Table. 2. Comparing state-of-the-art methods.
All model apply ADNI data as input source.
| Groups | WIMOAD | IntegrationLearner [72] | MOGLAM [73] | |||
|---|---|---|---|---|---|---|
| Acc | AUC | Acc | AUC | Acc | AUC | |
| AD vs. EMCI | 0.776 | 0.882 | 0.712 | 0.686 | 0.333 | 0.531 |
| AD vs. LMCI | 0.862 | 0.946 | 0.698 | 0.743 | 0.450 | 0.495 |
| AD vs. MCI | 0.776 | 0.830 | 0.767 | 0.660 | 0.237 | 0.487 |
| CN vs. AD | 0.798 | 0.896 | 0.730 | 0.706 | 0.310 | 0.494 |
| CN vs. EMCI | 0.803 | 0.888 | 0.662 | 0.706 | 0.474 | 0.536 |
| CN vs. LMCI | 0.773 | 0.873 | 0.715 | 0.709 | 0.355 | 0.673 |
| CN vs. MCI | 0.743 | 0.845 | 0.671 | 0.678 | 0.592 | 0.574 |
| CN vs. PT | 0.709 | 0.810 | 0.685 | 0.671 | 0.733 | 0.489 |
| EMCI vs. LMCI | 0.740 | 0.847 | 0.695 | 0.685 | 0.621 | 0.556 |
| Avg | 0.776 | 0.869 | 0.704 | 0.694 | 0.456 | 0.537 |