required drying and 
degreasing, which was first extracted with methanol and 
filtered, and then rotary evaporated to remove the sol-
vent. Following ultrasonication, the samples were further 
extracted twice with dichloromethane (DCM). This pro-
cess involved several separation steps, pH adjustments, 
and drying steps [40].

Quercetin, which is a type of naturally polyphenolic 
flavonoid compound, is one of the active ingredients in 
many frequently used CHMs and natural products, such 
as Ginkgo biloba, licorice, and onions. Quercetin has 
various properties, including antioxidant, anti-cancer, 
hypoglycemic, and liver-protective [41]. Cao et  al. [42] 
synthesized the CeO2/Co3O4@N-doped hollow car-
bon microspheres (CeO2/Co3O4@NCH) through a self-
template method, which exhibited excellent POD-like 
activity due to its larger surface area, pore-like structure, 
and OVs. Based on the reduction property of querce-
tin, a facile, fast, and cheap sensor was established to 
detect it with a linear range of 7–22  µM and a LOD of 
1.19  µM. In addition, the sensor was applied to ana-
lyze quercetin in Yinxingye Dispersible Tablets, show-
ing satisfactory recoveries. Moreover, some nanozymes 
based on LAC-like activity have also been developed for 
the quantitative analysis of quercetin. LAC is a copper-
containing polyphenol oxidase that catalyzes polyphe-
nols and polyamines to produce colored ortho-quinone 
[39, 43]. Davoodi-Rad et al. [39] synthesized the Cu-TA 
nanosheets (Cu-TA NSs) with LAC-like activity to detect 
quercetin in treated vegetable samples. Firstly, Cu-TA 
NSs can oxidize quercetin to generate ortho-quinone. 
Additionally, the addition of the surfactant cetyltrimeth-
ylammonium bromide (CTAB) reacted with quercetin 
by supramolecular interaction, further promoting the 
oxidation of quercetin. The developed method showed 
good selectivity to detect quercetin with a lower LOD of 

Fig. 4  Schematic diagram of detecting antioxidants based on CoOOH nanoring. Reprinted with permission from [37]
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0.064 µM. Then, it was used to detect the quercetin con-
tent in red onion, green pepper, and drill samples, and 
the results are in consistent with that of HPLC analysis.

Nanozyme-based detections for total polyphenols 
have also been developed. For instance, Rashtbari et  al. 
[44] synthesized molybdenum trioxide nanoparticles 
through Argon cold plasma surface modification (Ar-
MoO3NPs), which exhibited enhanced POD-like activity. 
The prepared Ar-MoO3NPs can oxidize non-fluorescent 
terephthalic acid into high-fluorescence emission com-
pounds in the presence of H2O2. In contrast, polyphenols 
can cause aggregation of Ar-MoO3NPs and act as free 
radical scavengers, leading to the quenching of fluores-
cence. Therefore, a fluorescence method was developed 
to detect polyphenols with high specificity, which was 
successfully used to detect total polyphenolics in apple, 
orange, and grape samples.

Rutin, which has antioxidant, anticancer, vasoprotec-
tive, and neuroprotective properties [45], is a polyphe-
nolic flavonoid compound and can be hydrolyzed to 
produce quercetin. Davoodi-Rad et  al. [46] developed 
a colorimetric method for detecting rutin based on the 
LAC-like activity of Cu-guanosine nanorods (Cu-Guo 
NRs), which can oxidize rutin, resulting in a color change 
from light green to dark yellow. The established strategy 
has a broad linear range of 0.77–54.46 µM and a LOD of 
0.114 µM. Then, it was successfully used to detect rutin 
in propolis dry extract and rutin-containing dietary sup-
plement tablets, with contents of 9.42% and 18.38  mg 
per tablet, respectively. Covalent triazine framework 
(CTF) is a special class of COFs with a triazine ring in 
its structure. Based on the advantage of chemilumines-
cent (CL) detection with high sensitivity, Tan et  al. [47] 
prepared a CTF-1 with OXD-like activity, which can oxi-
dize luminol to produce intense CL in the presence of O2 

(Fig. 5). Whereas the intensity of CL decreased with the 
increase of rutin concentration, therefore, a very sensitive 
CL method can be established for detecting rutin with a 
LOD of 0.015 µM. Compared with the results of HPLC, 
the developed CL method is reliable for detecting rutin 
both in tablets and treated Flos Sophorae Immaturus 
samples.

Atropine is an alkaloid that can be used to dilate the 
pupil, alleviate spasms, and serve as an antidote to organ-
ophosphorus pesticides. Datura is a poisonous plant but 
contains abundant active chemicals, including phenolics, 
steroids, acyl sugars, amides, and alkaloids. Therefore, 
tedious sample pretreatment is necessary to detect atro-
pine content in Datura plants. Mahmoudi et al. [40] syn-
thesized a series of Fe3O4 and bimetal-organic framework 
Zn/Mg (Fe3O4@MOFs) composites for the detection of 
atropine extracted from two Datura samples through liq-
uid–liquid extraction. The experimental results show that 
the Fe3O4@MOF/Dextrin composite exhibited the high-
est POD-like activity, which was primarily attributed to 
the cooperative interaction of dispersed Fe ions between 
Zn and Mg metals in the MOF and dextrin layers. In the 
presence of the material and H2O2, terephthalic acid was 
oxidized to 2-hydroxy terephthalic acid, emitting fluores-
cence at 425 nm. This oxidation process can be inhibited 
by atropine, allowing the fluorescence detection of atro-
pine with the LOD value of 2.27 μg/L. To further improve 
the sensitivity of atropine, the group [48] developed 
a CL method to detect atropine based on the Fe3O4@
MOF composite, which can oxidize luminol, produc-
ing high-intensity CL (Fig.  6). While atropine can bind 
with the Fe3O4@MOF composite, leading to a significant 
reduction of CL intensity. Compared with the previous 
method, the sensitivity was considerably improved and 
the LOD was as low as 0.02 μg/L.

Fig. 5  Schematic diagram of CL of luminol based on CTF-1. Reprinted with permission from [47]
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Specific recognition strategy
Molecularly imprinted polymers (MIPs) are formed by 
polymerizing monomers in the presence of a template 
molecule. After removing the template molecule, MIPs 
can be used to bind template molecule specifically, simi-
lar to the interaction between an antibody and an antigen 
[49, 50]. Therefore, MIP can extract template molecules 
from complicated samples and shield interference from 
other substances, improving the assay selectivity [51]. As 
one of the main active ingredients in Huangqi (Astragalus 
membranaceus), Astragaloside-IV (AS-IV) has many 
pharmacological activities, including enhancing immu-
nity, antivirus, anti-stress, antifibrosis, and protecting the 
heart [52, 53]. The AS-IV is usually detected by HPLC in 
combination with other methods due to its weak ultra-
violet absorption, such as pulsed amperometric detec-
tion and evaporative light scattering detection (ELSD) 
[53, 54]. Chen et al. [51] innovatively combined MIP with 
CuO nanoparticles (CuO NPs) and polydopamine (PDA) 
to synthesize MIP@PDA/CuO NPs with POD-like activ-
ity for the detection of AS-IV. AS-IV can specifically bind 
to the surface imprinted cavity to prevent the entry of 
H2O2 and TMB, inhibiting the catalytic process (Fig. 7). 
Eventually, the established new colorimetric method for 
the detection of AS-IV showed high selectivity and the 
linear range was 0.000341–1.024 mg/mL with a LOD of 
0.000991  mg/mL. Additionally, it was applied to detect 
the content of AS-IV in Huangqi Granules and Ganwei-
kang Tablets, and the results are similar to that measured 
by HPLC-ELSD.

Licorice (Glycyrrhiza uralensis) is a CHM with diverse 
functions, such as anti-inflammatory and detoxification. 
Among licorice active ingredients, liquiritin and glycyr-
rhizic acid are the indicators for authenticating licorice, 
while licochalcone A and isolicoflavonol are the indica-
tors for evaluating its quality. Thus, the simultaneous 
detection of these four active substances is of great sig-
nificance. The sensor array consists of a series of cross-
response sensing units rather than a specific receptor, 
which can detect and discriminate structurally similar 
components or complex mixtures through pattern recog-
nition [55]. Based on three iron oxide nanozymes (Fe2O3, 
Fe3O4, and histidine (His)-Fe3O4) with POD-like activity, 
Yuan et  al. [56] constructed a colorimetric sensor array 
for the detection of four licorice active substances (Fig. 8). 
Different active ingredients inhibited the catalytic activ-
ity of different iron oxides to various degrees, and the 
developed colorimetric sensor successfully identified and 
distinguished the four licorice active substances in real 
licorice samples in the concentration range of 1–200 µM.

Although nanozyme-based detection methods have 
the advantages of simplicity, rapidity, and high sensitiv-
ity, there were limited number of methods have been 
developed for the detection of phytochemicals in natu-
ral products using nanozymes. Furthermore, due to the 
complexity of real samples, there are still difficulties in 
achieving specific detection, which requires sample pre-
treatment or combining with special methods such as 
MIP. Therefore, the design and preparation of nanozymes 
with high selectivity to solve the problem of complex 

Fig. 6  Schematic diagram of detecting atropine based on Fe3O4@MOFs. Reprinted with permission from [48]
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Fig. 7  Schematic diagram of preparing MIP@PDA/CuO NPs (A) and detecting AS-IV (B). Reprinted with permission from [51]

Fig. 8  Schematic diagram of detecting four licorice active substances based on the colorimetric sensor array. Reprinted with permission from [56]
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sample matrix in phytochemical analysis remain in the 
exploratory stage.

Detection of hazardous substances
Detection of heavy metal ions
Due to their bioaccumulation properties, heavy metal 
ions can reach very high levels through the diet, thereby 
harming human health [8]. Common heavy metal ele-
ments include arsenic (As), lead (Pb), mercury (Hg), cop-
per (Cu), chromium (Cr), cadmium (Cd), iron (Fe), etc. 
[57]. As shown in Table 3, there are several studies on the 
detection of As and Pb in plants using nanozymes.

Arsenic ion
Compared with organic arsenic, inorganic arsenic exhib-
its higher toxicity. Excessive intake of it can cause skin 
and respiratory diseases, nerve poisoning, organ fail-
ure, and even cancer, which may be resulted from its 

interaction with enzymes in the human body and excess 
generation of reactive oxygen species (ROS) [58–61]. 
Inorganic arsenic includes arsenic trivalent (As(III)), 
arsenic pentavalent (As(V)), and elemental arsenic, while 
As(III) is more toxic than As(V) as it can bind to sulfhy-
dryl groups with higher affinity, inhibiting the activity of 
various proteins [59, 61]. Wang et  al. [59] developed a 
colorimetric method to detect As(III) (Fig. 9). They syn-
thesized different shapes of Mn3O4 NPs with OXD-like 
activity, while the octahedral one possessed the strongest 
As(III) adsorption capacity. Furthermore, arsenic adsorp-
tion made Mn4+/Mn3+ reduced to Mn2+, which can 
catalyze O2 to produce oxygen radicals, further oxidiz-
ing TMB with the solution turning to yellow color. Based 
on As(III)-adsorption enhancing the catalytic activity 
of octahedral Mn3O4 NPs, a colorimetric method was 
established and achieved the detection of As(III) in the 
wheat sample with a LOD of 1.32 μg/L.

Table 3  Summary of detection of heavy metal ions in plants based on nanozymes

POD, peroxidase; OXD, oxidase; ATP, adenosine triphosphate; Tris, tris hydroxymethyl aminomethane; CPNs, coordination polymer nanoparticles; ACP/hemin@Zn-MOF, 
acid phosphatase and hemin loaded Zn-based metal–organic framework nanosheets; POD, peroxidase; NPs, nanoparticles; Fe, NA-CDs, Fe doped norepinephrine-
based carbon dots; PB, Prussian blue; SERS, surface-enhanced Raman scattering; MOF, metal–organic framework; SACu-C-N, single-atom Cu-C-N; SACe-N-C, single 
atom Ce-N-C; AuNCs, gold nanoclusters; CTF, covalent triazine frameworks; CuO NP-POM, polyoxometalate (POM) decorated with copper oxide nanoparticles (CuO 
NPs); AA, ascorbic acid; GPx, glutathione peroxidase; p-β-CD@Pr6O11, poly-β-cyclodextrin strengthen praseodymium oxide (Pr6O11) porous oxidase mimic; Cys, 
cysteine; FBS, fetal bovine serum

Nanozyme/activity Analyte Method Sample LOD(µM) Linear range(µM) Refs.

Ce(IV)-ATP-Tris CPNs/
OXD

As5+ Colorimetric Rice 0.44 μg/L 0.67–2666.67 μg/L [60]

ACP/hemin@Zn-MOF/
POD

As5+ Ratio fluorescence Rice samples 1.05 μg/L 3.33–300.00 μg/L [58]

Octahedral Mn3O4 NPs/
OXD

As3+ Colorimetric Wheat and water 
samples

1.32 μg/L 5–100 μg/L [59]

Fe, NA-CDs/PB/POD Pb2+ Colorimetric/SERS Barley Yellow, Salvia 
miltiorrhiza, Astragalus 
membranaceus, 
and pomegranate peel

0.015 × 10–3/0.024 × 10–3 0.03 × 10–3–3 × 10–3 [64]

WS2 nanosheets/POD Pb2+ Colorimetric Tap water, soil, wheat, 
and fish serum

0.012 × 10–3 0.015 × 10–3–0.24 × 10–3 [66]

porph@MOF/POD Pb2+ Electrochemistry Chinese cabbage 
and spinach

4.8 × 10–9 10 × 10–9–0.1 [65]

SACu-C-N/OXD Hg2+ Colorimetric Water, sea bass, 
cabbage, and honey

0.85 × 10–3 0.001–20 [75]

CTF/POD Cu2+ Colorimetric Eggplants and Chinese 
water chestnuts

1.25 × 10–3 15.75 × 10–3–1.26 × 103 [80]

CuO NP-POM/GPx Fe2+/AA Fluorescence Spinach and dried 0.008/0.015 0.01–100/0.02–500 [148]

p-β-CD@Pr6O11/OXD Fe2+/Cys Colorimetric Spinach juice, black 
fungus, pork, and pork 
liver/Water, FBS, and Cys 
capsules

0.098/0.01 0.1–14/0.01–5 [149]

SACe-N-C/OXD Fe3+/Cr6+ Colorimetric Wheat, peach, teas, 
celery, spinach, 
and chickens

34.72/93.65 ng/mL 0.25–1.5/0.5–5 mg/mL [76]

AuNCs/POD Hg2+/Cu2+/
Co2+/Cd2+/
Pb2+

Colorimetric sensor 
array

Water, Lonicera japonica, 
and Chrysanthemum 
morifolium

0.05/0.2/0.05/2.5/1 0.05–0.8/0.2–0.8/0.05–
0.8/2.5–25/1–10

[82]
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As(V) can inhibit the catalytic activity of acid phos-
phatase (ACP), which can catalyze the hydrolysis of 
ascorbic acid 2-phosphate (AAP) to produce AA. There-
fore, several studies have utilized nanozymes and ACP 
to design enzyme-cascade reactions for As(V) detection. 
Xu et al. [58] prepared an ACP and hemin-loaded mul-
tifunctional Zn-based metal–organic framework (ACP/
hemin@Zn-MOF) for the detection of As(V). Hemin 
exhibited POD-like activity, which can catalyze the oxida-
tion of o-phenylenediamine (OPD) to form a fluorescent 
product (564  nm) and weaken its intrinsic fluorescence 
(452 nm) owing to the inner filter effect. After the addi-
tion of AAP, the generated AA will competitively sup-
press the oxidation of OPD, causing a decrease in the 
fluorescence intensity at 564 nm and a recovered fluores-
cence at 452 nm. The inhibitory effect of As(V) on ACP 
enabled the fluorescence signal to be reversed again, real-
izing a ratio fluorescence detection of As(V) with a linear 
range of 3.33–300.00 μg/L and a LOD of 1.05 μg/L. More-
over, the method was successfully applied in the analysis 
of As(V) and total arsenic in rice samples, with recovery 
rates ranging from 95 to 105%. Similarly, Wang et al. [60] 
developed a colorimetric method to detect As(V) utiliz-
ing the OXD-like activity of Ce(IV) coordination polymer 
nanoparticles. With the addition of ACP and AAP, the 
produced AA can not only restrain the oxidation of TMB 
but also reduce Ce4+ to Ce2+, inhibiting the enzyme-like 
activity of the material. Therefore, As(V) can be detected 
by inhibiting ACP and restoring the TMB color reaction. 
The method displays a high sensitivity and was used to 
analyze As(V) in rice samples.

Lead ion
Pb is the second most toxic heavy metal after As with 
bioaccumulation and persistence [62–66]. Low doses 
of Pb2+ have an impact on the physical and mental 
health of infants and young children, causing develop-
mental disorders, brain damage, psychiatric disorders, 
etc. [67]. Tang et  al. [66] synthesized the layered WS2 
nanosheets with POD-like activity through a simple 
ultrasonic stripping method, which was employed to 
detect Pb2+ in wheat samples. Pb2+ blocked the elec-
tron transfer between WS2 and H2O2, and then pre-
vented the oxidation of TMB, resulting in a significant 
decrease of absorbance at 650 nm. For Pb2+ detection, 
the linear range of the method was 0.015–0.24 nM with 
a low LOD of 0.012 nM. Using Pb2+-dependent recep-
tors (e.g. DNAzyme) is a good option to achieve a high 
selective detection. Si et  al. [65] developed an electro-
chemical method to monitor Pb2+ in vegetable samples 
based on a porphyrin-functionalized metal–organic 
framework (porph@MOF) and Pb2+-dependent DNA-
zyme. As shown in Fig.  10, DNA2 was immobilized 
on an AuNPs-modified glassy carbon electrode via 
the Au–S bond. It can be specifically cleaved by Pb2+ 
to generate a short DNA2 fragment, which was further 
hybridized with porph@MOF-DNA1 through base 
pairing. Subsequently, the porph@MOF with POD-
like activity oxidated OPD in the presence of H2O2, 
producing the electrochemical signal. The established 
method exhibited excellent selectivity and high sensi-
tivity with a LOD of 5  pM. However, although cleav-
age and hybridization of DNA2 can be finished in one 
step, the long incubation time (80  min) did not fulfill 
the requirement of rapid detection. Colorimetric and 

Fig. 9  Schematic diagram of detecting As (III) based on octahedral Mn3O4 NPs. Reprinted with permission from [59]
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surface-enhanced Raman spectroscopy (SERS) are 
commonly regarded as rapid analytical methods [68]. 
Gold nanoparticles (AuNPs) are widely studied for their 
enzyme-like and SERS properties [69, 70]. Further-
more, several studies have substantiated that carbon 
dots (CDs) facilitate improving SERS signals and cata-
lytic activity of AuNPs [71–73]. For example, Cui et al. 
[64] prepared the Fe-doped norepinephrine-based CDs 
through a one-step microwave digestion method, which 
were self-assembled with Prussian blue (PB) to obtain 
Fe, NA-CDs/PB with POD-like activity. They also uti-
lized the reducing property of CDs to synthesize the 
AuNPs. Based on the inhibition of Pb2+ on the POD-
like activity of Fe, NA-CDs/PB and AuNPs, the SERS 
and colorimetric dual-mode sensor was constructed 
with the LODs of 0.024 nM and 0.015 nM, respectively. 
Finally, the sensor was successfully applied to detect 
Pb2+ in Salvia miltiorrhiza, Astragalus membranaceus, 
Barley Yellow, and pomegranate peel with good recov-
ery of 90.4–108.9% and RSD of 2.6–4.7%.

Other ions
Ingestion of inorganic mercury may cause neurologi-
cal symptoms (including mental retardation, vision and 
hearing loss, language disorders, and memory loss), 

as well as cognitive and motion disorders, etc. [74, 75]. 
Recently, single-atom nanozymes (SAzymes) with ultra-
high atomic utilization, excellent stability, and remark-
able catalytic activity have been continuously studied 
[75–77]. Ge et  al. [75] developed a novel colorimetric 
strategy for Hg2+ assay using cysteine and single-atom 
Cu-C-N nanozymes (SACu-C-N). The prepared SACu-
C-N exhibited OXD-like activity, catalyzing the oxida-
tion of TMB to blue ox-TMB. However, the ox-TMB was 
reduced after the introduction of cysteine. Since Hg2+ 
possesses a strong affinity for thiol groups of cysteine, 
it can turn the solution to blue color again. Therefore, a 
simple, sensitive, and selective colorimetric method was 
established and applied in the analysis of Hg2+ in cabbage 
samples.

Cu is an essential trace element and is influential in the 
metabolic process as a cofactor or structural component 
of many natural enzymes [78–80]. However, excess Cu2+ 
suppresses the activity of some essential enzymes, caus-
ing serious side effects, such as neurodegenerative dis-
ease, liver damage, and even cancer [79, 81]. In addition, 
high levels of Cu also damage photosynthesis and then 
inhibit plant growth [78]. Xiong et al. [80] synthesized a 
CTF through a simple and rapid microwave-enhanced 
high-temperature ionothermal method. Interestingly, 

Fig. 10  Schematic diagram of detecting Pb.2+ based on DNAzyme and porph@MOF. Reprinted with permission from [65]
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CTF possessed weak POD-like activity, but Cu2+ can 
act as the active catalytic center and a bridge for elec-
tronic transfers between the substrate and CTF, result-
ing in enhanced catalytic activity. The LOD value of the 
developed method was 1.25 nM, and was applied in the 
quantification of Cu2+ in Chinese water chestnuts and 
eggplants, with recoveries of 96.0–105.0%.

Most of the sensors can detect only a single heavy 
metal, and the simultaneous detection of multiple heavy 
metal ions is still a challenge. Song et al. [76] designed a 
time-resolved sensor to detect Cr6+ and Fe3+ based on 
their difference in enhancing the single-atom Ce–N–C 
nanozyme’s OXD-like activity. In the presence of Fe3+ 
and Cr6+ alone, the solution turned blue after 30  s and 
60 s, respectively, while the former faded after 5 min. The 
solution turned blue in 30 s and did not fade when both 
of them were presented. Therefore, the constructed sen-
sor was feasible for the simultaneous detection of Fe3+ 
and Cr6+ in actual samples. By utilizing gold nanoclusters 
(AuNCs) as sensing elements, Li et  al. [82] developed a 
colorimetric sensor array for identifying five heavy metal 
ions (Hg2+, Pb2+, Cu2+, Cd2+, and Co2+) at a concentra-
tion down to 0.5 μM, which was successfully used to rec-
ognize multiple heavy metal ions in Lonicera japonica 
and Chrysanthemum morifolium samples.

Detection of mycotoxins
Mycotoxins are secondary metabolites generated by fila-
mentous fungi and are extensively found in maize, wheat, 
rice, peanuts, and other cereals, which include aflatoxins, 
ochratoxins, fumonisins, zearalenone [14, 83], etc. Even 
at low concentrations, they are nephrotoxic, immuno-
toxic, teratogenic, mutagenic, and carcinogenic [84, 85]. 
According to the Chinese Pharmacopoeia, the total afla-
toxin content in Chinese medicines should not exceed 
10 µg/kg, and zearalenone should not exceed 500 µg/kg 
[86]. At present, a number of nanozyme-based immu-
noassays have been reported for detecting mycotoxins 
(Table 4).

Aflatoxin b1
Aflatoxins include aflatoxin B1, B2, G1, and G2 [87]. 
Among them, aflatoxin B1 (AFB1) is the most toxic one 
with potent hepatocarcinogens, which was classified as 
a Group 1 carcinogen as early as 2002 for it can induce 
formatting DNA adducts, leading to hepatoma [88–90]. 
Apart from this, AFB1 is also associated with malnu-
trition, growth impairment, and immune inhibition 
[91–93]. Lateral flow immunoassay (LFIA) is a real-time 
analysis method on paper-based equipment. The prin-
ciple is mainly based on the competitive binding of the 
target analyte and the fixed antigen on the detection line 
to the antibody [94]. Owing to its simplicity, rapidity, and 

low cost, LFIA has become an attractive immunoassay 
for AFB1 analysis. However, the limited sensitivity hin-
ders LFIA’s practical applications [95–97]. As mentioned, 
nanozymes can catalyze the formation of chromogenic 
substrates for signal amplification to improve the sen-
sitivity of a detection method. Cai et  al. [95] prepared 
MnO2 nanosheets with excellent OXD-like activity as 
signal labels conjugated with antibodies to detect AFB1. 
Using MnO2 catalyzing TMB to produce clear color sig-
nals, the method achieved sensitive detection of AFB1 
with a LOD of 15 pg/mL and a wide linear range of 0.01–
150 ng/mL. Compared to antibodies, aptamers are more 
stable and flexible in labeling. Therefore, aptamer-medi-
ated LFIA is a promising approach to realize a highly sen-
sitive detection. Zhu et al. [97] designed a PDA-modified 
nanozyme (CuCo@PDA) with abundant amide groups 
that can be coupled to AFB1 aptamers via a condensa-
tion reaction. Based on the POD-like activity of CuCo@
PDA, a reliable and ultrasensitive method combined with 
a smartphone was established for AFB1 detection with a 
LOD of 2.2 pg/mL. Moreover, it was successfully applied 
to detect AFB1 in the peanut, corn, and wheat samples 
with different contamination levels.

The enzyme-linked immunosorbent assay (ELISA) is a 
widely used immunoassay. In a typical ELISA assay, anti-
gens (analytes) first bind to antibodies immobilized on a 
well plate, then forming an antibody-antigen–antibody 
sandwich with enzyme-labeled antibodies (commonly 
HRP). After washing steps, HRP catalyzes the added 
substrate, resulting in a color change [98]. Likewise, the 
combination of nanozymes can effectively improve the 
relatively low sensitivity of ELISA [77, 99]. Guo et  al. 
[77] developed a nanozyme-linked immunosorbent assay 
(NLISA) by utilizing Fe–N–C SAzymes to replace HRP 
for quantitative detection of AFB1 in peanut samples. 
Unlike the traditional antibody-antigen–antibody “sand-
wich” type of detection mechanism, the method immo-
bilized antigens on the well plate, achieving the rapid and 
sensitive detection of AFB1 with a LOD of 3.3  pg/mL. 
The coupling of nanozymes with bio-enzymes induces a 
dual signal amplification through an enzyme cascade to 
further increase the sensitivity. Lai et al. [99] found that 
copper hexacyanoferrate nanoparticles (CHNPs) with 
OXD-like activity can be rapidly produced by simply 
mixing potassium hexacyanoferrate(III) (K3[Fe(CN)6]) 
with Cu(II). However, AA produced by the hydrolysis of 
ALP on ascorbic acid 2-phosphate (AAP) can reduce Fe 
(III) to Fe (II) and then inhibit the formation of CHNPs. 
Therefore, employing AuNPs coupled to ALP as enzyme 
labels in ELISA and integrating with the production pro-
cess of CHNPs, a highly sensitive colorimetric immu-
noassay for the determination of AFB1 was constructed 
with a LOD of 0.73 pg/mL. Finally, the developed method 
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Table 4  Summary of detection of mycotoxins in plants based on nanozymes

Nanozyme/
activity

Analyte Assay format Method Sample LOD (ng/mL) Linear range 
(ng/mL)

Ref

MnO2 NSs/OXD Fumonisin B1 NLISA Colorimetric Corn and wheat 0.63 1.17–20.74 [150]

PCu/POD Aspergillus flavus LFIA Colorimetric/pho‑
tothermal

Peanut and corn 0.45/0.22 1–1 × 105 [96]

MnO2 NSs/OXD Aflatoxin B1 LFIA Colorimetric Corn 0.015 0.01–150 [95]

CuCo@PDA/POD Aflatoxin B1 Apt-LFA Colorimetric Peanut, wheat, 
and corn

2.2 × 10–3 0.01–500 [97]

Cu2O@Au NCs/
POD

Aflatoxin B1 Aptasensor SERS Peanut 0.007 0.001–100 [93]

L-Cys-FeNiNPs/
POD

Aflatoxin B1 Aptasensor Colorimetric Corn and millet 36.57 120–2000 [151]

Au/Ni-Co LDH 
NCs/POD

Aflatoxin B1 Aptasensor Electrochemical/
colorimetric

Corn 0.071 × 10–3/18.6 × 10–3 0.0002–100/0.05–
100

[152]

Fe-N-C SAzymes/
POD

Aflatoxin B1 NLISA Colorimetric Peanut 3.3 × 10–3 0.0084–0.358 [77]

Pt-CN/POD Aflatoxin B1 ELISA Colorimetric/pho‑
tothermal

Peanut 0.22 × 10–3/0.76 × 10–3 0.001–10 [101]

PS@Pt-Pd/OXD Aflatoxin B1 NLISA Colorimetric Peanut 5.52 × 10–3 0.01–0.104 [91]

MnO2 NSs/OXD Aflatoxin B1 Immunosensor Colorimetric Peanut 6.5 × 10–3 0.05–150 [87]

MNPs/PBNPs/POD Aflatoxin B1 NAISA Photothermal/
colorimetric/fluo‑
rescence

Vinegar, wine, 
and peanut

3.42 × 10–3/15.07 × 10–6

/0.54 × 10–6
10–2–100/10–4–
100/10–5–100

[90]

m-SAP/POD Aflatoxin B1 NLASA Colorimetric Peanut 5 × 10–3 0.01–1000 [153]

Pt@PCN-222/OXD Aflatoxin B1 – Colorimetric Peanut and corn 0.074 × 106 0.1–10 [89]

CHNPs/OXD ALP
Aflatoxin B1

Immunosensor Colorimetric Peanut 0.003 U/L
0.73 × 10–3

− 0.001–20 [99]

Octahedral Cu2O 
NPs/POD

Ochratoxin A NLISA Colorimetric Millet 470 1 × 106–5 × 106 [110]

Co(OH)2 nanoc‑
ages/OXD

Ochratoxin A NLISA Colorimetric Corn and water 
samples

260 500–5 × 106 [102]

AuNPs/POD Ochratoxin A Aptasensor Colorimetric Oats, corn, 
soybeans, rice, 
and glutinous rice

6.20 nM 0.01–0.6 µM [103]

Cu@Fe-NC/POD Ochratoxin A NLISA Colorimetric/ratio 
fluorescence

Corn and millet 790/520 103–104 [105]

Co/NCNT/OXD Ochratoxin A NLISA Colorimetric/fluo‑
rescence

Corn and millet 210/170 1–104 [106]

Pd-Pt NRs/POD Ochratoxin A NLASA Colorimetric/SERS Red wine 
and grape

0.097/0.042 nM 0.1–40 nM [109]

AuAg NCs-SPCN/
POD

Ochratoxin A NLISA Fluorescence/
colorimetric

Red wine, wheat 
flour, and corn

155/213 103–107 [108]

CPNs(IV)/OXD Ochratoxin A ELISA Fluorescence/
colorimetric

Corn 0.404/0.962 4.69–37.50/ 
14–300

[100]

Cu2O@Fe(OH)3 
yolk-shell nanoc‑
ages/POD

Ochratoxin A NLISA Ratio fluores‑
cence/colori‑
metric

Millet and lake 
water

560/830 103–107 [107]

TiO2-PCA/OXD Zearalenone Aptasensor Colorimetric Corn and wheat 8.7 × 10–3 0.01–2 [154]

Ti3C2Tx/AuNPs 
nanocomposite/
POD

Zearalenone NLISA Colorimetric/pho‑
tothermal

Rice, oats, 
and corn

0.15 × 10–3/0.48 × 10–3 500–5 × 105 [112]

AuPt NPs/POD Zearalenone Aptasensor Colorimetric Corn and wheat 0.6979 1–250 [113]

Pt@AuNF/POD Zearalenone LFIA Colorimetric Corn 0.052 0.052–7.28 [111]

AuNPs/POD Zearalenone Aptasensor Colorimetric Corn and corn oil 10 10–250 [114]
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was used to detect AFB1 in spiked and naturally contam-
inated peanut samples.

The single signal mode is prone to false-negative/posi-
tive results caused by differences in operating conditions 
and environment. In contrast, multi-mode detection 
can offset interferences, reduce false results through 
self-correction, and yield more precise outcomes [90, 
100]. Huang et  al. [101] developed a colorimetric/pho-
tothermal dual-mode immunoassay method based on Pt 
supported on nitrogen-doped carbon (Pt-CN) for moni-
toring AFB1 in peanut samples. After competitive immu-
noreactivity of glucose oxidase (GOx)-labeled antigen 
with AFB1, the GOx loaded on the well plates can cata-
lyze the formation of H2O2 from glucose. Subsequently, 
the Pt-CN with POD-like activity can oxidize TMB to 
blue ox-TMB, producing a colorimetric signal. On the 
other hand, the ox-TMB, as a photothermal agent, can 
convert light to heat under near-infrared (NIR) irradia-
tion, generating a photothermal signal. The LOD values 
are 0.22  pg/mL and 0.76  pg/mL for the colorimetric 
and photothermal assays, respectively. The fluorescence 
method is regarded as one of the most sensitive of the 
optical methods. Lu et al. [90] designed a photothermal/
colorimetric/fluorescent multimodal NLISA to portably 
and ultra-sensitively detect AFB1. As shown in Fig.  11, 
magnetic nanoparticles (MNPs) combined with aptam-
ers were immobilized on the well plates via antibody and 
AFB1. In the presence of K4[Fe(CN)6] and HCl, MNPs as 
precursors can form Prussian blue nanoparticles (PBNPs) 
that possessed both excellent POD-like activity and pho-
tothermal effect. Particularly, MNPs also acted as the 
quencher to decrease the fluorescence of the dye (Cy5), 
which was restored upon the formation of PBNPs, ena-
bling fluorescence detection of FAB1, with an extremely 
low LOD of 0.54  fg/mL. The established strategy was 

feasible for the qualitative and quantitative determination 
of AFB1 in the actual samples on the spot.

Ochratoxin A
Ochratoxins are a series of mycotoxins generated by 
Penicillium and Aspergillus. Among them, ochratoxin A 
(OTA) is the most poisonous to human health. It pos-
sesses various toxicity in animals and humans, including 
nephrotoxicity, hepatotoxicity, immunotoxicity, terato-
genicity, and carcinogenicity [100, 102, 103]. Recently, 
studies have shown that OTA is also a potent neuro-
toxin that is considered to be a causative agent of neu-
rodegenerative diseases, and the brain is one of the main 
target organs of its damage [104]. As mentioned, dual-
mode analysis has the advantage of better sensitivity and 
more accurate results, which was employed in most of 
the nanozymes-based detection methods of OTA [100, 
105–109]. Li et  al. [109] developed a SERS/colorimet-
ric dual-mode method for the detection of OTA using 
Pd–Pt bimetallic nanocrystals (Pd–Pt NRs) conjugated 
with aptamers as recognition probes. Since the Pd–Pt 
NRs with POD-like activity can catalyze the oxidation 
of TMB to ox-TMB that exhibited a strong SERS sig-
nal, the SERS and colorimetric detection of OTA can be 
achieved with LODs of 0.042 nM and 0.097 nM, respec-
tively. The developed method was applied to detect OTA 
in grape samples, and the results are in consistent with 
that of UPLC-MS/MS analysis. Zheng et al. [100] estab-
lished a colorimetric/fluorescence immunoassay method 
for detecting OTA based on the OXD-like activity of 
cerium-based nanoparticles (CPNs(IV)) and the fluores-
cence properties of CPNs(III). The LODs of colorimetric 
and fluorescence methods are 0.962 ng/mL and 0.404 ng/
mL, with recoveries in corn samples ranging from 99.12–
102.60% to 97.60–103.55%, respectively. In addition, to 
improve the accuracy of visual judgments, colorimetric 

SERS, surface-enhanced Raman spectroscopy; NSs, nanosheets; POD, peroxidase; OXD, oxidase; NLISA, nanozyme-linked immunosorbent assay; NAISA, nanozyme 
and aptamer-based immunosorbent assay; NLASA, nanozyme-linked apta-sorbent assay LFIA, lateral flow immunoassay; ELISA, Enzyme-linked immunosorbent 
assay; Cu2O@Au NCs, Cu2O@Au nanocubes; PS@Pt–Pd, platinum and palladium bimetallic nanozyme modified polystyrene (PS) microspheres; Apt-LFA, aptamer-
mediated lateral flow assay; Cu@Fe-NC, CuFe-bimetal coordinated N-doped carbon; Co/NCNT, Co nanoparticle/N-doped carbon nanotubes; L-Cys-FeNiNPs, 
L-cysteine-functionalized FeNi bimetallic nanoparticles; SAzymes, single-atom nanozymes; PCA, 3, 4-dihydroxybenzoic acid; AuNPs, gold nanoparticles; Pt-CN, 
Pt supported on nitrogen-doped carbon amorphous; AuAg NCs, Au–Ag nanoclusters; SPCN, S, P co-doped graphitic carbon nitride (g-C3N4) nanosheets; CHNPs, 
copper hexacyanoferrate nanoparticles; ALP, alkaline phosphatase; Pd-Pt NRs, Pd-Pt bimetallic nanocrystals; PCu, Cu-anchored inherent photothermal polydopamine 
(PDA); Pt@AuNF, platinum gold nanoflower; MNPs/PBNPs, magnetic nanoparticles/Prussian blue nanoparticles; m-SAP, AuPt nanoparticles loaded mesoporous SiO2 
nanospheres; Pt@PCN-222, Pt nanoparticles loaded zirconium-porphyrin-MOF; Au/Ni-Co LDH NCs, Au nanoparticles anchored Ni-Co layered double hydroxides 
nanocages; CPNs(IV), cerium-based nanoparticles; ssDNA, single-stranded DNA

Table 4  (continued)

Nanozyme/
activity

Analyte Assay format Method Sample LOD (ng/mL) Linear range 
(ng/mL)

Ref

ssDNA-g-C3N4 
NSs/POD

Ochratoxin A/
fumonisin B1/
aflatoxin B2/
zearalenone/afla‑
toxin M1

– Colorimetric sen‑
sor array

Corn 0.001 µM – [155]
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immunoassays with multiple color changes have also 
been reported. Gold nanomaterials have garnered 
attention for the color of their solutions, which largely 
depends on their shape and size [105, 107, 110]. Zhu et al. 
[110] synthesized octahedral Cu2O nanoparticles with 
POD-like activity, which can oxidize TMB to TMB2+ in 
the presence of H2O2 and HCl. Based on the significant 
color change resulted from the etching of TMB2+ on gold 
nano bipyramids (Au NBPs), a multi-colorimetric immu-
noassay was developed to monitoring of OTA in millet 
samples with a LOD of 0.47 ng/L (Fig. 12).

Zearalenone
Zearalenone (ZEN) is a kind of mycotoxin with estro-
genic activity, which can compete with the natural estro-
gen, resulting in the reproductive dysfunction of animals 
[83]. In addition, ZEN may cause other toxic effects 
involving hepatotoxicity, immunotoxicity, genotoxic-
ity, and carcinogenicity [83, 111–114111‒114]. Sun et al. 
[114] developed a colorimetric method for the detection 
of ZEN based on the inhibition of ZEN aptamer on the 
POD-like activity of AuNPs. After the addition of ZEN, 
the aptamer bound to it preferentially with the restora-
tion of AuNPs activity. The LOD value of the method is 
10 ng/mL and the recovery in spiked corn is in the range 
of 92%‒102%. Bimetallic nanoparticles are superior to 
monometallic nanoparticles in terms of catalytic activ-
ity [108, 109]. Liu et  al. [113] synthesized encapsulated 
AuPt nanoparticles hydrogel by ZEN aptamer and com-
plementary DNA as crosslinkers. In the presence of ZEN, 
it will preferentially combine with the aptamer, destroy-
ing the hydrogel structure and then releasing the AuPt 

nanozymes to complete the catalytic reaction. Therefore, 
a highly sensitive colorimetric method for the determi-
nation of ZEN was established with a LOD of 0.6979 ng/
mL, which was applied to detect ZEN in corn and wheat 
samples. However, metal nanoparticles alone are prone 
to aggregation, resulting in reduced catalytic sites and 
lower catalytic activity. Anchoring it to a carrier material 
is an effective solution to this problem [91]. For example, 
utilizing Ti3C2Tx nanosheet as a carrier material, Huang 
et  al. [112] prepared a Ti3C2Tx/AuNPs nanocomposite 
with enhanced POD-like activity, which can be used as an 
immunoprobe to detect ZEN. Employing Ti3C2Tx/AuNP 
to catalyze the oxidation of TMB and the strong NIR-
driven photothermal effect of ox-TMB, the immunoassay 
achieved ultrasensitive colorimetric and photothermal 
dual-mode detection of ZEN with LODs of 0.15  pg/mL 
and 0.48  pg/mL, respectively. Furthermore, the dual-
mode strategy was employed for the analysis of ZEN in 
three contaminated cereal samples, and the results are in 
good agreement with UPLC-MS/MS analysis.

Detection of organophosphorus pesticide
Organophosphorus pesticide exposure primarily causes 
chronic or acute toxicity in humans, plants, and animals 
through inhibiting cholinesterase activity and leading to 
acetylcholine accumulation [115]. The hazards of OPs on 
human beings are generally dominated by acute toxic-
ity, which is manifested by a series of neurotoxic symp-
toms like sweating, tremors, confusion, speech disorders, 
and in severe cases, respiratory paralysis and even death 
[116]. As summarized in Table 5, the strategies for detect-
ing OPs based on nanozymes are categorized as follows: 

Fig. 11  Schematic diagram of multimode detecting AFB1. Reprinted with permission from [90]
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(1) direct influence of OPs on the activity of nanozymes 
[117–121]; (2) nanozymes with organophosphorus 
hydrolase (OPH)-like or phosphatase-like activity hydro-
lyze OPs into products that produce signals [122–131]; 
(3) nanozymes combine with enzymes that can be inhib-
ited by OPs such as acetylcholinesterase (AChE), alkaline 
phosphatase (ALP), and ACP [132–141]; (4) nanozymes 
combine with antibodies or aptamers [142, 143]. Since a 
review of comprehensive and systematic description of 
detecting OPs has been reported [10], this paper will not 
delve into too much detail.

Challenges and prospects
Nanozymes can overcome some drawbacks of natural 
enzymes and exhibit higher catalytic activity. At present, 
some nanozymes have been designed for the analysis of 
plant samples, but there are still some limitations. To 
promote the development of nanozymes and their appli-
cation in the detection of plant samples, the following 
challenges and prospects are proposed.

(1)	 The nanozymes currently used for phytochemi-
cal detection are mainly nanomaterials with POD-
like or OXD-like activity. The similar detection 
mechanisms (inhibition on the catalytic activity 
of nanozymes by antioxidant properties) make it 
challenging to achieve high specificity in detection. 
Therefore, the design of nanozymes with other cat-

alytic properties or multiple reaction mechanisms 
to improve the selectivity of nanozymes for the 
detection of phytochemicals deserves further inves-
tigation.

(2)	 The variety of components based on nanozymes 
detection in real samples is limited. In plant sam-
ples, complex compositions may affect the activ-
ity of nanozymes, leading to inaccurate results. 
Accordingly, detecting active ingredients in real 
samples often requires complex pretreatments. 
Developing nanozymes with specific adsorption 
or combination with other techniques (e.g., MIP) 
shows greater prospects.

(3)	 In the detection of hazardous substances (e.g., 
heavy metal ions and pesticide residues), most sam-
ples are spiked with them rather than detecting 
their actual contents directly. This may be due to 
the low level of hazardous substances in the origi-
nal sample and the lack of sensitivity of the assay. 
Modification of nanomaterials with small molecules 
(e.g., fluorescein derivatives and vitamin B6) that 
possess POD-like activity to enhance their enzyme-
like activity or enable multiple enzyme activities are 
anticipated to improve the sensitivity of the assay.

(4)	 Nanozyme-based methods for the detection of 
mycotoxins are mostly combined with immune 
methods or aptamers, making them more complex 
than direct colorimetric or fluorescent assays. Only 

Fig. 12  Schematic diagram of multi-colorimetric detecting OTA. Reprinted with permission from [110]
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Table 5  Summary of detection of organophosphorus pesticide in plants based on nanozymes

Nanozyme/activity Analyte Method Sample LOD(µM) Linear range(µM) Refs.

DTAB-ZnTPyP/POD Trichlorfon/dichlorvos/
thimet

Colorimetric Apple juice, cabbage, 
human plasma, 
Chrysanthemum 
morifolium, 
Atractylodes 
macrocephala, Lilium 
brownie, and soil

0.25/1.02/0.66 μg/L 1–35/5–45/1–40 μg/L [117]

Pt NPs/Fe-MOF/POD Dichlorvos Colorimetric Apple and tomato 2.9 pg/mL 0.01–10.0 ng/mL [137]

DPA-Ce-GMP/OXD Dimethoate Colorimetric Leaf lettuce, 
brassica campestris, 
and cucumber

0.024 μg/L 0.03–80 μg/L [138]

FCC/Sm-CeO2/OPH Methyl paraoxon/Ni2+ Fluorescence 
Colorimetric

Ginseng Radix et 
Rhizoma Rubra, 
Nelumbinis Semen, 
and water

1.25/0.01
–

1.25–60/0.1–8
14.3–285/2.85–285

[127]

CeO2/OPH Methyl paraoxon Electrochemistry Nelumbinis Semen, 
Coix lacryma-jobi, 
and Adenophora stricta

0.06 0.1–100 [122]

CFP/Sm-CeO2/OPH Methyl paraoxon Fluorescence Poria cocos and Coicis 
Semen

1.0 2–50 [130]

CDs/nanoceria/
phosphatase

Methyl paraoxon Fluorescence Panax quinquefolius 
and water

0.375 1.125–26.25 [125]

Nanoceria/OPH Methyl paraoxon Colorimetric/
spectroscopic

Nelumbinis Semen, 
Armeniacae 
Semen Amarum, 
and Dioscoreae 
Rhizoma

0.42 2.1–21/0.42–42 [129]

NiCo2O4-PAMAM-
peptide/PTE

Methyl paraoxon/Ethyl 
paraoxon

Electrochemistry Brassica chinensis, 
tomatoes, and broccoli

0.08/0.16 0.2–100/0.5–100 [131]

Au NBPs@Fe-MOF/
POD

Ethyl paraoxon Colorimetric Apple peel and lake 
water

0.01 μg/mL 0.01–0.8 μg/mL [136]

Au-pCeO2/
phosphatase

Methyl parathion Colorimetric Pears and lettuces 0.5 5–200 [123]

ZrO2/CeO2/PAA/
phosphatase

Methyl parathion Colorimetric Corn 0.021 × 10–3 0.076 × 10–3–76 × 10–3 [128]

Mn SAN/SOD Acetamiprid Chemiluminescence Glycyrrhiza uralensis 
and Astragalus 
membranaceus

0.3 pg/mL 1.0–10000 pg/mL [143]

Ni-NPC/POD Carbaryl Colorimetric Pakchoi and rape 1.5 ng/mL 5–100 ng/mL [156]

g-C3N4/BiFeO3NCs/
POD

Chlorpyrifos/carbaryl Colorimetric 
Chemiluminescence

Salvia miltiorrhiza, 
Codonopsis pilosula, 
and lake water

–
0.033 ng/mL

–
1.0–60/1.0–40 ng/mL

[142]

Ir(III)/GO/POD Pirimicarb Colorimetric Pakchoi and apple 0.00281 0.01–0.3 [157]

AuNCs@ZIF-8/POD OPs Colorimetric 
Fluorescence

Lettuce extract 
and water

0.3 μg/L
0.67 μg/L

0.75 μg/L–75 mg/L
0.75 μg/L–100 mg/L

[132]

SA-Fe-NZ/POD OPs Colorimetric/ 
Electrochemistry

Cucumber, spinach, 
leek, and broccoli

3.55 × 10–9 10–7–104 [119]

PANI-MnO2/OXD Glyphosate Colorimetric Pear, cucumber, 
soybean, soil 
and water

0.39 0.50–50 [139]

SA-CoN3/OXD Glyphosate Colorimetric Lake water, apple, pear, 
peach, and grape

0.79 0–10 [140]

β-CD@DNA-CuNCs/
POD

Glyphosate Colorimetric Lake water, pease, oats, 
apple, pakchoi, potato, 
and tea

0.85 ng/mL 0.02–2 μg/mL [120]

Mn-ZIF-8/POD Chlorpyrifos Colorimetric Water, cucumber, 
and pork

54 × 10–6 0.0001–0.02 [133]

CeO2@NC/OPH Paraoxon Colorimetric Garlic chives – 3.0–100.0 [124]
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one study was found on the direct colorimetric 
detection of AFB1 in corn and peanut samples, but 
its sensitivity is relatively low [89]. Hence, it is nec-
essary to develop more sensitive and direct meth-
ods for easier analysis.

(5)	 Currently, there is less literature on detecting heavy 
metal ions in plant samples (especially in CHMs) 
based on nanozymes. CHMs have been extensively 
used in disease treatment and healthcare for their 
unique therapeutic effects [144]. However, they are 
susceptible to contamination by chemicals in the 
environment. Therefore, evaluating the safety of 
CHMs using nanozymes is very important.

(6)	 Although many nanozymes can mimic the catalysis 
activity of natural enzymes, their specificity is still 
inadequate and requires further optimization. In 
addition, some soluble transition metal nanozymes 
may be highly toxic and contaminate environment 
by releasing toxic metal ions. Consequently, it is 
important to develop nanozymes with improved 
specificity and biocompatibility.

Conclusions
This paper summarizes the applications of nanomaterials 
with enzyme-like activity in plant samples analysis from 
2015 to the present, including the analysis of phytochem-
icals, organophosphorus pesticides, heavy metal ions, 
and mycotoxins. Improving the selectivity is a research 
priority for the detection of phytochemicals, which may 
be achieved through multimode detection and molecular 
imprinting. Furthermore, due to the trace levels of con-
taminates, it is crucial to improve sensitivity for detecting 
hazardous substances. There are various methods have 
been reported to achieve this goal, including the cascade 
reaction of natural enzymes with nanozymes and the 
enhancement of nanozymes’ catalytic activity through 
doping with other elements or material modification. In 
general, designing nanozymes with more enzyme-like 
activities and improving the specificity and sensitivity in 
their applications are the focus of future research.
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Table 5  (continued)

Nanozyme/activity Analyte Method Sample LOD(µM) Linear range(µM) Refs.

Cu-C3N4/POD Paraoxon Colorimetric Scallion 0.013 0.1–33 [134]

Fe-PTs/POD Paraoxon Colorimetric Rice, wheat, 
and Yangtze River 
water

0.28 ng/mL 0.5–250 ng/mL [135]

Co3O4/rGO/PTE Paraoxon Colorimetric Cabbage and river 
water

0.8 8–140 [126]

Fe–N/C SAzyme/OXD Malathion Colorimetric Lake water, apple, 
tomato, cabbage, 
and spinach

0.42 × 10–3 0.0005–0.01 [141]

Ag2O/OXD Dimethoate Colorimetric Pepper, green bean, 
and cabbage

14 μg/L 20–160 μg/L [118]

Fe3O4/Cu-MOF/LAC Thiram Electrochemistry Pear, apple, broccoli, 
cucumber, and river 
water

0.15 × 10–3 0.01–3.00 [145]

Cu-BDC-NH2/LAC 
and POD

Pesticides Sensor arrays Chilli, pear, celery, 
tomato, cherry, 
and nectarine

– 1–100 μg/mL [121]
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AuNPs	� Gold nanoparticles
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CDs	� Carbon dots
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NCH	� N-doped hollow carbon microspheres
NIR	� Near-infrared
NLISA	� Nanozyme-linked immunosorbent assay
N-Mn3O4 NSps	� Nitrogen-doped Mn3O4 nanospheres
NPs	� Nanoparticles
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OPD	� O-Phenylenediamine
OPs	� Organophosphorus pesticides
OTA	� Ochratoxin A
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