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M AT E R I A L S  S C I E N C E

Dynamic sparse x-ray nanotomography reveals 
ionomer hydration mechanism in polymer electrolyte 
fuel-cell catalyst
Zirui Gao1,2,3*, Christian Appel1, Mirko Holler1, Katharina Jeschonek4, Kai Brunnengräber4, 
Bastian J. M. Etzold4,5, Michal Kronenberg1,6, Marco Stampanoni1,2,  
Johannes Ihli1,7*, Manuel Guizar-Sicairos1,8*

Tomographic imaging of time-evolving samples is a challenging yet important task for various research fields. At 
the nanoscale, current approaches face limitations of measurement speed or resolution due to lengthy acquisitions. 
We developed a dynamic nanotomography technique based on sparse dynamic imaging and 4D tomography 
modeling. We demonstrated the technique, using ptychographic x-ray computed tomography as its imaging 
modality, on resolving the in situ hydration process of polymer electrolyte fuel cell (PEFC) catalyst. The technique 
provides a 40-time increase in temporal resolution compared to conventional approaches, yielding 28 nm half-
period spatial and 12 min temporal resolution. The results allow a quantitative characterization of the water intake 
process inside PEFC catalysts with nanoscale resolution, which is crucial for understanding their electrochemical 
mechanisms and optimizing their performance. Our technique enables high-speed operando nanotomography 
studies and paves the way for wider application of dynamic tomography at the nanoscale.

INTRODUCTION
Studying dynamic systems with computed tomography (CT) has 
been of great interest ever since the technique’s first introduction, as 
its penetrative and nondestructive properties provide a unique ability 
to image the interior of operando systems. The development of CT 
techniques able to image dynamic processes across a wide range of 
lengthscales and timescales has thus been an important topic over 
the past decades, and has seen applications in various research fields 
such as biology, chemistry, or energy materials (1–9). These tech-
niques have been used in different imaging modalities for a diverse 
spectrum of applications, ranging from CT imaging of cardiac and 
respiratory motions (2, 10, 11), x-ray microtomography of wing beats 
of insects (12), or electron nanotomography of molecular interac-
tions (13).

The performance of dynamic tomography techniques is often de-
fined by their achievable spatial and temporal resolution. While these 
performance measures vary greatly across different sample sizes and 
application scenarios, a common constraint experienced by almost all 
these techniques is the limitation on measurement speed. This in-
cludes limitations on both the highest achievable temporal resolution, 
and the total acquisition time required in case of periodic processes. 
For the fastest applications of x-ray microtomography, state-of-the-art 
methods can achieve a speed of 1000 tomograms per second (7). 
However, for nanotomography the imaging rates are considerably 
slower, with a timescale normally on the order of hours (14, 15).

This limitation is chiefly driven by the underlying assumption 
that the sample is static during tomographic acquisition. To measure 

a three-dimensional (3D) volume at a desired resolution, a certain 
number of tomographic projections need to be taken at different 
relative orientation angles between the object and the incident illu-
mination. The number of projections is determined by the Crowther 
sampling criterion and, for a fixed volume, it grows inversely pro-
portional to the sought resolution (16). When aiming for higher 
resolution, the increased number of projections increases concomi-
tantly the acquisition time. Another limiting factor is the mechanical 
overhead needed to rotate the sample, which can become a bottleneck 
in high-speed applications (17).

Furthermore, for a given photon flux, the total acquisition time 
for a 3D volume scales inversely proportional to the fourth power of 
the sought spatial resolution (18), resulting in substantially longer 
acquisition times when aiming to resolve nanoscale features. So 
while nanoscale dynamics are of paramount importance for many 
applications, the acquisition times put strong limits on either the 
achievable temporal resolution, or the measurable sample volume 
for dynamic tomography.

To address these challenges, several 4D CT methods have been 
proposed on the basis of various methodological approaches. Some 
of these methods focus on improved hardware design and acquisi-
tion protocol to increase acquisition speed (7, 17). Others try to re-
duce the required number of projections so that the same dynamic 
process can be imaged with fewer measurements, which are often 
referred to as sparse tomography (19–24).

For sparse tomography, the number of projections is reduced to 
only a subset of measurements compared to the Crowther criterion, 
by reducing the angular sampling (20, 23). Applying sparsity in the 
measurement largely enhances measurement speed, yet inevitably im-
pairs imaging quality compared to the conventional approach due to 
angular undersampling. However, these effects can often be mitigated 
with specially designed reconstruction methods, based on models of 
the properties of the sample and its dynamics. Existing techniques use 
different strategies, such as prior information about the sample (25) or 
numerical constraints in the modeling of dynamics (26).
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We here propose a measurement approach and reconstruction 
algorithm designed specifically for the challenges of the nanoto-
mography regime. Our method achieves an unprecedented 40-fold 
increase in temporal resolution, while maintaining the same level of 
spatial resolution and sample volume attainable as in regular nanoto-
mography. Such speed increase is enabled by a combination of 
sparse sampling and 4D tomography modeling, which leverages 
correlations along the time dimension. While most existing dynamic 
tomography methods reconstruct a temporal series of tomograms 
for the dynamic process, our approach uses step function–based 4D 
model to decompose hundreds of temporal frames into three inde-
pendent tomograms, two for sample density (initial and final state) 
and one for transition time. This approach largely reduces the number 
of unknowns in the 4D tomography model and allows reconstruction 
from sparsely sampled datasets without need of prior knowledge of 
the sample and is not affected by ambiguities or blurring introduced 
by numerical constraints during tomogram reconstruction. We fur-
ther incorporated a nonrigid CT (NCT) approach into the tomo-
gram reconstruction (27). This technique allows us to account 
for any potential sample deformations that may occur during the 
dynamic tomography acquisition, resulting in a more robust tomo-
gram reconstruction with enhanced spatial resolution and quan-
titative accuracy.

As a first demonstration, we imaged the controlled hydration pro-
cess of a catalyst layer inside the membrane electrode assembly (MEA) 
of a hydrogen polymer electrolyte fuel cell (PEFC). PEFCs hold great 
potential as environmentally friendly alternatives to combustion-
based engines for the transportation sector, since they use H2 and O2 
to generate water and electric energy. Besides notable progress in re-
search on the material, PEFCs still need to increase in energy effi-
ciency and to reduce the use of costly noble metals to be an important 
pillar of a sustainable energy sector (3, 22, 28). Chemically modified 
and new designs for catalytic sites with improved activity, at reduced 
amount of noble metals, are setting new standards for the catalyst’s 
performance potential. However, when these materials are tested 
under realistic conditions, i.e., in catalyst layers within fuel cell stacks, 
it becomes apparent that other factors limit the PEFC performance 
(29). Insufficient water management is a particular example, where 
liquid water saturates the complex structure of the catalyst layer and 
hinders the transport of gaseous components, namely, H2 and O2, to 
the catalytically active sites. On the contrary, liquid water can be needed 
to ionically contact active sites which are not contacted through the 
ionomer. While characterization of water content in operating fuel 
cells is already accessible via neutron imaging (30) and full field x-ray 
tomography on the micrometer scale (31), quantitative measures at 
the nanoscale are still missing. Since the electrochemical reaction takes 
place on the nanoscale, it is crucial to obtain the catalyst’s layer struc-
ture on this length scale and as close as possible to realistic working 
conditions. Of particular interest at the nanoscale is the ionomer in 
the catalyst, which is only able to fulfil its proton-conducting role after 
it absorbs water molecules. We here demonstrate an unprecedented 
combination of 28 nm half-period spatial resolution in 3D with a tem-
poral resolution of 12 min using ptychographic x-ray CT (PXCT), to 
investigate the humidity-induced changes in a catalyst layer sample 
with a 20 μm diameter and 10 μm height.

The sparse dynamic nanotomography method consists of two 
parts: measurement and reconstruction. The measurement tech-
nique, as illustrated in Fig. 1A, includes a set of sparse sequential 
tomography measurements, i.e., time frames, covering the time lapse 

of the whole dynamic process. Similar to conventional tomography, 
in these measurements, projections of the sample are measured at 
different sample orientation angles from 0° to 180°. Sparsity is applied 
to each tomography rotation by taking only a small proportion of 
the total number of rotation angles required by the Crowther crite-
rion. An angular offset, calculated with golden ratio, was added to 
the starting angle of each tomogram to maximize diversity of infor-
mation content for more efficient spatial sampling, as shown in Fig. 1B 
(19, 21, 24).

In our reconstruction approach, we model the dynamic processes 
combining two methods, as shown in Fig. 1D. First, we consider de-
formations of the sample that cause relative movement, expansion, 
or contraction of the whole or any part of the sample. This is defined 
as any change of the sample that can be mapped to the starting state 
by a time-dependent deformation-vector field (27). Second, we rep-
resent the local changes in electron density (ED) by a voxel-wise 
temporal step function, as described in Fig. 2A. It assumes that the 
local changes at each voxel occur within one of the tomographic 
time frames. This assumption is naturally derived from dynamic 
processes composed of step-like transitions, such as the simulated 
liquid filling shown in Fig. 2B. However, we demonstrated that its 
extended application based on spatial upsampling can also be used 
to model gradual transitions and discussed the performance of the 
reconstruction method under this scenario in Materials and Methods 
subsection “Numerical simulations.”

The combination of these two models, shown in Fig. 1D, can 
accurately account for various dynamic processes, for example, phase 
transitions such as solid melting, liquid condensation, or evapora-
tion, which include concomitant deformation of the sample struc-
ture (32, 33), chemical reactions such as oxidation or lithiation 
in energy materials, quantifying the dynamics and water content 
for cement hydration (34), and mechanical deformation including 
crack formation.

An iterative temporal refinement technique was used for tomog-
raphy reconstruction. All measured projections are first aligned with 
the tomography projection alignment method described in (35). 
Then, we apply the NCT method to reconstruct deformations of the 
sample during the whole measurement process. As previously de-
scribed in (27), this method extracts a vector-based time-dependent 
deformation field, which is then used on the tomographic projec-
tions and back-projections. The NCT method can effectively model 
and correct the deformations of the sample during measurement and 
allows us to use a simplified model for the local change of density in 
individual voxels. Using the nonrigid correction, we can assume that 
the changes are “localized,” such that local ED changes in the sample 
can be represented at their starting position throughout the whole 
process. This simplifies the local dynamics greatly, as it allows us 
to exclude any intertwining effects between neighboring voxels 
caused by deformation or movement, and to therefore use a much 
simpler model to encode the remainder dynamics. A more detailed 
description and results of the NCT method can be found in Materials 
and Methods.

In our approach, we assume that the imaged quantity of each 
voxel changes like a step function in time, as shown in Fig. 2, which 
shows a transition from the start value N0 to the end value N1 at a 
certain time point T. Dynamics that consist of one step function for 
each voxel can be uniquely defined by the three variables N0, N1, and 
T, shown in Fig. 2C. These three variables can be interpreted as the 
initial state, the final state, and the transition time of each voxel and 
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can be used to reconstruct a full 3D volume for each time interval. 
This is illustrated in Fig. 2 (B and C) for a simulated dataset of a 
liquid filling process.

The reconstruction problem is then reduced to reconstructing 
N0, N1, and T variables for each voxel of the 3D volume. We devel-
oped a method based on iterative refinement, where we use adapted 
projections and back-projections according to the reconstructed de-
formation field. Refinements are applied simultaneously to the N0, 
N1, and T variables at each voxel based on differences between the 
projections generated by the current iteration of the variables and 
the measured projections. As a result, the method is able to recon-
struct the start and end states of the sample at full spatial resolution 
and retrieve the transition time values with a temporal resolution 
equal to the length of a time frame, i.e., the measurement time of 
one sparsely sampled tomogram. It should be emphasized that the 
method reconstructs simultaneously all three variables, and it is not 
needed to acquire a static measurement neither at the beginning, 
nor at the end, of the dynamics. A more detailed description of the 
reconstruction algorithm can be found in Materials and Methods. 
Note that the transition time T can be used to directly extract contours 

or isosurfaces of a phase transition or liquid filling. Then, these re-
duced volumetric parameters can be considered one step ahead in 
the analysis of the 4D dataset.

During the reconstruction, we do not apply any spatial constraint 
nor any restriction on the values of N0, N1, nor on the difference 
between them. Instead, we only assume one transition between two 
states for each voxel, and the local values can either increase, de-
crease, or stay unchanged. This also means that apart from capturing 
water condensation in empty pore space, i.e., an increase in ED, the 
method also allows reconstruction of other structural changes, such 
as crack formation or a decrease in density accompanied by a volume 
expansion or swelling process, as it is demonstrated in the experi-
mental results.

We demonstrated our sparse dynamic nanotomography method 
by imaging the vapor condensation and structural response upon 
water intake in a standard platinum/carbon (Pt/C) catalyst layer inside 
a PEFC. A schematic representation of a PEFC stack is shown in 
Fig. 3A. At the heart of the PEFC stack, we find a polymer electrolyte 
membrane composed of Nafion (I). Two catalyst layers (II), cathode 
and anode, surround the membrane and host the electrochemical 

A

C

D

B

Fig. 1. Schematic of the sparse dynamic tomography technique. (A) Measurement strategy of sparse dynamic tomography, each dot represents one projection measured 
at a given sample orientation. Dashed-line dots represent projections that would be needed by the Crowther criterion but that are skipped by sparse sampling. (B) Plot of 
tomography rotation angles versus time. At the start of each sparse tomogram, i.e., time frame, an angular offset is added based on golden ratio. (C) Schematic of a simulated 
water filling process measured while the object is deforming during the dynamic process. (D) Reconstruction of the dynamic process with deformation field correction, 
which accounts for the deformation of the sample and allows localized dynamics to be retrieved on a stable sample structure. Blue arrows in (C) represent normal projection 
lines, and curved lines in (D) represent curved integration path for projections using the nonrigid computed tomography (NCT) approach.
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reactions, hydrogen oxidation, and oxygen reduction. The two cata-
lyst layers are sandwiched by two microporous (III) and two gas 
diffusion layers (IV), which guarantee sufficient transport of gaseous 
components, H2 and O2, to and liquid water from the catalyst layers. 
Together, these layers (I to IV) form the MEA. The full PEFC stack is 
complemented by two flow channels (V) for providing H2, O2, and 
H2O and two bipolar plates (VI).

Inside the catalyst layers (II), the electrochemical reactions are 
driven by catalytic active sites of small hydrophilic Pt nanoparticles 
with an average diameter of 3 nm. The nanoparticles are distributed 
on the surface of a hydrophobic carbon support, Vulcan XC72R, 
and partially covered by the ionomer. The ionomer acts not only 
as a binder but also as the proton conducting element between 
the anode and cathode catalyst layers. It can only fulfil this role 
in its hydrated state, which also explains why PEFCs are usually 
operated at high relative humidity (RH) of 80 to 100%. However, 
upon water intake, the nanoscale structure of the ionomer is expected 
to change with a decrease in density and an expansion into unoccu-
pied space (36). These structural changes may additionally hinder 
the transport of the gaseous components within the catalyst layers 
together with liquid water condensation, which increasingly high-
lights the importance of understanding the role of water in this 
complex environment.

We prepared a 20-μm-diameter pillar extracted from a catalyst 
coated membrane for a MEA of a PEFC. A scanning electron micro-
scope (SEM) image of the sample is shown in Fig. 3B. Experiments 
were performed at room temperature while the atmospheric condi-
tions surrounding the sample were controlled by an airflow system, 
the latter providing humidified nitrogen with a RH ranging between 
80 and 93%. As shown in Fig. 3C, the RH was slowly increased from 
81 to 92% in steps of 0.1% over a time span of 34 hours. The sample 
was then kept at a RH reading of 92%, which is the saturation value 
of the humidity sensor. The sample continues to absorb water after 
the 92% humidity reading is reached, as shown in the water intake 
in Fig. 3C, which is calculated from the integrated ED of the sample, 
calculated from the 2D projections.

For each time interval, indicated in Fig. 3C, a tomography mea-
surement is made with sparsely sampled angular orientations. Each 
of these sparse tomograms contain 25 sample angular orientations 
in the range from 0° to 180°, which corresponds to a sparsity ratio 
of 2.2% compared to the 1122 projections required by the Crowther 
criterion for a 28 nm half-period resolution. As mentioned above, 
the starting angles at each time frame were adjusted using a golden 
ratio approach (19, 24, 37), allowing more efficient spatial sam-
pling. Each sparse tomography measurement took 12 min, in-
cluding overhead, and the RH was increased by 0.1% for each sparse 
tomography measurement.

A

C

B

Fig. 3. PEFC sample. (A) Schematic of the structure of a PEFC. The cell consists 
of (I) polymer electrolyte membrane layer composed of Nafion, (II) catalyst layers, 
(III) microporous layers, (IV) gas diffusion layers, (V) flow channels, and (VI) bipolar 
plates. (B) SEM image of the sample pillar, extracted from the catalyst layer (II). 
(C) Measurement process of the controller hydration of PEFC catalyst sample. Red 
triangles show the environment RH versus time, each triangle represents the starting 
time of one sparsely sampled tomography measurement. Blue triangles show the 
amount of water intake, which is estimated from the integrated ED obtained from 
2D projections.

A B

C

Fig. 2. Step function model for dynamic reconstruction. (A) Step function model of dynamic process in one voxel. The step function is uniquely defined by values N0, 
N1, and T. (B) Selected time frames that represent the simulated dynamic liquid filling process. (C) Variables N0, N1, and T that model the process. The colormap for T represents 
transition time, ranging from the start to the end of the process, with colors from blue to red.
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RESULTS
Using the NCT method, we obtained a deformation vector field that 
characterizes the expansion of the sample, as shown in Fig. 4C. After 
the nonrigid correction, we reconstruct the N0, N1, and T variables 
that define the dynamic process, shown in Fig. 4 (A, B, and D, re-
spectively). A comparison of the improvement obtained by using the 
NCT method, and more details on the reconstruction procedure, can 
be found in Materials and Methods.

During the controlled hydration process, we observe water con-
densation in the outer layer of the sample pillar. This is shown in 
Fig. 4 (A and B), which depict axial tomography slices from the re-
constructed tomograms of the start and the end states of the sample. 
We can clearly see the difference in ED between these states at low 
and high RH, especially the filling of pores in the outer layer. The 
transition time T shown in Fig. 5D can further be correlated with 
the readout of environment RH during the dynamic measurement.

Using the variables N0, N1, and T, we can retrieve the tomograms 
at each time frame during the whole dynamic hydration process. To 
identify the actual changes in ED and to illustrate the high resolu-
tion of our method, we zoom in to examine two 1.7 × 1.7 μm2 re-
gions inside the sample, as shown in Fig. 5. In the first region (Fig. 5, 
A to D), we can clearly observe the process of water condensation 
into the porous catalyst structure over the timescale of a few hours. 
Initial changes in the ED become visible after the RH approaches 
91%. Focusing on the two highlighted regions (red and blue boxes), 
we observe that these changes take place within about 5 hours. In 
this time interval, the average ED in the highlighted region in Fig. 5A 
increases by approximately 0.34 e/Å3, as shown in Fig. 5B, a value 
that matches the tabulated ED of water of 0.333 e/Å3. We further 
note that our method is able to capture multiple stages of the con-
densation process, since a total of 25 time frames are measured for 
this time span of 5 hours, and some of the representative frames are 
shown in Fig. 5A.

The ED difference between the final and initial state is shown in 
Fig. 5C. The difference clearly shows that the porous regions of the 
catalyst become filled with water. The water condensation in the 
larger pores occurs in two steps, as shown in the transition time T in 
Fig. 5D. Initially, some condensation is visible already early on at the 
edge of the larger pores, followed by a rather quick filling of the full 
volume. This agrees with the expected behavior of the catalyst layer. 
Water will initially not adsorb on the hydrophobic carbon surface, 
but on the small hydrophilic Pt nanoparticles, as well as get absorbed 
in the ionomer of the catalyst. Once condensation starts, it continues 
to draw water from the humid atmosphere and starts to fill up the 
pores rapidly.

The second region (Fig. 5, E to H) exhibits an entirely different 
behavior. During the increase of humidity, the ED in the central part 
of the ionomer decreases (blue box) from 0.64 to 0.55 e/Å3 and in-
creases in the adjacent pore volume (red box) from 0.26 to 0.47 e/Å3. 
The quantitative change in ED, in particular the decrease in the 
ionomer, cannot be explained by water condensation but is instead 
related to structural changes within the ionomer. The ionomer is 
expected to change its nanoscale structure upon water intake. A 
notable decrease in density of up to 25% has been observed in litera-
ture (36), accompanied by swelling on a molecular level, which is 
below the resolution of our measurements. The fully wetted iono-
mer is expected to have an ED of 0.434 e/Å3 compared to 0.593 e/Å3 
in its dry state. With a half-period resolution of 28 nm, we cannot 
resolve the high-density Pt nanoparticles, which are of approximately 
3 nm in diameter and have an ED of ~5.167 e/Å3. Because of partial 
volume effects, the ED measured in each voxel is potentially higher 
due to the presence of these unresolved particles. In addition, each 
voxel may also contain the carbon support, with an ED of 0.59 to 
0.61 e/Å3 that does not change with hydration. Nevertheless, we still 
observe a clear decrease in ED for multiple voxels within the second 
region, as highlighted in Fig. 5G, from which we can deduce which 
voxels are mostly occupied by the ionomer. Our method is also able 
to resolve the ionomer swelling into the surrounding pore space in 
3D which is, to the best of our knowledge, not yet reported in the 
literature before at this resolution.

The substantial changes of the ionomer’s nanostructure demon-
strate that water saturation and absorption in the PEFC catalyst 
layer plays not only a role in empty pores but can also induce crucial 
changes in the nanostructure of the ionomer. Optimizing the ionomer 
content is an important parameter that correlates with PEFC perfor-
mance (38, 39). Its swelling may further hinder the diffusion of gaseous 
components to the catalytic active sites, in particular when taking 
into account that in operando conditions additional water is generated 
as a product of the electrochemical reaction. The capability to directly 
image the ionomer swelling in situ will play an important role to 
study its structural response upon water intake from nanometer to 
micrometer length scales, and our method is ideally suited to capture 
these changes.

DISCUSSION
We have introduced an experimental and reconstruction method 
for dynamic sparse x-ray nanotomography and demonstrated it by 
imaging the controlled hydration process of a PEFC catalyst. During 
the hydration process, this sample experienced a combination of 
representative changes, including deformation, pore filling, and 
ionomer swelling. We have observed in the nanoscale the wetting, 

A B

C D

Fig. 4. Dynamic tomography reconstruction result of the catalyst sample. (A) Axial 
tomographic slice of the reconstructed ED tomogram at start state. (B) The same slice of 
ED tomogram at end state, where filling of the pores can be observed. (C) Reconstructed 
deformation vector field of the sample between the start and end state. Arrows indicat-
ing the vector field are scaled up 15 times to improve visibility. (D) Map of the transition 
time T, or corresponding environment RH in parentheses, of the same slice. This map 
shows with color coding the time point when localized changes occur in each voxel.
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including local expansion and decrease in ED, of one of its central 
components: the hydrophilic ionomer. Our findings offer crucial 
insights toward identifying the performance bottleneck of PEFC 
catalysts and enhancing their efficiency in the future.

The reconstructions, with a 3D half-period spatial resolution of 
28 nm, were obtained from a dataset that was measured with 1/40 of 
the conventionally required number of projections. This corresponds 
to one 3D temporal frame every 12 min, which is a marked improve-
ment over the conventionally needed 8 hours. Measurement time is 
a severe bottleneck for 3D imaging of nanoscale dynamics in repre-
sentative volumes, our demonstration here reaches a rate of almost 
362,000 resolution elements per second, which improves nanoto-
mography imaging rates at this resolution by almost two orders of 
magnitude. Given that synchrotron experimental time is scarce and 

valuable, our development opens the door to a whole new regime of 
possible dynamical studies.

Furthermore, the implementation of the NCT correction allows 
our method to have excellent stability against sample movement or 
deformation, which enables identification and quantification of 
dynamic events with higher precision. The step function model also 
allows the transition time to be directly reconstructed instead of being 
obtained from postprocessing of tomograms, and this greatly eases 
the analysis steps in many dynamic studies where the key informa-
tion is given by the time of transition.

Thanks to the versatility and robustness of our method, it can be 
applied to various length scales and illumination probes with mini-
mal changes to the hardware and measurement protocols. As ex-
amples, these include x-ray microtomography, transmission electron 

A

B

E

F G H

C D

Fig. 5. Reconstruction inset of 1.7 × 1.7 μm2 areas in an axial tomography slice. (A) Reconstructed time-lapse ED tomograms showing pore condensation. (B) Evolution 
over time of the average ED of the regions enclosed by blue and red rectangles in (A). Vertical lines denote the time frames of the tomogram insets shown in (A). The increase 
in ED matches that of water, 0.333 e/Å3. (C) ED difference between the start and end states. (D) Map of transition time of the region. (E) to (H) show the same contents, but 
for a second region that demonstrates water absorption and swelling of the ionomer.
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tomography, and optical tomography. The technique can be readily 
generalized, for example, by modeling dynamics using a sequence of 
step transitions, as opposed to just one. In this manner, the method 
could be applied to more complex or periodic systems, such as oper-
ando imaging of the charge-discharge cycle of batteries. With the 
emerging upgrade to fourth generation synchrotrons, and concomi-
tant improvement of optics and instrumentation, an increase of two 
orders of magnitude in the available coherent flux is expected. With 
this increase, the speed of the method can be brought down to seconds 
for nanoscale characterization, granting great potential for elucidating 
mechanisms of biological or chemical systems.

MATERIALS AND METHODS
Sample preparation
The catalyst sample was taken from a MEA for a polymer-electrolyte 
fuel cell. The membrane was produced by spray coating a commer-
cial Nafion (NR-211, Ionpower) with a catalyst ink using a custom-
built coating system. The catalyst ink was prepared by dispersing 
20 mg of catalyst powder (HiSPEC 3000, Johnson Matthey) in a mix-
ture of 138 μl of deionized water with less than 1.1 S cm−1 and 4841 μl 
of 2-propanol (99.9% VLS grade, Roth) with a vial tweeter. Nafion 
resin solution (20 wt %; EW 1100, Sigma-Aldrich) was added to the 
mixture to achieve an ionomer/carbon weight ratio of 0.54. The 
custom-built setup comprises a computerized numerical control sys-
tem equipped with an ultrasonic spraying nozzle, for which argon is 
used as the carrier gas. The catalyst-coated membrane was prepared by 
spraying 160 cycles at a flow of 60 μl/min over an area of 2.5 × 2.5 mm2 
of the Nafion membrane, which is placed on a heated plate beneath 
an infrared lamp to accelerate the drying process.

The imaged sample pillar was extracted from a mechanically cut-
out of a PEFC membrane, mounted on an SEM stub, using a focused 
Ga ion beam (Ga ions accelerated with 30 keV voltage) milling sys-
tem. Milling was performed inside a SEM (Zeiss NVision 40 Gallium 
FIB/SEM). To minimize specimen beam damage, a weak beam of 
Ga ions (40 pA) was used to identify the area to be cut and to regu-
larly inspect the milling progress. As a first step, a 13-nA Ga beam 
with an incidence angle perpendicular to the membrane surface was 
used to cut a set of parallel trenches, 25 to 30 μm in depth, into the 
membrane. Trenches were cut to extract a square shaped pillar with 
edge length of about 50 μm. Then, the edges of the square pillar were 
cleaned with a 3-nA Ga beam, and the pillar was transferred to an 
OMNY pin, a type of copper sample pin designed for nanoto-
mography imaging (40), using a liftout procedure with the help of a 
micromanipulator. After being mounted on the OMNY pin, the 
sample pillar was further reduced in diameter to roughly 20 μm with 
a 1.5-nA Ga beam angled perpendicular to the top surface of the 
pillar. For fine-shaping of the pillar, the Ga beam was tilted to an 
incidence angle of 54° with respect to the top surface and hit the pillar 
from its side, while the pillar was rotated around its axis in steps of 
15°. This way, a sample pillar with clear edges and nearly constant 
diameter of 20 μm from top to bottom can be prepared. An SEM 
image of the final sample pillar is shown in Fig. 3B. To note, a Ga 
beam intensity of 1.5 nA was used in the second cutting step to mini-
mize damage to the ionomer structures in the sample. It was not 
further reduced to avoid lengthy cutting time and therefore mini-
mize heat transfer to the specimen.

On the basis of the initial-state ED tomogram, in particular 
the ED variations as a function of distance to the pillar center, we 

concluded that the described FIB milling sample preparation pro-
cedure damaged the outermost 100 to 200 nm of the 20-μm-wide 
pillar, as seen in Fig. 4A. No systematic and radially symmetric 
ED variations, indicative of Ga deposition and sample preparation–
associated damage, could be identified deeper into sample. Ga 
penetration/depth to this level is a common occurrence, with 
damaged areas being insignificant in volume compared to the whole 
sample, and typically has minimal impact on the results of scientific 
data analysis.

Measurement and data preprocessing
The sparse dynamic nanotomography measurements were performed 
at the cSAXS beamline, Swiss Light Source, Paul Scherrer Institute, 
Switzerland. An x-ray energy of 6.2 keV was selected using a double-
crystal Si (111) monochromator. A set of slits, located 22 m upstream 
of the sample, were set to a horizontal aperture of 20 μm, which cre-
ates a secondary source that coherently illuminates a Fresnel zone 
plate downstream with 200 μm diameter and 60 nm outermost zone 
width. The Fresnel zone plate was designed with locally displaced 
zones to improve imaging quality and phase accuracy (41). The 
sample was placed 1.48 mm downstream the focal point of the zone 
plate to get an illumination of 5 μm diameter on the sample. Coherent 
diffraction patterns were acquired using an in-vacuum Eiger 1.5M 
area detector (42) placed 5.23 m downstream of the sample inside 
a flight tube under vacuum. Ptychograms were measured using 
the flexible tomography nano-imaging end-station flOMNI (43), a 
dedicated instrument for x-ray scanning microscopy, which achieves 
positioning accuracy better than 10 nm by using laser interferom-
etry feedback (44). The 2D projection field of view was 27 × 10 μm2. 
2D ptychograms were measured following a Fermat spiral trajectory 
(45) with an average step size of 1 μm and a 0.05 s exposure time per 
point. Fast positioning for ptychography scan is achieved by com-
bined motion of the sample and focusing zone plate (46), and each 
2D scan took 23 s. For this experiment, we have modified the setup 
to be able to measure under controlled RH via an air flow system 
that mixes dry and humidified nitrogen gas, combined with a humidity 
sensor that monitors and controls the RH of the air surrounding 
the sample.

Before the dynamic tomography measurement, several groups of 
2D scans were measured at different RH to locate the ionomer-rich 
regions in the catalyst and to estimate the amount of water intake. 
Before ramping up the RH, we waited 10 hours for the sample to 
stabilize at 81% RH, as shown in fig. S1A. We define the stabilized 
time point, at which the dynamic measurements of interest started, 
as t0 = 0, as shown in fig. S1A. All measurements before that time 
were excluded from the presented analysis.

As described in the main text and in Fig. 3C, sparsely sampled 
tomograms were measured repeatedly while the RH was gradually 
increased from 81 to 92% in 35 hours.

The sparse tomography measurement strategy is shown in 
fig.  S1B. For each sparsely sampled tomogram, the sample was 
rotated to 25 different angles from 0° to 180°, and one ptychographic 
2D projection was taken at each angle. After each tomogram, the 
sample was rotated back to 0°, and the process was repeated with an 
angular offset given by the golden ratio (37). In total, 173 sparsely 
sampled tomograms were measured, and for simplicity, we define 
the starting time of each sparsely sampled tomogram as t = t0, t1, 
…t171, t172 and use Proj(ti) to denote the set of 25 projections mea-
sured between ti and ti+1.
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Ptychography scans were reconstructed with an iterative phase 
retrieval algorithm, with of 300 iterations of difference map (47) 
followed by 500 iterations of maximum likelihood (48), using the 
PtychoShelves package (49). Then, from the reconstructed complex-
valued images, we extract the phase component and use phase un-
wrapping (50) to remove constant and linear phase offset terms (51). 
We denote the outcome phase projections as P(ti) = phase{Proj(ti)} 
for further analysis.

All projections were subsequently pre-aligned with a tomography 
alignment approach based on multiresolution projection matching 
with deep subpixel accuracy (35). The volume percentage of water 
intake at each time frame, shown in Fig. 3C and fig. S1A, was esti-
mated from the 2D projections as

where A = 18 g/mol is the molecular mass of water, ρ = 1 g/cm3 is 
the density of water, Vp is the volume of the sample pillar, NA is the 
Avogadro constant, and Z = 10 is the number of electrons in a water 
molecule. The coefficient ηED, used for converting phase into ED (52), 
is given by

where λ is the x-ray wavelength, l is the side length of the pixel in the 
projection, and r0 is the classical electron radius.

Nonrigid computed tomography
In micro- and nanotomography applications, deformations of the 
sample often have a notable effect on the measurement of dynamic 
processes and, in some cases, can become the limiting factor for im-
aging quality or resolution (53). In our case, as deformations of the 
sample structure were observed during its water intake process, we 
used the NCT method (22) to quantitatively reconstruct the defor-
mation field and account for these deformations explicitly. By doing 
this, the dynamic changes per each voxel can be more accurately 
described by the step function model described in Fig. 2.

A deformation vector field �
(

�⃑r, t
)

 describes the deformation of 
the sample structure at time t relative to its starting state at t0, with 
the latter used as the reference state. At any time point ti, projections 
of the reconstructed model, considering the deformation field, can 
be calculated as

where N
(

�⃑r, ti
)

 is the reconstructed sample at ti, and A
N
{�

(

�⃑r, ti

)

} is 
the projection matrix under curved geometry given by deformation 
field �

(

�⃑r, ti
)

 , as defined in equation 3a in (27).
In the NCT method (27), the time-evolving deformation vector 

field �
(

�⃑r, t
)

 is calculated from discretized vector fields �
(

�⃑r, ti
)

 , 
which describe the deformation of the ith tomogram. However, in 
our case, a large number of tomograms were measured with a very 
low sparsity ratio, making it unfeasible to reconstruct one discretized 
vector field for each tomogram. Therefore, we approximate the 
dynamics of the deformation field as a linear function of the envi-
ronment RH. This is a reasonable assumption considering that the 
changes are driven by the RH and since the deformation field is small, 
namely, with an average of 1.5 voxels (26 nm) and a peak value of 
5 voxels (87 nm). We found that a linear approximation proportional 

to the environmental RH, RH(ti), was sufficient to describe the time 
evolution of the deformation field. We then modeled the latter as

where rH(ti) is a linear ratio calculated from the environmental RH

and where tend = t172 is the starting time for the last sparse tomogram.
In this approximation, one 3D volume estimate can be recon-

structed from the projections at each time frame

where �(k)
(

�⃑r, tend
)

 denotes filtered back projection with a curved 
projection geometry given by the deformation field �

(

�⃑r, t
)

 , using 
the adjunct matrix A⊺

N
 , as given by equation 3b in (27). Using these 

reconstructed volumes, the iterative update of the final deformation 
field �

(

�⃑r, tend
)

 can be described as

where ΔΓ is the update term based on the tomography reconstruc-
tions of the measured projections, given by equation 4 in (27). 
�
(k)
(

�⃑r, tend
)

 denotes the reconstructed deformation field in iteration 
k. Starting from an all-zero initial guess, five iterations were applied 
to the deformation field to get the final result, shown in Fig. 4C.

The improvement provided by the nonrigid tomography correction 
can be demonstrated by taking the difference of the tomography re-
constructions from the first 20 sparse tomograms, which are mea-
sure at 81% RH in the first hour, and the last 20 sparse tomograms, 
which are measured at 92% RH in the last hour. Such reconstructed 
tomograms of the start state and the end state are shown in Fig. 6 (A 
and B, respectively). Figure 6 (C and D) shows the difference be-
tween the two states without and with the nonrigid correction, re-
spectively. In Fig. 6C, we can see an outline contour around the 
sample and around individual pores, such edge artifacts are expected 
if the sample is expanding from its starting state during the dynamic 
process. In such case, the difference between the starting and end 
state is dominated by the geometrical deformation of the sample, 
and if not corrected, these artifacts are difficult to separate from water 
intake effects, because an increase of density at a voxel that starts 
empty can either be caused by water condensation or by nearby 
high-density material expanding into the voxel. This ambiguity 
affects the precision of further reconstruction of dynamics. For 
comparison, Fig. 6D shows the difference with the NCT correction, 
which accounts for the geometrical expansion of the sample. The 
corrected difference shows effects that are free of deformations and 
can be largely attributed to water intake and absorption, for example, 
showing empty voxels being filled with water. To note, the magnitude 
of the reconstructed deformation vector field, shown in Fig. 4C, cor-
relates to the amount of water intake, shown in Fig. 6D. This corre-
spondence indicates that certain proportion of sample deformation 
is related to, or induced by, water intake.
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Similar to equation  4 in (27), a spatial convolution with a 
Gaussian filter, with a SD of 30 voxels, is applied to the calculation 
of the deformation vector field to regularize the result and reduce 
local variations. This step avoids abrupt changes of the deformation 
field at a small length scale, typically smaller than 20 pixels, i.e., 350 nm, 
which could result from overfitting noise and sparse sampling arti-
facts. Deformations at a smaller scale can be captured by the local-
ized dynamics, as shown in Fig. 5 (E to H).

Sparse dynamic tomography reconstruction
The core of the here presented methodology is the sparse parametri-
zation and reconstruction of the local voxel-wise dynamics. Following 
the step function model described in Fig. 2, we can define the initial 
state, final state, and transition time for each voxel in the 3D volume 
as N0

(

�⃑r
)

 , N1

(

�⃑r
)

 , and T
(

�⃑r
)

 , such that for any given time frame ts, the 
state of the sample is given by

The reconstruction problem is then converted to retrieving N0

(

�⃑r
)

 , 
N1

(

�⃑r
)

 , and T
(

�⃑r
)

 . For this purpose, we developed an iterative refine-
ment approach. The initial guess for the starting state, N0

(

�⃑r
)

 , is

where 〈 〉 denotes average over several time frames, in particular, 
here, the first 20 time frames are used. Similarly, for the initial guess 
of N1

(

�⃑r
)

 , we used the average of the last 20 time frames, namely

For the transition time T
(

�⃑r
)

 the initial guess are constant values

Figure 7 shows a schematic of one iteration of the reconstruction 
process. In each iteration, one time frame ts between t0 and tend is 
randomly selected. The modeled sample state at ts is then calculated 
on the basis of the current reconstruction with the step function 
model given in Eq. 8. Applying the conditional process to the whole 
sample volume then gives us the tomogram N

(

�⃑r, ts
)

 . From this 
modeled tomogram, we then apply a forward projection

Here, FP
�

(

r⃑,ts

){} represents the projection operator under the 
curved projection geometry given by the deformation field �

(

�⃑r, ts
)

 , 
and θ(ts) denotes the sample orientation angles that were measured 
in the sth sparse tomogram.

We then compute the difference between the modeled and mea-
sured projections, followed by a back-projection of this difference to 
compute a 3D map of corrections, namely

where BP
�

(

r⃑,ts

){} denotes the back projection with curved projec-
tion geometry given by the deformation field �

(

�⃑r, ts
)

 , R1 and R2 de-
note normalization arrays that are used in the simultaneous algebraic 
reconstruction technique (SART) (54, 55), which can be calculated 
with unit-valued projections and a unit-valued tomogram, respectively.

The correction in Eq. 13 follows a strategy similar to SART to 
estimate the updates to the current reconstruction (54).

In the next step, we apply refinement corrections to N0

(

�⃑r
)

 , N1

(

�⃑r
)

 , 
and T

(

�⃑r
)

 based on values of Nc

(

�⃑r, ts
)

 . The correction values are 
given by

N
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A B

C D

Fig. 6. Demonstration of NCT correction. (A) An axial tomography slice from the re-
constructed starting state of the sample. (B) Same tomography slice from the 
reconstructed end state of the sample. (C) Difference of ED between the start and 
end state of the sample without NCT correction, outlines around the pore edges 
are clearly visible, and the difference is heavily dominated by the sample geo-
metrical expansion. (D) Difference between the two states after correction with 
NCT method, the outline artifacts are mostly removed, and the difference matches 
water filling of pores in the sample.
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where ε is an update relaxation factor that is gradually reduced dur-
ing iterations for convergence, we typically use

where k is the iteration number, and τ is a scaling ratio based on the 
units used for time and tomogram values. It can be estimated using 
quantitative values of T and N0

where 〈 〉 denotes average over the whole volume, and δ
(

ts, �⃑r
)

 is a 
time relaxation ratio given by

which reduces the correction if the transition time of the target voxel 
is far from the current time frame ts. Adding this relaxation ratio is 
important for dealing with noise in the data and reduce changes of 
the correction overshooting.

Equations 15 and 16 are used to calculate the updates applied to 
the start and end state tomograms, respectively. These updates are 
similar to the conventional SART method, but with changes con-
strained to the voxels that apply to each of them at the time frame ts. 
As illustrated in Fig. 7 (a and b), for voxels of which T

(

�⃑r
)

 is smaller 
than ts, the update is applied to the start state and conversely, to the 
end state for voxels of which T

(

�⃑r
)

 is larger than ts.
As illustrated in Fig. 7c, the refinement of transition time in 

Eq. 17 is applied on the basis of the sign and amplitude of the correc-
tion, Nc

(

ts, �⃑r
)

 , and the state of the voxel at time ts. In the example 
illustrated in Fig. 7c, we have ts < T

(

�⃑r
)

 , sign
[

N1

(

�⃑r
)

−N0

(

�⃑r
)]

> 0 , 
and Nc

(

ts, �⃑r
)

> 0 , and for this case, the correction ∆T is in the nega-
tive direction, since the error would be potentially reduced if the 
value of T of that particular voxel was reduced. This situation corre-
sponds to the second line of Eq. 17. When iterated over all the time 
frames, the transition time of all voxels will converge at the time frame 
where the change occurred.

After one iteration of refinement, another time frame ts is selected 
randomly and the whole process is iterated until convergence. In 
our case, we applied 2500 iterations for the numerical simulations 
and 5000 iterations for the experimental data, which took 5 min and 
8 hours, respectively, on our computation node powered by an 
NVIDIA Tesla V100 GPU.
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Fig. 7. Illustration of the sparse dynamic reconstruction technique. Update strategy is illustrated by subfigures within the “update calculation” box. The step functions 
represent the current model, and the red crosses represent examples of reconstruction updates suggested by the back-projected correction N

c

(

t
s
, r⃑
)

 . For illustration 
purposes, we portray corrections at three different values of ts in (a) to (c). The arrows represent the direction of refinement for different variables N0, N1, and T given by 
Eqs. 15 to 17.
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Spatial resolution estimate
To estimate the spatial resolution of the reconstruction, the measured 
data were split into two subsets by taking every second time frame, 
namely, the first set containing projections {P(t0), P(t2), ⋯, P(t172)}, 
and the second set containing {P(t1), P(t3), ⋯, P(t173)}. The nonrigid 
correction and sparse dynamic tomography reconstruction method 
was then applied to both sets independently, to reconstruct two separate 
sets of results, namely, {N (1)

0

(

�⃑r
)

 , N (1)
1

(

�⃑r
)

 , and T (1)
(

�⃑r
)

} and {N (2)

0

(

�⃑r
)

 , 
N

(2)
1

(

�⃑r
)

 , and T (2)
(

�⃑r
)

}.
With these two sets of reconstructed results, at each time frame 

ti, we calculate the reconstructed sample volume as given by Eq. 8, 
namely, N (1)

(

�⃑r, ti
)

 and N (2)
(

�⃑r, ti
)

 . Then, we compute the Fourier 
shell correlation (FSC) (56) between the two reconstructed volumes 
and compare the correlation curve to the 1/2 bit threshold, as shown 
in Fig. 8. The estimate of spatial resolution is given by the coordinate 
of the first intersection. For all reconstructed time frames in the pro-
cess, the half-period spatial resolution was estimated to be in the range 
of 27.8 to 28.7 nm. The correlation curves of a few example time 
frames are shown in Fig. 8. To note, these resolution values are com-
parable to typical PXCT imaging results measured on the same in-
strument in static condition and without sparse sampling (57, 58).

Numerical simulations
For demonstration and characterization of the sparse dynamic re-
construction method, we carried out numerical simulations and re-
constructions. In this manner, we could study, for example, the effects 
of noise and other mismatches between the dynamics and the mod-
els used for reconstruction.

For the first scenario, we simulate a liquid filling process in a 
two-phase porous material. The model is generated with a pillar 
shape within an array of 200 × 200 × 5 voxels, and the pores are 
filled with simulated liquid starting from the pore surfaces to the 
center, as shown in the top row of Fig. 9A. The diameter of the pillar 
is 160 voxels, which means that the number of projections needed to 

satisfy the Crowther criterion is 250. Within each time frame, six 
projections were simulated at different sample rotation angles, which 
correspond to a sparsity ratio of 2.4%. A total of 80 time frames were 
simulated, the liquid filling starts at the 20th time frame and finishes 
at the 50th frame.

The reconstructed dynamic process from these projections is 
shown in the bottom row of Fig. 9A. The results agree quite well with 
the ground truth, both on the filling time and shape of the liquid-
filling front. Quantitative comparison of the total amount of liquid 
intake, shown in Fig. 9C, also shows good agreement between the 
model and reconstruction. Figure 9B shows the values of N0, N1, and 
T, which uniquely define the dynamic process, and top and bottom 
panels show the model and the reconstruction, respectively. The 
root mean square error (RMSE) for the transition time T was 1.38 
time frames, which indicates a relatively accurate reconstruction of 
the dynamic process with 30 time frames duration.

The second simulation is intended to evaluate the robustness 
of the reconstruction method against noise, in particular to un-
derstand the effect of sparse sampling and compare directly to 
conventional sampling that satisfies the Crowther criterion. The 
liquid-filling simulation was repeated with different sparsity-sampling 
ratios, ranging from 1 to 50%. Random noise of Gaussian distribu-
tion with 2% SD of the average value of the projections was added 
to the projections to simulate measurement noise. The error on 
the reconstruction was estimated using the normalized RMSE, 
given by

where N
(

�⃑r, t
)

 denotes the reconstructed tomograms at each time 
frame, and Nm

(

�⃑r, t
)

 denotes model tomograms or “ground truth” at 
each time frame.
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Fig. 8. Fourier shell correlation. Different curves represent FSCs between reconstructions from two independent subsets of the data at different time frames. Half-period 
spatial resolution estimates between 27.8 and 28.7 nm are given by their first intersection with the 1/2 bit threshold curve.
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The NRMSE versus sparsity ratio is shown in fig. S2. The results 
were compared with the reference value of conventional filtered back-
projection (FBP) reconstructions with the same amount of noise 
added per projection and with full angular sampling, which corre-
sponds to 250 projections per time frame. As expected, the error 
drops with higher sparsity ratio and even outperforms the conven-
tional FBP method at >20% ratio. This is due to the iterative refine-
ment and the fact that we use in our reconstruction a large number of 
projections, i.e., all time frames simultaneously. In the range of 3 to 
15% sparsity ratio, the error is relatively constant, and it grows more 
sharply when the ratio goes below 3%. Notice that two sample states 
and one transition time, namely, N0, N1, and T, are to be reconstructed 
from 80 sparsely sampled tomograms at different time frames. Taking 
into account the correlations between these variables, this gives a 

rough estimate of lower-bound ratio of 2.5/80 or 3.12% sparsity ratio, 
to have enough total projections for the reconstruction. The estimate 
agrees with the observed sharper increase of the error below 3% 
sparsity ratio.

Another important aspect to consider is the performance of the 
reconstruction code when the assumption of a single step function 
change per voxel is not satisfied. For this purpose, we studied the third 
numerical simulation of gradual linear transition of material density. 
Again, a pillar of porous material was generated with 160 voxels 
diameter within an array of 200 × 200 × 5 voxels. In the dynamic 
process, the density of part of the structure is increased linearly over 
40 time frames, within a total period of the simulation of 80 time 
frames. The same sparsity ratio of 2.4% was applied, with six projec-
tions simulated at each time frame. The model and reconstructed 
results are shown in Fig. 10A.

The dynamics per voxel are modeled in the reconstruction with 
step function, which does not allow representation of a gradual change. 
The reconstruction algorithm resolves this by splitting the temporal 
transition into several voxels, such that each voxel has a step function, 

A

B

C

Fig. 9. Numerical simulation of liquid filling process in a porous sample. 
(A) Model and reconstructed time-lapse tomograms of the dynamic process. 
(B) Model and reconstructed N0, N1, and T. (C) Comparison of total amount of liquid 
intake over time calculated from the model and the reconstruction. Dashed lines 
refer to the time frames shown in (A).

A

B

C

Fig. 10. Numerical simulation of gradual linear local density transition. 
(A) Model and reconstructed time-lapse tomograms of the dynamic process 
based on gradual linear density changes. (B) Reconstructed results of N0, N1, and T. 
(C) Comparison between model and reconstructed average density dynamics of a 
20 × 15 voxel region marked by red rectangle in (A).
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but the average of a few voxels undergoes a more gradual transition. 
In the reconstruction in Fig. 10B, this can be observed as noise that 
resembles a salt-and-pepper pattern. In effect, the algorithm creates 
a compromise of the spatial resolution of the dynamics to accom-
modate a more complex temporal behavior. In Fig. 10A, one can 
also see that the changing voxels were correctly identified, so the 
spatial locations of the transition are recovered correctly.

The value for the average density of a region of 20 × 15 voxels, 
indicated by a red square in Fig. 10A, is shown in Fig. 10C. The average 
shows a relatively good match with the model, indicating that the 
method still provides useful information for these cases. In Fig. 10C, 
small differences of the average values for the start and the end states 
can be observed. These differences are potentially due to the step 
function model not being able to capture the small changes at the 
very start and very end of the transition, resulting in a slight delay of 
the reconstructed start time of transition and conversely, an earlier 
end time for the end of the dynamics. This mismatch in the re-
construction of the exact start and end of the dynamics also causes 
a small bias in the reconstructed densities of N0 and N1. While these 
effects can be removed by introducing a more complex function 
for the voxel-level response, they can alternatively be alleviated by 
upsampling the reconstruction voxels. With the latter strategy, a reso-
lution element in the reconstruction contains several voxels, which 
can be leveraged by the algorithm to represent more complex dy-
namics. It should be noted that in our experimental demonstration, we 
applied this spatial oversampling strategy by using a reconstruction 
voxel size of 17.4 nm, while the imaging resolution is about 28 nm.

Supplementary Materials
This PDF file includes:
Figs. S1 and S2
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