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Abstract 

Background  Several surgical options for degenerative lumbar spinal stenosis (LSS) are available, but current guide-
lines do not recommend which one should be prioritized. Although previous network meta-analyses (NMAs) have 
been performed on this topic, they have major methodological problems and could not provide the convincing 
evidence and clinical practical information required.

Methods  Randomized controlled trials (RCTs) comparing at least two surgical interventions were included 
by searching AMED, CINAHL, EMBASE, the Cochrane Library, and MEDLINE (inception to August 2023). A frequentist 
random-effects NMA was performed for physical function and adverse events due to any reason. For physical func-
tion, three follow-up time points were included: short-term (< 6 months post-intervention), mid-term (≥ 6 months 
but < 12 months), and long-term (≥ 12 months). Laminectomy was the reference comparison intervention.

Results  A total of 43 RCTs involving 5017 participants were included in the systematic review and 28 RCTs encom-
passing 14 types of surgical interventions were included in the NMA. For improving physical function (scale 0–100), 
endoscopic-assisted laminotomy (mean difference: − 8.61, 95% confidence interval: − 10.52 to − 6.69; moderate-quality 
evidence), laminectomy combined with Coflex (− 8.41, − 13.21 to − 3.61; moderate quality evidence), and X-stop 
(− 6.65, − 8.60 to − 4.71; low-quality evidence) had small effects at short-term follow-up; no statistical difference 
was observed at mid-term follow-up (very low- to low-quality evidence); at long-term follow-up, endoscopic-assisted 
laminotomy (− 7.02, − 12.95 to − 1.08; very low-quality evidence) and X-stop (− 10.04, − 18.16 to − 1.93; very low-quality 
evidence) had a small and moderate effect, respectively. Compared with laminectomy, endoscopic-assisted laminot-
omy was associated with fewer adverse events due to any reason (odds ratio: 0.27, 0.09 to 0.86; low-quality evidence).
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Conclusions  For adults with degenerative LSS, endoscopic-assisted laminotomy may be the safest and most 
effective intervention in improving physical function. However, the available data were insufficient to indicate 
whether the effect was sustainable after 6 months.

Trial registration  PROSPERO (CRD42018094180).

Keywords  Lumbar spinal stenosis, Surgery, Systematic review, Network meta-analysis, Musculoskeletal disease, 
Orthopaedics

Background
Degenerative lumbar spinal stenosis (LSS) is a narrowing 
of the spinal canal diameter due to age-related changes, 
with a prevalence of up to 47% in adults aged 60  years 
and older, and is also a major cause of low back pain and 
associated disability [1, 2]. Although conservative care 
(e.g. exercise and physical therapy) is recommended as 
initial treatment, patients still need surgical interventions 
if pain persists after receiving conservative care [3]. For 
example, a recent study which is based on US nationally 
representative data found that about 165,000 patients 
who were hospitalized for LSS received surgery in 2019 
and the rate increased from 54.2 per 100,000 in 2016 
to 64.7 per 100,000 in 2019 [4]. There are a few surgical 
options (e.g. decompression only, decompression with 
fusion, and interspinous process spacer device) available 
for surgeons to manage degenerative LSS; however, cur-
rent clinical guidelines do not recommend which surgical 
intervention should be prioritized [5, 6].

Network meta-analysis (NMA) is an extension of tra-
ditional pairwise meta-analysis. An advantage of NMA 
is that it combines direct evidence (referring to data 
from competing interventions through direct head-to-
head comparisons) and indirect evidence (referring to 
data from competing interventions that have not been 
compared directly but with the same comparator inter-
vention) to simultaneously compare more than two 
competing interventions within a single network [7]. In 
addition, a key advantage of NMA over pairwise meta-
analysis is that it increases the precision of effect esti-
mates by combining both direct and indirect evidence 
[8]. An NMA can also provide a relative ranking of com-
peting interventions, thus, the superiority of different 
interventions for a given outcome [9].

Although previous NMAs have been performed on this 
topic, they have important limitations, such as the inclu-
sion of non-randomized controlled trials, misclassifica-
tion of the surgical intervention, inappropriate selection 
of the comparison group, and inclusion of a mixed popu-
lation (e.g. patients with spinal instability) [10–15].

To address these gaps, we performed a systematic 
review with NMA to investigate the comparative effec-
tiveness and safety of different types of surgical interven-
tions for degenerative LSS.

Methods
Study design
The study followed the PRISMA Extension Statement 
for Reporting of Systematic Reviews Incorporating 
Network Meta-analyses of Health Care Interventions 
(Additional file  1) [16]. The protocol was registered 
on PROSPERO (registration No CRD42018094180) 
and published elsewhere [17]. There have been two 
deviations from the original protocol. Firstly, we have 
deleted the non-surgical nodes (e.g. exercise) given 
the high crossover rates involved in these compari-
sons potentially preventing meaningful analyses of the 
results [18]. Secondly, we further refined the surgical 
nodes (e.g. conventional decompression was refined to 
laminectomy, midline preserving decompression was 
refined to laminotomy) due to inconsistencies found in 
the initial node analysis. This refinement resolved the 
inconsistencies (Additional file  2: Supplementary A. 
Tables S1-S3) [17, 18].

Data sources
We searched AMED, CINAHL, EMBASE, the Cochrane 
Library, and MEDLINE from the database inception until 
August 2023. Search strategies are detailed in Additional 
file 2: Supplementary B. We also screened the reference 
lists of all included studies, relevant systematic reviews 
and meta-analyses, and guidelines for eligible additional 
studies.

Study selection
We included parallel randomized controlled trials that 
enrolled participants who were aged 40  years or older 
with a diagnosis of degenerative LSS. Included studies 
had to compare one type of surgical intervention with 
another.

Exclusion criteria
We excluded studies on patients with malignancy, 
trauma, vertebral fracture, infection, and inflammatory 
disease. In addition, for studies that included patients 
with degenerative LSS and associated spondylolisthesis, 
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only those with Meyerding grade I spondylolisthesis were 
included [17].

Outcome measures
The primary outcome for effectiveness was physical func-
tion. Secondary outcomes for effectiveness included the 
intensity of back pain and leg pain. Considering that 
different measurement tools could be used for these 
outcomes, we followed the study by Busse et  al. [19] 
and harmonized the different scoring systems as 0–100 
(lower score means less pain and better physical func-
tion), with the magnitude of effect estimates being classi-
fied as small (5–10), moderate (> 10–20), and large (> 20) 
[20]. Three follow-up time points were included: (1) 
short-term follow-up (< 6 months post-intervention), (2) 
mid-term follow-up (≥ 6  months but < 12  months post-
intervention), and (3) long-term follow-up (≥ 12 months 
post-intervention) [17]. If two or more follow-up assess-
ments occurred within a given time point, we used data 
that were assessed at the time point closest to the lower 
limit of the respective category.

The primary outcome for safety was the rate of adverse 
events due to any reason. Secondary outcomes for safety 
included reoperation rate and treatment withdrawal due 
to any reason. Adverse events due to any reason and 
reoperation rate were defined as the rate of events con-
sidering the reporting mainly summarized the number 
of events rather than the proportion of participants who 
had events. Given the impact of reoperations on patients 
and the healthcare system, the outcome of adverse events 
due to any reason did not include reoperations. Treat-
ment withdrawal due to any reason was defined as the 
proportion of participants.

Other planned outcomes were not included in the 
analysis due to insufficient data to perform NMAs or 
the sparsely connected network from the available data 
(descriptive results are detailed in Additional file 2: Sup-
plementary C).

Data extraction
Two authors (LC and BG) independently extracted data 
on study characteristics (e.g. publication year, geographi-
cal region, study duration, and funding source) and 
patient characteristics (e.g. mean age, sex ratio, stenosis 
level, and stenosis type). Differences were resolved by 
discussion between the two authors, with a third author 
(MF) consulted if disagreement persisted.

Risk of bias in individual studies and confidence 
in the evidence
Two authors (LC and BG) independently assessed the 
risk of bias through the revised Cochrane risk-of-bias 
tool for randomized trials (RoB 2)[21]. RoB 2 includes 

five domains (randomization process, deviations from 
intended interventions, missing outcome data, meas-
urement of the outcome, and selection of the reported 
result), with each domain rated, and an overall score pro-
vided as either: low risk of bias, some concerns, or high 
risk of bias. Two authors (LC and BG) independently 
used the Grading of Recommendations, Assessment, 
Development and Evaluation (GRADE) approach to 
evaluate the quality of evidence through the Confidence 
in Network Meta-Analysis (CINeMA) web application 
[8]. CINeMA covers six domains (within-study bias, 
reporting bias, indirectness, imprecision, heterogeneity, 
and incoherence) [8]. For each domain, there are three 
ratings: no concerns, some concerns, and major con-
cerns [8]. The default overall level for each evidence is 
“high”. With “major concerns” in one domain, the rating 
is degraded by two levels; with “some concerns” in one 
domain, the rating is degraded by one level, and with “no 
concerns” in one domain, the rating is not degraded [8, 
22]. The final level for each evidence is judged as “high” 
(when it is not degraded in total), “moderate” (when it is 
degraded by one level in total), “low” (when it is degraded 
by two levels in total), and “very low” (when it is degraded 
by more than two levels in total) [8, 22].

Treatment node classification
The final NMA included 14 nodes for surgical inter-
ventions (detailed in Table  1), which were classified as 
four nodes for traditional surgical approaches (i.e. lami-
nectomy, laminectomy with fusion, laminectomy with 
Coflex, and subtotal laminectomy), seven nodes for 
minimally invasive surgical approaches (i.e. microscopic-
assisted subtotal laminectomy, endoscopic-assisted sub-
total laminectomy, microscopic-assisted split–spinous 
process subtotal laminectomy, microscopic-assisted 
laminotomy, endoscopic-assisted laminotomy, micro-
scopic-assisted split–spinous process laminotomy, and 
microscopic-assisted spinous process osteotomy lami-
notomy), and three nodes for interspinous process spacer 
devices (i.e. Coflex, Superion, and X-stop). Laminectomy 
was the reference comparison intervention.

Statistical analysis
Basic characteristics of all included studies were sum-
marized (detailed in Additional file  2: Supplementary 
D. Tables S1-S5)[25, 26, 28, 33, 35–79]. Given the dif-
ferent symptomatology of different types (i.e. central, 
lateral, or foraminal) of degenerative LSS, we initially 
planned to analyse them separately. However, a num-
ber of studies did not specify the type, so we classified 
the included studies as non-foraminal and foraminal 
stenosis. As only four studies were related to foraminal 
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stenosis, quantitative analyses were only performed for 
non-foraminal stenosis.

The random effects NMA through a frequentist 
approach was performed using the restricted maximum 
likelihood method, and the 95% confidence intervals (CI) 
were estimated using the Hartung-Knapp-Sidik-Jonk-
man approach [80]. We assumed that the heterogeneity 
variance across different comparisons within the NMA 
model was the same [81]. Continuous (e.g. physical func-
tion) and binary (e.g. adverse events due to any reason) 
outcomes were reported mean difference (MD) with 95% 
CI and odds ratio (OR) with 95% CI, respectively. We 
estimated the mean rank and relative treatment rankings 
for each intervention node according to the surface under 
the cumulative ranking curve (SUCRA) values [82]. We 

produced rankograms for the primary outcomes at each 
time point of analysis [82].

Transitivity was assessed by visual inspection of a table 
containing study characteristics. The global and local 
inconsistency was assessed through the design-by-treat-
ment interaction model and the Bucher method, respec-
tively [83]. Small-study effects were evaluated through 
two methods: first, visual inspection of comparison-
adjusted funnel plots; second, meta-regression based 
on the total sample size. To examine the robustness of 
the results, we performed extensive sensitivity analy-
ses: first, excluding studies that received commercial 
fundings; second, excluding studies that only recruited 
patients with multiple level stenosis; third, excluding 
studies that recruited patients without degenerative 

Table 1  Final treatment nodes included in the network meta-analysis

Treatment node Description

Traditional surgical approaches
  Laminectomy A type of surgery removing osseous elements (vertebrae lamina, vertebral arch, 

and spinous process) to provide decompression. [23, 24]

  Laminectomy with fusion A type of surgery involving the use of spinal implants (e.g. pedicle screws) to sta-
bilize the fused segments after laminectomy. [23]

  Laminectomy with Coflex A type of surgery implanting the Coflex after laminectomy

  Subtotal laminectomy A type of surgery similar to laminectomy but preserving both facet joints as much 
as possible while leaving the upper part of the spinous process and lamina. [25]

Minimally invasive surgical approaches
  Microscopic-assisted subtotal laminectomy A microscopic-assisted partial laminectomy limiting the extent of bony decom-

pression (compared with laminectomy) with or without resection of the spinous 
process. [24]

  Endoscopic-assisted subtotal laminectomy An endoscopic-assisted partial laminectomy limiting the extent of bony decom-
pression (compared with laminectomy) with or without resection of the spinous 
process. [24]

  Microscopic-assisted split–spinous process subtotal laminectomy A type of surgery involving longitudinally splitting of the spinous process, partial 
laminectomy, and reconstructing/repositioning the split sections of the spinous 
process. [26, 27]

  Microscopic-assisted laminotomy A type of microscopic-assisted surgery removing unilateral or bilateral vertebrae 
lamina but leaving the spinous process intact. [23, 24]

  Endoscopic-assisted laminotomy A type of endoscopic-assisted surgery removing unilateral or bilateral vertebrae 
lamina but leaving the spinous process intact. [23, 24]

  Microscopic-assisted split–spinous process laminotomy A type of microscopic-assisted surgery involving longitudinally splitting 
the spinous process into halves with removing vertebrae lamina to provide 
decompression. [23, 28]

  Microscopic-assisted spinous process osteotomy laminotomy A type of microscopic-assisted surgery involving an osteotomy at the base 
of the spinous process with removing vertebrae lamina to provide decompres-
sion. [29]

Interspinous process spacer devices
  X-stop A titanium device, consisting of an oval titanium core that is designed to fit 

within the interspinous ligament, and secured within the ligament by two lateral 
wings. [30, 31]

  Superion A titanium device, consisting of an implant body and two cam lobes that rotate 
during deployment to encompass the lateral aspects of the superior and inferior 
spinous processes. [30, 32]

  Coflex A titanium implant that fits between the spinous processes of the lumbar spine, 
consisting of two components: a wing assembly and a spacer assembly. [33, 34]
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spondylolisthesis; fourth, excluding studies that recruited 
patients with mixed type stenosis; fifth, excluding stud-
ies with high risk of bias; sixth, excluding studies that 
published prior to year 2010; seventh, excluding stud-
ies with imputed data; eighth, for adverse events due to 
any reason, excluding studies where the study endpoints 
were not long term. The following sensitivity analy-
ses have been conducted to verify the robustness of our 
conclusions: first, excluding studies with unclear par-
ticipant description of a history of lumbar spine surgery 
in the inclusion and exclusion criteria; second, adopting 
an alternative definition of treatment nodes (i.e. tradi-
tional surgical approaches, minimally invasive surgical 
approaches, interspinous process spacer devices); third, 
using the change score as the value.

Results
A total of 28,272 records were retrieved through elec-
tronic databases (AMED, CINAHL, EMBASE, the 
Cochrane Library, and MEDLINE) and other sources 
(grey literature and reference lists of relevant systematic 
reviews and clinical practice guidelines) from incep-
tion to April 2018, and a total of 24,732 records were 
retrieved through the same sources from May 2018 to 
August 2023. After screening 43,428 titles and abstracts 
and 340 full-text articles, 49 documents corresponding 
to 43 randomized controlled trials (RCTs) were included 
in the systematic review, and 34 documents correspond-
ing to 28 RCTs were eligible for the network meta-anal-
ysis (Fig.  1). Six studies [65–70] had undefined surgical 

interventions (e.g. decompression only without specific 
surgical details [e.g. laminectomy]) that could not be clas-
sified and were, therefore, excluded. Four studies [71–74] 
had treatment arms with mixed surgical interventions 
(e.g. participants in the decompression group received 
laminectomy or laminotomy, but no detailed proportions 
of participants who received laminectomy or laminot-
omy), which could not be assigned exclusively to a single 
treatment node and were, therefore, excluded. Four stud-
ies [75–78] included surgical interventions for foraminal 
stenosis and could not form a network structure, so the 
data could not be pooled and these studies were, there-
fore, excluded. One study [79] had a high risk of bias in 
the randomization process, so it was excluded with refer-
ence to our published protocol paper in BMJ Open [17] 
(Additional file  2: Supplementary E. Table  S1). Figure  2 
shows the network plots for the primary outcomes.

Overview of studies
Table  2 presents the general characteristics of the 43 
included studies, separated by the primary outcomes. 
Most studies were published between 2016 and 2023, 
did not report funding sources, and were two-arm 
trials. The top three continents were Asia, Europe, 
and North America. The long-term duration of fol-
low-up was the most frequently assessed time point. 
Among traditional surgical approaches, laminectomy 
was the most frequently investigated intervention. 
Among minimally invasive surgical approaches, micro-
scopic-assisted laminotomy was the most frequently 

Fig. 1  Study selection flowchart. *One RCT reported data on three documents (results on 2-year follow-up, 3-year follow-up, and 5-year follow-up), 
one RCT reported data on two documents (results on 6-month follow-up and 3-year follow-up), one RCT reported data on three documents (results 
on 2-year follow-up, 3-year follow-up, and 5-year follow-up), one RCT reported data on two documents (results on 2-week follow-up and 1-year 
follow-up). RCT: Randomized controlled trial
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investigated intervention. Among interspinous process 
spacer devices, X-stop was the most frequently investi-
gated intervention.

Transitivity
We summarized the study characteristics across direct 
comparisons within the network for physical function 
and adverse events due to any reason (Additional file 2: 
Supplementary F. Tables S1-S2). The mean age was simi-
lar across the different comparisons, mostly between 
55 and 70  years. The percentage of males was similar 
across the different comparisons, mostly between 40 and 
60%. The included studies provided insufficient data on 
the percentage of smokers and the mean BMI. Further 
meta-regression did not suggest mean age, or the pro-
portion of males were effect modifiers (Additional file 2: 
Supplementary G. Tables S1-S6) [17, 81]. Additionally, 
meta-regression based on mean baseline levels of physi-
cal function did not suggest it was an effect modifier. 
Overall, we considered the assumption of transitivity to 
be valid.

Risk of bias
For physical function, of the 28 unique studies included 
in the NMA, two were judged as having low risk of bias, 
16 as having some concerns, and 10 as having high risk of 
bias (Fig. 3 and Additional file 2: Supplementary H. Tables 
S1-S2). For adverse events due to any reason, of the 24 
unique studies included in the NMA, three were judged 
as having low risk of bias, 16 as having some concerns, 
and five as having high risk of bias (Fig. 3 and Additional 
file 2: Supplementary H. Tables S3-S4). For back pain, of 
the 18 unique studies included in the NMA, two were 
judged as having a low risk of bias, ten as having some 
concerns, and six as having a high risk of bias (Additional 
file  2: Supplementary H. Tables S5-S6). For leg pain, of 
the 18 unique studies included in the NMA, two were 
judged as having a low risk of bias, ten as having some 
concerns, and six as having a high risk of bias (Additional 
file 2: Supplementary H. Tables S7-S8). For the reopera-
tion rate, of the 18 unique studies included in the NMA, 
three were judged as having a low risk of bias, 11 as hav-
ing some concerns, and four as having a high risk of bias 
(Additional file  2: Supplementary H. Tables S9-S10). 

Fig. 2  Network plots of physical function and adverse events due to any reason. The width of the lines is proportional to the number of trials 
comparing each pair of interventions. The size of the nodes is proportional to the number of participants. Laminectomy + fusion: Laminectomy 
with fusion; Laminectomy + Coflex: Laminectomy with Coflex; M-subtotal laminectomy: Microscopic-assisted subtotal laminectomy; E-subtotal 
laminectomy: Endoscopic-assisted subtotal laminectomy; M-SSP-subtotal laminectomy: Microscopic-assisted split–spinous process subtotal 
laminectomy; M-laminotomy: Microscopic-assisted laminotomy; E-laminotomy: Endoscopic-assisted laminotomy; M-SSP-laminotomy: 
Microscopic-assisted split–spinous process laminotomy; M-SPO-laminotomy: Microscopic-assisted spinous process osteotomy laminotomy
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Table 2  General characteristics of included studies in the systematic review

Characteristics Primary outcomes

Physical function Adverse events 
due to any 
reason

Publication characteristics
  Total number of unique studies included 42 37

  Publication year
    1995–2000 0 1

    2000–2007 4 3

    2008–2015 14 14

    2016–2023 24 19

  Funding
    Commercial 15 14

    Non-commercial 11 8

    Not reported 16 15

Study design characteristics
  Range of study sample size 22–437 22–437

  No of intervention arms included
    2 arms 38 33

    3 arms 4 4

  Studies with durations of follow-upa

    Short-term (< 6 months) 26 1

    Mid-term (6–12 months) 22 1

    Long-term (≥ 12 months) 39 35

  Study setting
    Single centre 19 17

    Multicentre 14 12

    Not reported 9 8

No. of studies containing the following treatment nodes (only included in the NMA)
  Traditional surgical approaches
    Laminectomy 13 12

    Laminectomy with fusion 4 3

    Laminectomy with Coflex 2 2

    Subtotal laminectomy 1 1

  Minimally invasive surgical approaches
    Microscopic-assisted subtotal laminectomy 4 4

    Endoscopic-assisted subtotal laminectomy 1 1

    Microscopic-assisted split–spinous process subtotal laminectomy 1 1

    Microscopic-assisted laminotomy 18 14

    Endoscopic-assisted laminotomy 6 4

    Microscopic-assisted split–spinous process laminotomy 3 3

    Microscopic-assisted spinous process osteotomy laminotomy 1 1

  Interspinous process spacer devices
    X-stop 3 3

    Superion 1 1

    Coflex 1 1

  Continent
    Asia 19 15

    Europe 15 14

    North America 4 4

    Oceania 1 1
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For treatment withdrawal due to any reason, of the 18 
unique studies included in the NMA, three were judged 
as having a low risk of bias, 12 as having some concerns, 
and three as having a high risk of bias (Additional file 2: 
Supplementary H. Tables S11-S12). The main concerns 
related to risk of bias were from deviations from intended 
interventions, missing outcome data, and measurement 
of the outcome.

Physical function
We did not detect any inconsistency at short-term 
follow-up (Additional file  2: Supplementary I. Tables 
S1-S3 and Supplementary J. Tables S1-S3). However, we 
detected global inconsistency at mid-term and long-
term follow-ups. At these time points, local inconsist-
ency was detected. Sensitivity analyses were conducted 
at these two time points, which resolved the presence 
of inconsistency by removing one three-arm study [26] 
(i.e. laminectomy, microscopic-assisted laminotomy, 

and microscopic-assisted split–spinous process subtotal 
laminectomy).

For the short-term follow-up, 20 trials including 
2939 patients and 13 interventions were included in 
the NMA (Fig. 2). Compared with laminectomy, endo-
scopic-assisted laminotomy (MD − 8.61, 95% CI − 10.52 
to − 6.69, 0–100 scale; moderate-quality evidence), 
laminectomy combined with Coflex (− 8.41, − 13.21 
to − 3.61; moderate-quality evidence), and X-stop 
(− 6.65, − 8.60 to − 4.71; low-quality evidence) had 
small effects on improving physical function; micro-
scopic-assisted laminotomy had a statistically signifi-
cant effect (− 3.05, − 4.57 to − 1.54; moderate-quality 
evidence); no statistical difference was observed for 
other surgical interventions (Fig.  4 and Additional 
file  2: Supplementary K. Table  S1) [8, 17, 20–22, 83–
86]. For physical function at mid-term follow-up, 18 
trials including 1649 patients and 9 interventions were 
included in the NMA (Fig. 2). Compared with laminec-
tomy, no statistical difference was observed for other 

Table 2  (continued)

Characteristics Primary outcomes

Physical function Adverse events 
due to any 
reason

    Africa 2 2

    International 1 1

Patient characteristics
  Stenosis level
    Single 16 12

    Multiple 5 4

    Mixed 20 20

    Not reported 1 1

  Stenosis type
    Central 9 7

    Lateral 1 1

    Foraminal 4 3

    Mixed 7 6

    Not reported 21 20

Degenerative spondylolisthesis
    Low grade spondylolisthesis (Meyerding I grade) 32 28

    No spondylolisthesis 10 9

    Range of mean age (years); No. of studies 53.5–73.7; 41 53.5–73.7; 36

    Range of males (%); No. of studies 19.7–79.2; 40 19.7–63.6; 35

    Range of mean body mass index; No. of studies 23.3–29.7; 19 23.3–29.7; 16

    Range of smokers (%); No. of studies 0–51.4; 12 0–51.4; 8

    Range of mean baseline physical function (0–100)b; No. of studies 30.4–86; 41 NA
a For physical function, if a unique study involves short-term, mid-term, and long-term outcomes, it will be counted in the corresponding items separately; for adverse 
events due to any reason, only the study endpoint of a unique study will be counted in the corresponding item
b Mean baseline physical function measured by different instruments have been adjusted to a range of 0 to 100, a score closed to 0 means less disability, and a score 
closed to 100 means more disability
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surgical interventions (very low- to low-quality evi-
dence; Additional file 2: Supplementary K. Table S2 and 
Supplementary L. Figure S1 and Table  S1). For physi-
cal function at long-term follow-up, 26 trials including 
3251 patients and 14 interventions were included in 
the NMA (Fig. 2). Compared with laminectomy, X-stop 
(− 10.04, − 18.16 to − 1.93; very low-quality evidence) 
had a moderate effect on improving physical func-
tion; endoscopic-assisted laminotomy (− 7.02, − 12.95 
to − 1.08) and microscopic-assisted split–spinous pro-
cess laminotomy (− 7.18, − 13.24 to − 1.11) had small 
effects (very low-quality evidence); microscopic-
assisted laminotomy had a statistically significant effect 
(− 4.36, − 8.11 to − 0.61; low-quality evidence) with-
out clinical importance; no statistical difference was 

observed for other surgical interventions (Fig.  4 and 
Additional file 2: Supplementary K. Table S3).

Sensitivity analyses showed similar results at short- 
and mid-term follow-up with unstable estimates at 
long-term follow-up (Additional file  2: Supplemen-
tary M. Tables S1-S30). The comparison-adjusted fun-
nel plots, and meta-regression based on sample size, 
did not suggest small-study effects (Additional file  2: 
Supplementary G. Table  S1 and Supplementary N. 
Figures S1-S3).

Based on the ranking results (Additional file  2: Sup-
plementary O. Figures  S1-S3), the most highly ranked 
intervention was endoscopic-assisted laminotomy 
at short-term follow-up and X-stop at long-term 
follow-up.

Fig. 3  Summary plot for primary outcomes showing the number of studies included in the network meta-analysis judged to be low, some, or high 
risk of bias
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Adverse events due to any reason
We did not detect any inconsistency (Additional 
file  2: Supplementary I. Table  S4 and Supplementary 
J: Table  S4). A total of 24 trials including 2995 patients 
and 14 interventions were included in the NMA (Fig. 2). 
Compared with laminectomy, endoscopic-assisted lami-
notomy was associated with fewer adverse events due 
to any reason (OR 0.27, 95% CI 0.09 to 0.86; low-qual-
ity evidence); no statistical difference was observed 
for other surgical interventions (Fig.  4 and Additional 
file  2: Supplementary K. Table  S4). Sensitivity analyses 
showed similar results (Additional file 2: Supplementary 
M. Tables S31-S39). The comparison-adjusted funnel 
plots, and meta-regression based on sample size, did not 

suggest small-study effects (Additional file 2: Supplemen-
tary G. Table S2 and Supplementary N. Figure S4). Based 
on the ranking results (Additional file 2: Supplementary 
O. Figure S4), the most highly ranked intervention was 
endoscopic-assisted laminotomy. Further details on spe-
cific adverse events in included studies in the NMA are 
listed in Additional file 2: Supplementary P.

Secondary outcomes
For reducing back pain, microscopic-assisted lami-
notomy (MD -22.58, 95% CI − 30.53 to − 14.62, 0–100 
scale), endoscopic-assisted laminotomy (− 25.70, − 42.37 
to − 9.03), microscopic-assisted subtotal laminectomy 
(− 29.85, − 43.81 to − 15.89), subtotal laminectomy 

Fig. 4  Network meta-analyses for physical function and adverse events due to any reason. Laminectomy + fusion: Laminectomy with fusion; 
Laminectomy + Coflex: Laminectomy with Coflex; M-subtotal laminectomy: Microscopic-assisted subtotal laminectomy; E-subtotal laminectomy: 
Endoscopic-assisted subtotal laminectomy; M-SSP-subtotal laminectomy: Microscopic-assisted split–spinous process subtotal laminectomy; 
M-laminotomy: Microscopic-assisted laminotomy; E-laminotomy: Endoscopic-assisted laminotomy; M-SSP-laminotomy: Microscopic-assisted split–
spinous process laminotomy; M-SPO-laminotomy: Microscopic-assisted spinous process osteotomy laminotomy. Laminectomy was the reference 
comparison intervention. Comparisons should be read from left to right. Physical function and adverse events due to any reason estimates are 
located at the intersection between the column-defining intervention and the row-defining intervention. For physical function, data are in mean 
difference (95% CI), and data below 0 favour the column-defining intervention. For adverse events due to any reason, data are in odds ratio (95% 
CI), and data below 1 favour the column-defining intervention. The certainty of the evidence (according to confidence in network meta-analysis 
[CINeMA]) was also incorporated in this figure. Estimates in bold denoted significance at p < 0.05



Page 11 of 17Chen et al. BMC Medicine          (2024) 22:430 	

(− 26.67, − 48.76 to − 4.58), X-stop (− 25.67, − 38.73 
to − 12.61), Superion (− 23.64, − 42.64 to − 4.64), and 
Coflex (− 23.55, − 38.62 to − 8.47) had large effects (very 
low-quality evidence), microscopic-assisted spinous pro-
cess osteotomy laminotomy (− 16.91, − 30.95 to − 2.87) 
had moderate effects at short-term follow-up (very 
low-quality evidence); microscopic-assisted subto-
tal laminectomy (− 27.60, − 51.10 to − 4.10) and endo-
scopic-assisted subtotal laminectomy (− 33.85, − 66.83 
to − 0.87) had large effects (very low-quality evidence) at 
mid-term follow-up; microscopic-assisted laminotomy 
(− 16.83, − 30.54 to − 3.12) had moderate effect (very 
low-quality evidence) at long-term follow-up (Additional 
file 2: Supplementary K. Tables S5-S7 and Supplementary 
L. Figures S2-S4 and Tables S2-S4).

For reducing leg pain, laminectomy was better than 
microscopic-assisted split-spinous process subtotal lami-
nectomy (− 17.03, − 24.15 to − 9.92) at short-term follow-
up (very low-quality evidence); laminectomy was better 
than microscopic-assisted laminotomy (− 5.31, − 7.29 
to − 3.34), laminectomy combined with fusion 
(− 5.91, − 8.91 to − 2.91), and microscopic-assisted split-
spinous process subtotal laminectomy (− 8.64, − 10.50 
to − 6.79) at mid-term follow-up (low-quality evidence); 
laminectomy was better than microscopic-assisted split-
spinous process subtotal laminectomy (− 9.38, − 13.06, 
to − 5.70) at long-term follow-up (low-quality evidence); 
compared with laminectomy, X-stop had small effect 
(− 5.13, − 10.10 to − 0.17) at long-term follow-up (very 
low-quality evidence) (Additional file  2: Supplementary 
K. Tables S8-S10 and Supplementary L. Figures  S5-S7 
and Tables S5-S7).

For reoperation rate (very low- to moderate-quality 
evidence) and treatment withdrawal due to any reason 
(very low- to low-quality evidence), there was no statis-
tical difference between laminectomy and other surgical 
interventions (Additional file 2: Supplementary K. Tables 
S11-S12 and Supplementary L. Figures S8-S9 and Tables 
S8-S9).

Results of the inconsistency assessment, ranking 
results, and assessment of small-study effects are detailed 
in Additional file 2: Supplementary G. Tables S3-S6, Sup-
plementary I. Tables S5-S12, Supplementary J. Tables 
S5-S12, Supplementary N. Figures  S5-S12, and Supple-
mentary O. Figures S5-S12.

Other planned outcomes
Six planned outcomes, including overall pain (refer-
ring to pain that is not specific to a part of the body), 
health-related quality of life, mobility, global impression 
of recovery, all-cause mortality, and work absenteeism, 
were not included in the NMA due to insufficient data or 
a poorly connected network. For the outcome of overall 

pain, Cho et  al. [44] reported that microscopic-assisted 
split–spinous process laminotomy was better than lami-
nectomy at long-term follow-up (p = 0.001). For the out-
come of health-related quality of life, Ghogawala et  al. 
[45] reported that laminectomy with fusion was better 
than laminectomy at mid-term follow-up (p = 0.02), but 
the significant difference was not maintained at long-
term follow-up. For the global impression of recovery, 
Haddadi et  al. [26] reported that microscopic-assisted 
laminotomy was better than laminectomy (at short 
[p < 0.05], mid [p < 0.01], and long-term [p < 0.01] fol-
low-up) or microscopic-assisted split–spinous process 
subtotal laminectomy (at mid [p < 0.001] and long-term 
[p < 0.001] follow-up). For the outcomes of mobility, all-
cause mortality and work absenteeism, no significant 
differences were found in any of the comparisons. (Addi-
tional file 2: Supplementary C).

Discussion
Principal findings
Our study has identified that for adults with LSS, endo-
scopic-assisted laminotomy was the most effective 
surgical intervention to improve physical function at 
short-term follow-up, compared to laminectomy. For 
improving physical function at short-term follow-up, 
other surgical interventions with small effects compared 
to laminectomy include laminectomy combined with 
Coflex and X-stop. However, the available data were 
insufficient to indicate whether the effect was sustainable 
after 6  months. The available safety data indicated that 
endoscopic-assisted laminotomy may be the safest surgi-
cal intervention.

Comparison with other studies
We searched previous NMAs which included surgical 
interventions for LSS (Additional file  2: Supplemen-
tary Q) [87] and found six relevant studies [10–15]. 
All six NMAs presented ‘critically low’ methodologi-
cal quality according to the AMSTAR 2 tool (assessed 
by LC and BG). The main methodological limitations 
of these NMAs include inclusion of non-randomized 
controlled trials [11, 13], inclusion of heterogeneous 
participants (e.g. degenerative LSS with instable spon-
dylolisthesis [> Meyerding grade I] [10, 11, 13], spinal 
metastatic disease [10]), inappropriate comparison 
group (e.g. non-surgery [13, 14], undefined decom-
pression [10, 12, 15]), misclassification of the surgi-
cal intervention (e.g. decompression and laminectomy 
appeared simultaneously in the classification [14]). It 
is, therefore, not appropriate to directly compare our 
results with theirs. Our study has addressed the main 
limitations of previous NMAs by including RCT only, 
including more homogeneous participants, selecting 
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appropriate comparison groups, and providing more 
detailed descriptions of surgical interventions. Since 
the last NMA was published, we have also included five 
additional trials and two follow-up reports of previous 
published trials and therefore provide the most up to 
date and comprehensive evidence to date.

The cost of endoscopic techniques should also be con-
sidered. Although there is no comprehensive economic 
analysis for all available surgical options for LSS, sev-
eral existing studies have indicated that the endoscopic 
approach is more expensive than the open approach [88, 
89]. For instance, a recent study analysed 633 open and 
195 endoscopic decompression lumbar surgical proce-
dures and found that patients who received endoscopic 
approaches had significantly higher total in-hospital costs 
compared to those who received open approaches. Clini-
cians and policy makers should be aware of this point to 
better guide clinical practice.

Although leg pain is a secondary outcome in our study, 
it is an important outcome that clinicians are interested 
in for patients with LSS. Our study showed that laminec-
tomy was superior to several types of minimally inva-
sive surgical approaches for leg pain, which differs from 
the findings for the primary outcome, physical function. 
This suggests that clinicians should discuss with patients 
which outcomes they prioritize and use this information 
to guide the decision-making process for selecting the 
most suitable surgical intervention. Further studies are 
needed, as the quality of almost all the evidence for leg 
pain ranged from very low to low.

Limitations
Some limitations of this NMA should be mentioned. 
Firstly, it is important to note that the number of stud-
ies included in most comparisons is limited. While it is 
necessary to restrict the number of studies to obtain less 
biased estimates, it is also important to acknowledge that 
this may result in relatively imprecise estimates, which 
could lead to misunderstandings of the result. To enhance 
comprehension, we used GRADE to assess the quality of 
evidence and refrained from overinterpreting our results. 
Secondly, due to the poor and inconsistent reporting, the 
influence of several important factors (e.g. stenosis level, 
and stenosis type) could not be investigated. Future stud-
ies could consider individual patient data meta-analyses 
to explore this topic further, as performing high-quality 
RCTs, especially in the short term, is challenging [90]. 
Thirdly, the reporting of safety outcomes is inadequate. 
The majority of the studies included did not report the 
timing of adverse events or use a systematic method to 
gather relevant data. This should be improved in the 
design of future trials.

Conclusions
For adults with degenerative LSS, endoscopic-assisted 
laminotomy may be the safest and most effective inter-
vention in improving physical function. However, the 
available data were insufficient to indicate whether the 
effect was sustainable after 6 months. The results of this 
network meta-analysis can enhance the clarity of guide-
line recommendations on the most effective surgical 
interventions, helping patients and clinicians to make 
better-informed treatment decisions.
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