
Retinotopic coding organizes the interaction between 
internally and externally oriented brain networks 

 

Adam Steel1,2,3,6,*, Peter A. Angeli3, Edward H. Silson4, Caroline E. Robertson3,5,** 

1 Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 
2 Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 
3 Department of Psychology, Dartmouth College, Hanover, NH, USA 
4 Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom 
5 Senior author 
6 Lead contact 

*Correspondence: adamdanielsteel@gmail.com, @neuro_steel 

**Correspondence: caroline.e.robertson@dartmouth.edu 

 

Competing interests: The authors declare no competing interests. 

Data availability: All data is made publicly available via the Natural Scenes Dataset 
(https://naturalscenesdataset.org/)  

Code availability: This data does not use any original code. Any additional information required to 
reanalyze the data reported in this paper is available from the lead contact upon request.  

 

Acknowledgements: The authors would like to thank the authors of the Natural Scenes Dataset for 
making these data publicly available. This work was supported by an award from the National Institutes of 
Mental Health (R01MH130529) to CER. AS was supported by the Neukom Institute for Computational 
Sciences. EHS was supported by the Biotechnology and Biological Sciences Research Council 
(BB/V003917/1). 

 

Number of Figures: 4 

Number of Tables: 0 

Number of Supplemental Figures: 10 

Abstract word count: 283 

Main text word count: 4,478 

 

During the preparation of this work, the author(s) used Claude (Anthropic) to assist in revising the 
manuscript. After using this tool/service, the author(s) reviewed and edited the content as needed and 
take(s) full responsibility for the content of the publication. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.09.25.615084doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.615084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Abstract 
The human brain seamlessly integrates internally generated thoughts with incoming sensory 
information, yet the networks supporting internal (default network, DN) and external (dorsal 
attention network, dATN) processing are traditionally viewed as antagonistic. This raises a crucial 
question: how does the brain integrate information between these seemingly opposed systems? 
Here, using precision neuroimaging methods, we show that these internal/external networks are 
not as dissociated as traditionally thought. Using densely-sampled 7T fMRI data, we defined 
individualized whole-brain networks from participants at rest and calculated the retinotopic 
preferences of individual voxels within these networks during an visual mapping task. We show 
that while the overall network activity between the DN and dATN is independent at rest, 
considering a latent retinotopic code reveals a complex, voxel-scale interaction stratified by visual 
responsiveness. Specifically, the interaction between the DN and dATN at rest is structured at 
the voxel-level by each voxel’s retinotopic preferences, such that the spontaneous activity of 
voxels preferring similar visual field locations is more anti-correlated than that of voxels preferring 
different visual field locations. Further, this retinotopic scaffold integrates with the domain-specific 
preferences of subregions within these networks, enabling efficient, parallel processing of 
retinotopic and domain-specific information. Thus, DN and dATN are not independent at rest: 
voxel-scale interaction between these networks preserves and encodes information in both 
positive and negative BOLD responses, even in the absence of visual input or task demands. 
These findings suggest that retinotopic coding may serve as a fundamental organizing principle 
for brain-wide communication, providing a new framework for understanding how the brain 
balances and integrates internal cognition with external perception. 

Main text 
A fundamental goal of neuroscience is to understand how activity distributed across the brain’s 
functional networks gives rise to cognition 1–9. Central to this aim is understanding principles that 
govern interactions between different brain networks, particularly those involved in externally-
oriented attention (e.g., processing sensory input) and internally-oriented attention (e.g., 
introspection and memory) 10–14. This knowledge gap confounds our understanding of human 
cognition: the interaction between internally- and externally-oriented neural systems is 
foundational to how we perceive, remember, and navigate our world, yet the 'common language' 
facilitating their communication remains controversial.  

One reason this knowledge gap exists is that the neural systems that subserve internally- and 
externally-oriented attention, such as the Default Network (DN) and dorsal attention network 
(dATN) respectively, are typically considered competitive10–12,14,15. Seminal neuroimaging studies 
investigating externally-oriented attention (visual processing, working memory, etc.) showed that 
visual tasks reliably activate brain areas in lateral occipital temporal cortex, dorsal parietal cortex, 
and prefrontal cortex, now collectively referred to as the dATN10,14,16,17. In contrast, visual tasks 
reliably deactivate regions in the internally-oriented DN, including lateral and medial parietal 
cortex, anterior temporal lobe, and medial prefrontal cortex13,18. This pattern reverses during 
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introspective tasks, e.g., scene construction or theory of mind tasks: the DN systematically 
activates and the dATN deactivates6,19–23. The network-level independence between the dATN 
and DN has also been observed in spontaneous activity at rest. Prior work has found these 
network’s resting-state activity is independent (i.e., not correlated) or anti-correlated11,12,24,25 
(depending on the application of global signal regression11,26). Together, DN/dATN independence 
is thought to facilitate our ability to attend to external stimuli without competition from internal 
mnemonic representations, and vice versa 10,12,27,28. However, if internally- and externally-oriented 
networks are functionally dissociated, it is not clear how the brain accomplishes tasks that require 
integrating perceptual and mnemonic information (e.g., anticipatory saccades, memory-based 
attention tasks, and mental imagery).  

Two recent findings have shed light on this question. First, while the internally-oriented DN 
traditionally is thought to use an abstract or semantic neural code 2,28–30, recent work suggests 
that a neural code that is typically associated with externally-oriented visual information 
processing -- retinotopy -- also manifests in the DN 31–34. The retinotopic code in the DN is unlike 
classically visually-responsive areas, including the portions of the dATN. In the DN, retinotopic 
coding manifests as an “inverted retinotopic code”: while stimulation of the retina causes 
canonical visual areas to increase neural activity in a position-dependent manner, the DN exhibits 
position-specific decreases in activity 31,33,34. Thus, the DN’s deactivation reflects specific 
properties of the attended external stimulus and is informative during visual attention tasks.  
 
Second, recently the inverted retinotopic code has been proposed to play a functional role in 
structuring mnemonic-perceptual interactions, specifically across scene-selective visual and 
memory areas near the DN34. During familiar scene processing, activity in brain areas specialized 
for scene perception and memory differentially increases during perception and recall tasks, 
respectively35,36. However, at the voxel level, the visual and memory responsive areas exhibit an 
interlocked, retinotopically specific opponent dynamic 34. In other words, stimuli in specific visual 
field locations activate perception voxels and suppress memory area voxels monitoring that 
location. This pattern reverses during memory tasks. This challenges the traditional view of 
internally- and externally-oriented brain networks as functionally-opposed via global opponent 
dynamics, suggesting instead that they are part of a common information processing stream. It 
also emphasizes the importance of voxel-wise activity patterns in uncovering neural codes that 
underpin global brain dynamics. 
 
Based on these findings, we reasoned that retinotopic coding could be a widespread mechanism 
that scaffolds global interactions across large-scale internally- and externally-oriented brain 
networks37. We leveraged a high-resolution 7T fMRI dataset38 and voxel-wise modeling to test 
whether retinotopic coding structures global interactions between the DN and dATN. We tested 
three hypotheses. First, the voxel-wise retinotopic push-pull dynamic observed in the highly-
specialized subareas of the DN/dATN during visual tasks34 will generalize to the overall networks’ 
spontaneous neural activity, even in the absence of experimenter-imposed task demands. 
Second, among subareas of the DN/dATN, retinotopic coding will be integrated (multiplexed) with 
an areas’ functional domain to allow fine-grained control of information exchange across cortex. 
Finally, retinotopic coding should be intrinsic throughout the brain, even in areas of the brain 
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associated with internal attention. So, the retinotopic code will be evident in both top-down and 
bottom-up interactions between perceptual and mnemonic areas. Together, these results would 
suggest retinotopy is a unifying framework organizing brain-wide information processing and 
internal versus external attention dynamics. 
 

Retinotopic coding in internally and externally oriented networks 
To investigate the role of retinotopic coding in structuring activity between internally- and 
externally-oriented brain networks, we used voxel-wise visual population receptive field (pRF) 
modeling and resting-state fMRI data from the Natural Scenes Dataset38 (Fig. 1A). We assessed 
the retinotopic responsiveness of all voxels in the brain by modeling BOLD activity in response to 
a sweeping bar stimulus 39. We considered any voxel with >8% variance explained by our pRF 
model to be exhibiting a retinotopic code, and hereafter we refer to these voxels as “pRFs”.  PRF 
amplitude maps for all participants are shown in Fig. S1. Because we did not observe any 
hemispheric differences in pRF size, contra-laterality, distribution of pRF amplitude, or effects in 
subsequent analyses (ps > 0.55), data are presented collapsed across hemispheres.  

Then, we used resting-state fMRI data to identify each participant's idiosyncratic cortical networks 
8,40 and assessed their visual responsiveness. Resting-state data were preprocessed using ICA 
with manual noise component selection41,42 and no global signal regression was performed26. We 
established 15 cortical networks using multi-session hierarchical Bayesian modeling8,40 and 
combined the Default Networks A-B and the Dorsal Attention Networks A-B to constitute our 
internal and externally oriented networks, respectively (hereafter, DN and dATN) (Fig. 1B; Fig. 
S2).  

Consistent with the opponent interaction between the DN and dATN during visual tasks11,12,18, we 
saw a strong distinction in the visual response of these internally- and externally-oriented brain 
networks previously observed by others 31 (Fig. 1C; Fig. S3). Across participants, a larger 
proportion of dATN voxels exceeded our retinotopic variance explained threshold compared to 
the DN (55.3% of dATN voxels, 26.95% of DN voxels) consistent with their role as externally- and 
internally-oriented networks, respectively. However, the nature of retinotopy in these two networks 
differed significantly on their response amplitude (i.e. whether a stimulus in their preferred visual 
field location evoked a positive or a negative BOLD response) (Fig 1C). On average more than 
half of all suprathreshold pRFs in the DNs were inverted (i.e., had a negative BOLD response to 
visual stimulation in their population receptive field, -pRFs). In contrast, less than 20% of the 
suprathreshold voxels in the dATN were -pRFs (i.e., the majority of the voxels had positive BOLD 
responses to visual stimulation in their receptive field, +pRFs). This distinction is particularly 
remarkable given the proximity of the dATN and DN clusters in posterior cerebral cortex (Fig. 1B). 
The response amplitude of these pRF populations was reliable (Fig. S4). Together, these results 
establish the necessary foundation to assess whether the voxel-wise retinotopic code structures 
global interactions between the internally- and externally-oriented networks. 

Do interactions between the DN and dATN depend on visual responsiveness of individual voxels? 
Across resting-state runs, we saw that the average activity of the DN and dATN was modestly 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.09.25.615084doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.615084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 

positively correlated after accounting for variance across all cortical networks using partial 
correlation43 (mean correlation = 0.117±0.12 s.d., t(6) = 2.60, p=0.041). Crucially, however, we 
found a strong dissociation in the nature of the interaction between the DN and dATN when we 
split the DN voxels by their visual responsiveness (Fig 1D). DN voxels that responded positively 
to visual stimulation (+DN pRFs) had a positive correlation with the dATN (mean correlation = 
0.22±0.144, t(6) = 3.99, p = 0.0072), and the activity of DN voxels that did not systematically 
respond to visual stimulation (i.e., pRF model R2<0.08) was not significantly correlated with the 
dATN (mean correlation = 0.02±0.115, t(6) = 0.37, p = 0.72). On the other hand, the activity of 
DN voxels with systematic negative responses to visual stimulation (-DN pRFs) was anti-
correlated with the dATN (mean correlation = -0.20±0.12, t(6) = 4.22, p = 0.0055). Thus, the 
relationship between the DN and dATN is stratified by the visual responsiveness of the voxels 
within the DN, and opponency at rest between the DN and dATN can be attributed to voxels with 
negative responses to visual stimulation in the DN. 

 

Fig. 1. Inversion of retinotopic coding between externally- and internally- oriented networks in the 
human brain. A. Population receptive field (pRF) modeling with fMRI. A visual pRF model was fit 
for all participants to determine visual field preferences for each voxel. Voxels with positive BOLD 
responses to the visual stimulus are referred to as positive pRFs (+pRFs), and those with negative 
BOLD responses are referred to as negative pRFs (-pRFs). B. Individualized resting-state network 
parcellation. Resting-state fMRI was collected in all participants (N=7; 34-102 minutes per 
participant) and used to derive individualized cortical network parcellations. Parcellations were 
generated using the multi-session hierarchical Bayesian modelling approach8,40 with the Yeo 15 
HCP atlas44 as a prior. C. Differential concentrations of +/-pRFs in task-negative and task-positive 
(internally/externally oriented) brain networks. Bars show the proportion of -pRFs (of total 
suprathreshold voxels) within each individual’s cortical networks. The dATN (combined dATN-
A/B) had the lowest proportion of -pRFs, while the DN (combined DN-A/B) had the highest. All 
networks’ concentration of -pRFs are shown in Fig., S3. D. Interaction between the DN and dATN 
differs by visual field preference of DN voxels. DN voxels with +pRFs had a positive correlation 
with the dATN (mean correlation = 0.22±0.144, t(6) = 3.99, p = 0.0072), while non-retinotopic DN 

dATN-B

DN-BSMOT-A SMOT-BFPN-B

dATN-A
VIS-PAUD

PM-PPR CG-OP
DN-A

VIS-C
LANGFPN-A SAL/PMN

Group parcellation
(Yeo 15 HCP)

Derive for all
participants

Subj08 15-network
parcellation

R
es

tin
g-

st
at

e 
fM

R
I

Pa
rc

el
la

te
d 

co
rt

ic
al

 n
et

w
or

ks

Subj08 pRF
amplitude

Derive for all
participants

< -1 pRF amplitude (a.u.)
R2 > 0.08

> 1Fi
t p

op
ul

at
io

n 
re

ce
pt

iv
e

fie
ld

 m
od

el
 (p

R
F 

m
od

el
)

TRs

%
 S

ig
na

l
ch

an
ge

32s

0s

Time

Data
Model (amplitude,x,y,size)

-PRF: 
x=0.12
y=0.33
σ=0.36

+PRF: 
x=0.17
y=0.15
σ=0.28

Positive pRF

Negative pRF

y-
po

si
tio

n
y-

po
si

tio
n

x-position

x-position

BO
LD

 (a
.u

.)

Time

BO
LD

 (a
.u

.)

Time

pRF mapping

TRs

%
 S

ig
na

l
ch

an
ge

Voxel N
Voxel 1

External

Internal

pRF mapping

Resting-state fMRI

A

B C

DN
Non-ret.

DN
+pRFs

DN
-pRFs

-0.4

0.5

C
or

re
la

tio
n 

w
ith

 d
AT

N
 (z

)

n.s. *** ***

dATNs DNs
0

1

Pr
op

or
tio

n 
-p

R
Fs

(o
f t

ot
al

 s
ig

ni
fic

an
t p

R
Fs

)

Dp<0.001,***

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.09.25.615084doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.615084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

voxels (i.e., pRF model R2 < 0.08) were not significantly correlated with the dATN (mean 
correlation = 0.02±0.115, t(6) = 0.37, p = 0.72). On the other hand, DN voxels with -pRFs were 
anti-correlated with the dATN (mean correlation = -0.20±0.12, t(6) = 4.22, p = 0.0055). To conduct 
these analyses, we accounted for variance associated with other cortical networks using partial 
correlation43. 

Retinotopic coding scaffolds DN and dATN interactions 
To test whether the retinotopic code structured the interaction between the internally- and 
externally-oriented brain networks at a voxel level, we examined whether the visual field 
preferences of individual voxels within these networks predicted their correlation at rest. 
Specifically, because of the hypothesized competition of the DN and dATN, we asked whether 
the opponent dynamic between -pRFs in the DN and +pRFs in the dATN is stronger for voxels 
with similar visual field preferences?  

For each pRF in the DN and dATN, we calculated the pairwise distance between the RF center 
position (x, y parameter estimates) of -pRFs in the DN and +pRFs in dATN (Fig.2A). For each DN 
-pRF, we found the 10 closest (Matched) and furthest (Antimatched) dATN +pRF centers. 
Interestingly, matched pRFs were distributed across the dATN, spanning posterior areas in 
retinotopic cortex through prefrontal cortical regions not typically associated with visual analysis 
(Fig. S5). We then averaged these matched and antimatched pRF’s resting-state time series 
together, and we compared the correlation of these matched/antimatched timeseries with the time 
series from the DN -pRFs (see methods). This resulted in two correlation values per resting-state 
run, which represented the correlation of the average matched and antimatched pRF’s time series 
between these areas. Importantly, the primary statistics relevant to the conclusions in the 
manuscript replicated when considering randomly sampled pRF pairs, and therefore our 
conclusions do not depend on how pRFs are selected to be compared to the best matched pRFs 
(See Supplemental methods and results) 

If the -DN and +dATN opponent interaction is scaffolded by a retinotopic code, the correlation 
between spatially matched pRFs should be significantly more negative than the antimatched 
pRFs. For this analysis we partialled out variance associated with +DN pRFs to isolate the specific 
relationship between -DN and +dATN pRFs (and vice versa) 34,43. Our results were consistent with 
this hypothesis. We observed a negative correlation between both matched and antimatched -DN 
and +dATN pRFs in the overwhelming majority of resting state runs (Fig. 2B, left) 29,37 (see 
methods). Critically, the distribution of matched +dATN and -DN pRFs was significantly shifted 
compared to antimatched pRFs (D(392)=0.22, p<0.001), confirming an overall stronger negative 
correlation, and thus a stronger opponent interaction between matched compared to antimatched 
pRFs. The stronger opponent interaction for matched versus antimatched pRFs was clear when 
resting-state runs were averaged within each participant (7/7 participants; t(6)=3.63, p=0.010, 
Fig.2B, right). Interestingly, retinotopy played a similarly strong role in structuring the opponent 
dynamic between the dATN and both subnetworks of the DN (DN-A: t(6)=3.02, p=0.023, DN-B: 
t(6)=2.72, p=0.034; DN-A vs. DN-B: t(6)=1.511, p<0.182), although the opponency was stronger 
overall in DN-A compared to DN-B (t(6)=5.532, p=0.002). Importantly, tSNR of the matched and 
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antimatched pRF’s resting-state time series did not differ (t(6)=1.007, p=0.353), suggesting that 
differences in signal quality did not underlie the difference in correlation.  

Retinotopic coding scaffolded the interaction between +DN and +dATN pRFs, as well. Consistent 
with their overall positive interaction, both matched and antimatched +DN pRFs had a positive 
correlation with dATN pRFs after accounting for variance associated with -DN pRFs, and 
retinotopic coding enhanced this positive correlation, as matched pRFs had a significantly greater 
positive correlation than antimatched pRFs (D(392) = 0.245, p<0.001; t(6)=-3.99, p=0.007; Fig. 
S6). Thus, retinotopic coding also structures interactions between positively responsive voxels in 
the DN and dATN. 

Together, these results suggest that the retinotopic code plays a role in structuring the overall 
interaction between the brain’s internally- and externally-oriented cortical networks, and the 
nature of the DN/dATN interaction depends on the visual response of DN pRFs. DN pRFs with 
positive responses to visual stimulation exhibit a retinotopically-specific positive correlation to 
dATN pRFs, while DN pRFs with negative responses to visual stimulation exhibit a retinotopically-
specific opponent interaction with dATN pRFs. 

 

Fig. 2. Retinotopic coding organizes spontaneous interaction between internally and externally 
oriented brain networks. A. Determining spatially-matched pRFs in dATNs and DNs. We 
assessed the influence of retinotopic coding on the interaction between internally- and externally-
oriented brain areas’ spontaneous activity during resting-state fMRI, by comparing the correlation 
in activation between pRFs in these networks that represent similar (vs. different) regions of visual 
space. For each -DN pRF, we established the top 10 closest +dATN pRF voxels’ centers 
(“matched”) and the 10 furthest pRF centers (“antimatched”). For each resting-state fMRI scan, 
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we extracted the average time series from -DN pRFs and correlated that time series with the 
average time series from the +dATN matched and antimatched pRFs. We repeated this procedure 
for all resting-state runs in all participants. Plot shows one example resting-state time series from 
a participant’s -DN, +dATN matched and +dATN antimatched pRFs and their associated 
correlation values. B. Spatially matched -DN/+dATN pRFs have a greater opponent interaction 
than antimatched pRFs, showing that opponent dynamics depend on retinotopic preferences. 
Histogram shows the distribution in correlation values between matched (dark green) and 
antimatched (light green) pRF pairs for each resting-state run in all participants, which were 
significantly different (matched versus antimatched: D(392)=0.245, p<0.001). Bar plot shows the 
average correlation for each participant (matched versus antimatched: t(6)=3.49, p=0.011). C. DN 
subnetworks A and B both evidenced a retinotopic opponent interaction (DN-A: t(6)=3.02, 
p=0.023, DN-B: t(6)=2.72, p=0.034; DN-A vs. DN-B: t(6)=1.64, p<0.15), although the opponency 
was stronger overall in DN-A compared to DN-B (difference in average correlation between -
DN/+dATN pRFs: t(6)=5.41, p=0.002). 

Retinotopic coding organizes activity within functional domains 
Our results so far clearly establish that retinotopic coding structures spontaneous interactions 
between internally- and externally-oriented neural systems in the absence of task demands. 
However, high-level cortical areas generally associate into networks based on their functional 
domain. For example, within the visual system, brain areas with differing retinotopic preferences 
(e.g., the scene-selective areas on the lateral and ventral surfaces of the brain) 45,46 nevertheless 
form functional networks based on their apparent preference for specific visual categories (e.g., 
faces, objects, or scenes)47,48. This raises a question: do retinotopic and domain-specific 
organizational principles interact to facilitate or constrain information flow across internally- and 
externally-oriented networks? Addressing this question would shed light on mechanisms that 
enable the brain to integrate information while maintaining functional specialization. 

To address this question, we focused on the functional interplay between a set of areas in 
posterior cerebral cortex that are established models for mnemonic and visual processing in the 
domains of scene and face perception. Specifically, we considered the mnemonic lateral place 
memory area (LPMA35,36), an area on the brain’s lateral surface that is implicated in processing 
mnemonic information relevant to visual scenes at the border between DN-A and the dATNs (Fig 
2A). We examined how LPMA activation co-fluctuates with the adjacent, scene-perception area 
“occipital place area” on the brain’s lateral surface (OPA49,50) compared to two face-perception 
regions on the lateral and ventral surfaces, the occipital and fusiform face areas (OFA and FFA 
51,52). At a group level, these perceptual regions are situated within the dATNs and are at the same 
level of the visual hierarchy (Fig. 3A), but they are differentially associated with the domains of 
scene (OPA) and face (OFA, FFA) processing, making them ideal model systems to examine the 
impact of domain-specificity and retinotopic coding in organizing neural activity.  

We first defined the mnemonic area LPMA in the NSD participants. To do this, we contrasted 
functional connectivity between the anterior and posterior halves of the parahippocampal place 
area using each participant’s resting state data53,54 (Fig. 3B; See Methods), which revealed a 
cluster in lateral parietal cortex with a similar topographic profile as LPMA based on a group 
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analysis from our prior work 35 (Fig.3C). Replicating our previous findings34, this connectivity-
defined LPMA had a higher concentration of robust -pRFs compared to OPA (t(7)=5.26, p=0.002) 
(Fig.3D, Supplemental Fig. S4, S7) and exhibited a similar lower visual field bias as OPA (OPA: 
8/8 t(7)=3.13, p=0.016; LPMA: 7/8 participants, t(7)=2.11, p=0.07; OPA v LPMA: t(7)=0.441, 
p=0.67) (Fig. 3E). 

We first considered whether the retinotopic opponent dynamic we have previously shown in the 
domain of scenes (i.e., between -LPMA and +OPA pRFs) during perceptual and mnemonic 
tasks34 was also present at rest (Fig. 3F). As we observed for the overall -DN and +dATN pRFs, 
we found that -LPMA and +OPA pRFs are interlocked in a retinotopically-grounded opponent 
interaction. Resting-state activity of -LPMA and +OPA pRFs was reliably negatively correlated 
after accounting for variance associated with +DN pRFs, and, critically, this negative correlation 
was stronger for matched compared with antimatched pRFs (K-S test: D(392)=0.22, p<0.001; 
t(6)=4.45, p=0.004) (Fig.3-I; Fig. S8). This pattern was consistent when matched/antimatched 
pRFs were equated for eccentricity and size (matched vs. antimatched: D(392)=0.148, p=0.028; 
t(6)=2.03,p=0.087; 5/7 participants) (Fig. S9). Matched and antimatched +OPA pRFs resting-state 
tSNR (t(6)=1.922, p=0.103) and variance explained by the pRF model (t(6)=0.47, p=0.65) did not 
differ, suggesting that idiosyncratic voxels did not drive these results. Additionally, the opponent 
interaction was specific to -pRFs in LPMA: the activity of the best matched +pRFs in LPMA and 
OPA was positively correlated, and significantly more so than antimatched +pRFs in LPMA and 
OPA (t(6)=3.22, p=0.018; Supplementary Fig. S10). Taken together, these results show that the 
retinotopic code scaffolds the spontaneous interaction between perceptual and mnemonic brain 
areas within a functional domain, conceptually replicating our previous findings from task-fMRI 34.  

Having established that the retinotopic opponent dynamic between -/+pRFs is present among 
functionally-paired brain areas within the domain of scenes, we next tested whether this opponent 
dynamic was modified by functional domain (i.e., the scene memory area LPMA paired with the 
face perception areas FFA and OFA). Remarkably, when matching across functional domains we 
observed no significant difference between the distribution of correlation values for matched and 
antimatched pRFs (Matched versus antimatched pRFs – -LPMA x +OFA: D(392)=0.09,p=0.44, 
t(6)=1.04, p=0.34; FFA: D(392)=0.11,p=0.15, t(6)=1.48, p=0.18; Fig. 2G-I). Retinotopic-
opponency was greater within- compared to across-domain matching (scene-memory x scene-
perception versus average scene-memory x face-perception: t(6)=2.46, p=0.049). Importantly, 
matched pRFs within domain had a significantly stronger opponent interaction than across 
domains (within vs across domains – -LPMAx+OPA v -LPMAx+FFA: t(6)=5.94, p=0.001; -
LPMAx+OPA v -LPMAx+OFA: t(6)=7.03, p<0.0005). These results indicate that retinotopic coding 
does not structure the interaction between pairs of regions associated with distinct functional 
domains. Instead, retinotopic scaffolding appears to be selective, operating only within a given 
functional domain. This coding scheme could allow for efficient, parallel processing of domain-
specific information (e.g., faces, scenes) that can be flexibly adapted depending on task demands.  
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Fig. 3. Retinotopic coding structures the spontaneous interaction between functionally-coupled 
mnemonic and perceptual areas during resting-state fMRI. A. Isolating functionally coupled 
internally- and externally-oriented brain areas within the DNs and dATNs. We identified brain 
areas that were specialized in two domains: scenes and faces processing. Specifically, we 
focused on the lateral place memory area (LPMA; from 35), white), a memory area in the domain 
of scene perception at the posterior edge of the DN-A (purple; from 44). We examined LPMA’s 
relationship to three different of category-selective visual areas in the dATN (green; from 44), 1) 
the occipital place area (OPA; from 35), an area within the domain of scene perception, along with 
2) the occipital face area (OFA) and 3) the fusiform face area (FFA), two areas involved in the 
domain of face perception (white; from 55). B-C. We localized LPMA in all participants by 
contrasting the correlation in resting-state activity between anterior and posterior 
parahippocampal place area (PPA) (B). This yielded a region in lateral occipital-parietal cortex 
that overlapped with the LPMA defined in an independent group of participants (C). D-E. 
Consistent with prior work, the connectivity-defined LPMA had greater concentration of -pRFs 
compared to OPA (D), and exhibited a lower visual field bias to OPA (E), consistent with an 
opponent interaction between these areas during perception. F. We assessed the influence of 
retinotopic coding on the interaction between -pRFs in mnemonic and +pRFs in perceptual areas 
using the same pRF matching and correlation procedure described above. We compared pRFs 
within functional domain (scene memory x perception – LPMA to OPA) as well as across domains 
(scene memory x face perception – LPMA to the occipital face area (OFA) and fusiform face area 
(FFA)). G. Within functional domain opponent interaction reflects voxel-wise retinotopic coding. 
We observed a stronger negative correlation between matched compared to antimatched -
LPMA/+OPA pRFs (-LPMA x +OPA matched versus antimatched pRFs: D(392)=0.22, p<0.001). 
H. Retinotopic coding did not impact the interaction between areas across functional domains. 
We found no significant difference between matched and antimatched pRFs between the scene 
memory area LPMA and the face perception areas FFA and OFA (-LPMA x +OFA: D(392)=0.09, 
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p=0.44; -LPMA x +FFA: D(392)=0.11, p=0.15). Histograms depict the distribution of correlation 
values between matched (dark) and antimatched (light) pRFs for all runs in all participants. I. 
Retinotopic coding organizes interactions within a domain, but not across domains. When the 
correlation values were averaged within each participant, we observed a significant difference 
between matched versus antimatched pRFs within functional domain (-LPMA x +OPA: t(6)=4.45, 
p=0.004) but not across domains (-LPMA x +OFA: t(6)=1.04, p=0.34; -LPMA x +FFA: t(6)=1.48, 
p=0.188). 

Retinotopic coding is inherent to internally-oriented areas 

Our findings support the crucial role of retinotopic coding in scaffolding spontaneous interactions 
between functionally-coupled mnemonic and perceptual brain areas. However, a fundamental 
question remains: is retinotopy intrinsic to internally-oriented cortical areas’ top-down influence 
over externally-oriented areas, or is the internally-oriented areas’ retinotopic code merely adopted 
in response to bottom-up perceptual input? Resolving this distinction is critical to understanding 
if the retinotopic scaffold is a general-purpose mechanism for cross-network interaction that 
transcends specific task demands and cognitive domains (i.e., memory vs. perception). 

To address this question, we developed an analytical approach to disambiguate bottom-up 
perceptual signals from top-down mnemonic signals. This allowed us to determine whether the 
influence of top-down or bottom-up was more influential on the overall opponent relationship. We 
only considered the interaction between -LPMA and +OPA pRFs because we were specifically 
interested in whether the opponent dynamic would be present during periods of top-down drive. 
We identified periods where spontaneous activity of individual -LPMA or +OPA pRFs was 
unusually high (z-scored BOLD signal of a given voxel exceeded the 99th percentile of activity in 
a resting-state run). We considered these time points neural "events." Events detected in -LPMA 
pRFs were considered top-down, and events in +OPA pRFs were considered bottom-up, and we 
analyzed the peri-event activation in the target area's matched and antimatched pRFs (Fig. 3A). 
Because participants do not have any experimentally imposed task demands during resting-state 
fMRI, any structured interaction between areas will reflect these regions’ spontaneous dynamics.  

Our analysis detected 20,958 top-down events and 7,193 bottom-up events. Top-down and 
bottom-up events occurred at the same rate per pRF (t(6)=0.71, p=0.50). Individual participants 
averaged 116±70.4 top-down and 32±11.76 bottom up (mean±sd) events per run. All pRFs had 
between 0 and 4 events per run (Fig. S11A-C). The wide distribution of events in time suggested 
that individual pRF-level correlation could be isolated from global fluctuations in regional activity 
(Fig. S11A), making this approach suitable for evaluating distinct interactions at the individual 
voxel level. 

Intriguingly, although both top-down and bottom-up events tended to reduce target area activity 
via a retinotopic code, only top-down events resulted in suppression of the target pRFs (relative 
to the pre-event baseline). During top-down events, compared to pre-event baseline +OPA pRFs 
showed significant deactivation that was more pronounced in matched compared to antimatched 
pRFs (Fig. 3B). On the other hand, relative to their pre-event baseline -LPMA pRFs had elevated 
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activity during bottom-up events. However, despite the lack of opponency, the activation of 
matched pRFs was significantly reduced compared to antimatched pRFs suggesting an inhibitory 
influence of bottom-up activity of +OPA on -LPMA pRFs. The influence of retinotopic coding was 
similar for both bottom-up and top-down events, indicating a symmetric inhibitory interaction: 
target area activity was significantly lower for matched compared to antimatched pRFs in both 
directions (top-down: t(6)=4.13, p=0.006; bottom-up: t(6)=3.17, p=0.02), with no difference 
between event types (t(6)=0.86, p=0.42). The balanced dynamic between -LPMA and +OPA 
pRFs mirrors other nervous system interactions 56–59, extending this well-established framework 
in these sensory/motor domains to higher-order cognitive functions.  

We further tested whether top-down events detected across all DN -pRFs would show this 
opponent dynamic. Indeed, we observed a clear, retinotopic opponency during top-down events 
in -DN pRFs, relative to the activity of the dATN (Matched vs antimatched: t(6)=10.43, p<0.001, 
Fig. S12). This is clear evidence that both top-down and bottom-up events evoke retinotopically-
specific inhibitory responses in the target region, supporting the hypothesis that retinotopic coding 
is intrinsic to mnemonic cortical areas, even in the absence of task demands or overt visual input.  
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Fig. 4. Top-down vs. bottom-up neural events detected in spontaneous resting-state dynamics 
show evidence for retinotopically-specific suppression. A. Event detection and analysis procedure 
and example events from a single resting-state run. To detect events, we extracted the time series 
from each pRF in the source regions (top-down: -LPMA; bottom-up: +OPA) and isolated time 
points where the z-scored time series exceeded 2.4 s.d. (99th percentile). We then examined the 
activity of matched and antimatched pRFs from the target region in this peri-event time frame (6 
TRs (8 s) before and after the event). Overall, this event detection procedure yielded 20958 top-
down and 7985 bottom-up events that were well distributed in time (Fig. S11). B. -LPMA pRF 
events co-occur with suppression of retinotopically-matched +OPA pRFs. Peri-event time series 
depicts the grand average activity of matched (dark) and antimatched +OPA pRFs. Time series 
are baselined to the mean of the first three TRs (TRs -6 to -4 relative to event onset, dotted line). 
Red significance line shows time points with a significant difference between matched and 
antimatched activation, corrected for multiple comparisons (alpha-level: p<0.05/13 = 0.0038). C. 
Suppression of ongoing activity in retinotopically matched -LPMA pRFs during +OPA events. Peri-
event time series depicts the grand average activity of matched (dark) and antimatched +OPA 
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pRFs. As predicted, -LPMA activity is elevated during resting-state. This elevated ongoing activity 
is suppressed during events in retinotopically matched +OPA pRFs. Time series are baselined to 
the mean of the first three TRs (TRs -6 to -4 relative to event onset, dotted line). Blue significance 
line shows time points with a significant difference between matched and antimatched activation, 
corrected for multiple comparisons. D. Target area shows retinotopically-specific suppression of 
activity for both top-down and bottom-up events. Bars show the average activation at event time 
of the target areas’ matched and antimatched pRFs for each participant. Activity in matched pRFs 
was significantly lower than antimatched pRFs for both top-down (t(6)=4.13, p=0.006) and bottom-
up (t(6)=3.17, p=0.02), and there was no difference in the influence of retinotopic coding between 
these event types (t(6)=0.86, p=0.42). 

Discussion 
In summary, it is well-established that internally- and externally-oriented brain networks, including 
DNs and dATNs, support higher cognition in humans 1–8,11–13. Yet we lack an understanding of 
what coding principles, if any, underpin interactions across these distributed brain networks 30,60–

64. Here, we show that a retinotopic code scaffolds the voxel-scale interaction between internally- 
and externally-oriented brain networks, even in the absence of overt visual demands. Moreover, 
by examining functionally-linked perceptual and mnemonic areas straddling the boundary 
between the DNs and dATNs, we found that this retinotopic information is multiplexed with 
domain-specific information, which may enable effective parallel processing of representations 
depending on retinotopic location, attentional-state, and task-demands. Finally, analysis of neural 
events in these functionally-linked regions showed that retinotopic opponency is present in top-
down as well as bottom-up events, suggesting that the retinotopic code is intrinsic to both 
perceptual and mnemonic cortical areas. Collectively, our results provide a unified framework for 
understanding the flow of neural activity between brain areas, whereby macro-scale neural 
dynamics are organized at the meso-scale by functional domain and at the voxel-scale by a low-
level retinotopic code. This multi-scale view of information processing has broad implications for 
understanding how the brain’s distributed networks give rise to attention, perception, and memory.  

Because of the DN’s importance in many cognitive processes, including spatial and episodic 
memory, social processing, and executive functioning 13,65–70, resolving the coding principles 
inherent to the DN is central to understanding human cognition12,61–66. The traditional view of 
neural coding posits that sensory codes like retinotopy are shed in favor of abstract, amodal codes 
moving up the cortical hierarchy towards the DN 2,29,30. Our data contrast strikingly with this view. 
Instead of shedding the retinotopic code at the cortical apex, our prior work has shown that the 
low-level retinotopic code structures interactions between functionally paired perceptual and 
mnemonic areas in posterior cerebral cortex involved in visual scene analysis during visual and 
memory tasks34. Here we significantly extend that earlier finding by showing that the retinotopic 
code organizes spontaneous interactions between the brain’s primary internally- and externally- 
oriented large-scale networks, DN and dATN, even in the absence of task demands.  

Our findings of retinotopic, voxel-scale opponency between DN and dATN pRFs is at odds with 
theories that posit that these networks’ activity is independent11,23,27,28 or even competitive10,12,71. 
Moreover, the traditional conception of the DN suggests that it does not participate in sensory 
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processing10–13. Instead of independence between these networks, our results suggest that the 
activation of the visually-responsive voxels in the DN and dATN is complementary, with the 
precise relationship stratified by individual voxel’s positive or negative responsiveness to visual 
stimuli. Without considering voxel-wise information, these voxel-level distinctions appear to 
“average out” into a global independence or opponency 11,12, which has led to the conclusion that 
these networks are engaged in fundamentally different cognitive processes. In contrast, our 
results emphasize that the DN and dATNs jointly process common, retinotopic information. Their 
mutual retinotopic code enables these networks to encode retinotopic information at a voxel level 
in both positive and negative BOLD responses.  

What purpose might this retinotopically-specific opponent dynamic coding serve in the context of 
overall brain function? We propose two complementary functions. One possibility is that 
oppositional coding of -DN pRFs, in particular, may serve as a neural mechanism for maintaining 
separate channels for perceptual and mnemonic information 61. Representing mnemonic signals 
in topographically distinct regions may prevent this internally-generated information from being 
interpreted as external. Similarly, by encoding remembered information in an inverted retinotopic 
format, the brain could process memory and perception simultaneously while preventing cross-
talk—much like how opposing radio frequencies can carry different signals without interference. 
A second possibility is that oppositional coding could be a mechanism for signaling mnemonic 
predictions via top-down inhibitory processes72. Specifically, when the DN generates predictions 
about incoming sensory information, the inverted retinotopic code could act as a suppressive 
signal that sharpens tuning in perceptual areas73,74. This suppression would effectively enhance 
the neural representation of predicted stimuli by reducing background noise. These mechanisms 
likely work in concert: the inverted code simultaneously maintains separate channels for 
memory/perception while enabling precise top-down predictive signaling. Future work combining 
cellular recording techniques with behavior will be crucial for testing these proposed mechanisms 
and understanding how they contribute to cognitive function. 

Retinotopic coding between the DN and dATN was clear in both subnetworks of the DN, DN-A 
and DN-B3,8,20. This is surprising given that these subnetworks are thought to subserve very 
different cognitive functions. Between these subnetworks, the role of DN-A is more easily tied to 
visual processing. DN-A is thought to be involved in memory tasks with a visual component, like 
episodic projection and scene construction 8,20, and at the group-level DN-A overlaps with areas 
of the brain that we have previously shown implement a retinotopic code and respond to visual 
tasks34–36. On the other hand, DN-B is thought to be involved with theory of mind tasks that do not 
obviously rely on visual information, like interpretation of false belief and emotional/physical pain 
8,20. In this case, retinotopic coding might still be a useful format for transforming these abstract 
signals into sensory-grounded representations that can inform behavioral decisions (e.g., eye 
movements) and sensory predictions (e.g., anticipating facial expressions or body postures). 
Despite these differences, both DN subnetworks implemented a retinotopic code with respect to 
their interaction with the dATN, which further supports retinotopic coding as a core principle 
underpinning the brain’s functional organization.  

The importance of retinotopic coding is further underscored when assessing “top-down” events 
(i.e. events that originate in the DN) detected at rest, which had a retinotopically-specific 
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suppressive influence on pRFs in their downstream target area. This result joins mounting 
evidence demonstrating retinotopic coding in the DN 31–34, as well as new evidence supporting 
the importance of visual coding in the DN during visual tasks 34,75. Our findings align with other 
recent studies suggesting an important role of the DN in shaping visual responses. For example, 
others have shown that ongoing prestimulus DN activity influences the sensitivity of near-
threshold visual object recognition 75. Other work has shown that subareas of the DN represent 
the visuospatial context that is associated in memory with a perceived scene 34–36,76. Relatedly, 
DN activity reflects semantic-level attentional priorities during visual search 77. Taken together, 
these findings show that, rather than being disengaged during visual tasks, the DN actively 
shapes responses in perceptually-oriented cortex, and that retinotopic coding is part of the DN’s 
“native language”. Taken together with prior results31–34, our findings prompt a reevaluation of the 
role of the DN in perceptual processing, and the extent to which roles in “internally- and externally-
oriented attention” adequately captures the DN and dATN’s role in cognition. 

These findings and others31–34 raise a fundamental question: is the DN a “visual” network? One 
possible interpretation of retinotopic coding in the DN is that the DN directly and obligatorily 
represents retinal position, like low-level visual areas, and that the DN is engaged in processing 
visual features in addition to more abstract features39,78. Under this hypothesis, the retinotopic 
code indicates that the information represented in the DN is, in part, sensory. Alternatively, the 
apparent visual coding may simply represent an underlying connectivity structure79 , which 
enables associative 80 and semantic 30,81 information that the DN directly represents to be 
effectively transferred to sensory areas of the brain. Under this alternative hypothesis, the 
information represented in the DN is not itself sensory in nature; the retinotopic code in the DN 
simply serves as a “highway” between the abstract representations in the DN and sensory 
representations in the dATN. Notably, in either case the retinotopic scaffolding represents a latent 
structure linking high-level and low-level areas through consistent, spatially-organized 
interactions79. This provides more evidence that low-level sensory codes are distributed across 
the brain, joining recent work showing latent somatotopic codes in regions of the brain that are 
not typically associated with somatosensation, including visual cortex 82. The wide and 
overlapping distribution of sensory codes across the brain may allow multiplexing of complex 
information to structure cross-network interactions37,82. Further studies investigating this 
framework with diverse tasks and stimuli could reshape our understanding of how the brain 
processes and integrates information across different levels of cognitive complexity. 

Finally, our findings paint a clear picture of cortical dynamics spanning levels of analysis, from 
macro-scale brain networks, to meso-scale domain-specific subareas, to small-scale voxel-level 
interactions. Prior work has emphasized the importance of each of these organizational scales 
independently1,8,16,31,32,34,39,44,48,51,83,84. Here, our results suggest a comprehensive framework for 
understanding the brain’s functional organization that spans these levels of description. At the 
smallest scale, we demonstrate that retinotopic coding underpins voxel-scale interactions that are 
observable across the brain. At the meso-scale, these retinotopic interactions are constrained by 
specific brain areas’ functional domains (e.g., processing visual scenes). At a macro-scale, 
interplay among these domain-specific regions underpins the organization of large-scale brain 
networks, whose interactions give rise to specific complex behavior, like memory recall or visual 
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attention. This nested hierarchy of neural interactions may account for the efficiency of parallel 
information processing in the brain and our ability to flexibly to adapt to ongoing task demands.  

In summary, our results show that a retinotopic code organizes the spontaneous interactions of 
large-scale internally- and externally-oriented networks in the human brain. These findings 
challenge our classic understanding of internally-oriented networks like the DN, showing that the 
independence of the DN and dATN does not reflect disengagement from visual processing. 
Rather, their dynamic is structured by a voxel-wise retinotopic code that scaffolds interactions 
across these large-scale internally- and externally-oriented networks. Taken together, these 
results indicate that retinotopic coding, the human brain’s foundational visuo-spatial reference 
frame37,79, structures large-scale neural dynamics and may be a “common currency” or subspace 
for information exchange across the brain’s functional networks. 

Methods 
The data analyzed here are part of the Natural Scenes Dataset (NSD), a large 7T dataset of 
precision MRI data from 8 participants, including retinotopic mapping, anatomical segmentations, 
functional localizers for visual areas, and task and resting-state fMRI. A full description of the 
dataset can be found in the original manuscript 38. Here we detail the data processing and analysis 
steps relevant to the present work. 

Subjects 
The NSD comprises data from 8 participants collected at the University of Minnesota (two male, 
six female, ages 19-32). One subject (subj03) was excluded from resting-state analyses for 
having insufficient resting-state runs that passed our quality metrics. All participants had normal 
or correct to normal vision and no known neurological impairments. Informed consent was 
collected from all participants, and the study was approved by the University of Minnesota 
institutional review board. 

MRI acquisition and processing 
For this study we made use of the following data from the NSD: anatomical (T1 and FreeSurfer 
segmentation/reconstruction85,86), functional regions of interest ROIs, and minimally 
preprocessed retinotopy and resting-state time series. All analyses were conducted in original 
subject volume space, and data were projected on the surface for visualization purposes only. 

Anatomical data  
Anatomical data was collected using a 3T Siemens Prisma scanner and a 32-channel head coil. 
We used the anatomical data provided at 0.8mm resolution as well as the registered output from 
FreeSurfer recon-all, aligned to the 1.8mm functional data. For visualization purposes, we 
projected statistical and retinotopy data to the cortical surface using SUMA 87 from the afni 
software package88. 
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Defining functional regions of interest (PPA, OPA, OFA, FFA) 
We used the volumetric functional regions of interest provided with the NSD at 1.8mm resolution. 
Specifically, we used the parahippocampal place area (PPA), occipital place area (OPA), iog-
faces (referred to here as occipital face area (OFA)), and pfus-faces (fusiform face area, FFA1) 
regions of interest. In brief, these regions were defined in the NSD using within-subject data 
collected from 6 runs of a multi-category visual localizer paradigm 38.  

Defining functional region LPMA  
Because the NSD did not include mnemonic localizers 35, we used the resting-state data to define 
the lateral place memory area (LPMA). Briefly, the LPMA is a region anterior to OPA and near 
caudal inferior parietal lobule53,54 that selectively responds during recall of personally familiar 
places compared to other stimulus types. We have previous shown that OPA and LPMA are 
functionally-linked and work jointly to process knowledge of visuospatial context out of view during 
scene perception.  

Prior work has suggested that a mnemonic area linked to scenes on the lateral surface can be 
localized by comparing resting-state co-fluctuations of anterior versus posterior PPA (aPPA and 
pPPA, respectively)19,53,54, and we adopted that approach here. We preprocessed the resting-
state fixation fMRI data, runs 1 and 14 from NSD sessions 22 and 23, in all participants (prior to 
data exclusion) and extracted the average time series of aPPA, pPPA, aFFA, and pFFA. We used 
these time series as regressors in a general linear model, and we compared the beta-values from 
the aPPA and pPPA. We considered any voxels with a t-statistic > 5 within posterior parietal-
occipital cortex on the lateral surface as an LPMA ROI (Individual ROIs can be found in 
Supplemental Fig.4). Across subjects, there was considerable overlap between this connectivity-
defined area and a group-level LPMA defined based on our prior work (Fig. 2).  

Functional MRI data acquisition and processing 
All analyses were conducted on 1.8mm isotropic resolution minimally processed runs of a 
sweeping-bar retinotopy task and resting-state fixation provided in the NSD.  

Quality assessment 
To ensure only high-quality resting-state data were included, we trimmed the first 25 TRs (40s) 
from each run 76, which left 4.25 min of resting-state data per run. We then used afni’s quality 
control assessment tool (APQC89) on the raw trimmed resting-state time series to assess degree 
of motion in the resting-state scans. We excluded runs with greater than 1.8mm maximum 
displacement per run or 0.12mm framewise displacement from analysis and assessed runs with 
greater than 1mm displacement or 0.10mm framewise displacement on a case-by-case basis8. 
After exclusions, one participant (subj03) had only a single run that survived our criteria (4.25 
minutes of data)), so we excluded them from resting-state analyses. The remaining 7 participants 
had at least 8 resting-state runs (> 34 minutes of data; mean number of runs: 14±6.13 (sd), range: 
8-24 runs).  
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ICA denoising 
To further denoise the retinotopy and remaining resting-state data, we used manual ICA 
classification of signal and noise on the minimally-preprocessed time series35,41,42. We used 
manual classification because automated tools perform poorly on the high spatial and temporal 
resolution data of the NSD90. For each retinotopy and resting state run, we decomposed the data 
into independent spatial components and their associated temporal signals using ICA (FSL’s 
melodic91,92). We then manually classified each component as signal or noise using the criteria 
established in42. Noise signals were projected out of the data using fsl_regfilt41.  

We did not perform global signal regression26. Data were normalized to percent signal change. A 
2.5mm FWHM smooth was applied to resting-state fixation data used in functional connectivity 
network identification. The analysis of voxel-scale interactions performed on unsmoothed data. 

Data analysis - retinotopy 

pRF Modelling 
The NSD retinotopy stimuli features a mosaic of faces, houses, and objects superimposed on 
pink noise that are revealed through a continuously drifting aperture. For our analysis, we 
considered only the bar stimulus time series, which is consistent with other studies investigating 
-pRFs in high-level cortical areas 31,33,34. We did not consider the wedge/ring stimulus for any 
analyses. 

After denoising the retinotopy data, we averaged the three retinotopy runs with the bar aperture 
together to form the final retinotopy time series. We performed population receptive field modeling 
using afni following the procedure described in 45. First, because the pRF stimulus in the NSD is 
continuous, we resampled the stimulus time series to the fMRI temporal resolution (TR = 1.333s). 
Next, we implemented afni’s pRF mapping procedure (3dNLfim). Given the position of the 
stimulus in the visual field at every time point, the model estimates the pRF parameters that yield 
the best fit to the data: pRF amplitude (positive, negative), pRF center location (x, y) and size 
(diameter of the pRF). Both Simplex and Powell optimization algorithms are used simultaneously 
to find the best time series/parameter sets (amplitude, x, y, size) by minimizing the least-squares 
error of the predicted time series with the acquired time series for each voxel. Relevant to the 
present work, the amplitude measure refers to the signed (positive or negative) degree of linear 
scaling applied to the pRF model, which reflects the sign of the neural response to visual 
stimulation of its receptive field. 

Visual field coverage 
Visual-field coverage (VFC) plots represent the sensitivity of an ROI across the visual field. We 
followed the procedure in Steel et al., 2024 to compute these34, which we have reproduced here. 
Individual participant VFC plots were first derived. These plots combine the best Gaussian 
receptive field model for each suprathreshold voxel within each ROI. Here, a max operator is 
used, which stores, at each point in the visual field, the maximum value from all pRFs within the 
ROI. The resulting coverage plot thus represents the maximum envelope of sensitivity across the 
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visual field. Individual participant VFC plots were averaged across participants to create group-
level coverage plots. 

To compute the elevation biases, we calculated the mean pRF value (defined as the mean value 
in a specific portion of the visual-field coverage plot) in the contralateral upper visual field (UVF) 
and contralateral lower visual field (LVF) and computed the difference (UVF–LVF) for each 
participant, ROI and amplitude (+/−) separately. A positive value thus represents an upper visual-
field bias, whereas a negative value represents a lower visual-field bias. Analysis of the visual-
field biases considers pRF center, as well as pRF size and R2.  

Reliability of pRF amplitude estimate 
To assess the reliability of pRF amplitude (i.e., positive versus negative), we iteratively compared 
the amplitude of significant pRFs from individual runs of pRF data. Specifically, for each single 
run of pRF data, we fit our pRF model. We then binarized vertices according to significance and 
amplitude – voxels that surpassed our significance threshold (R2 > 0.08) in the full model were 
assigned a value of 0 or 1. When investigating +pRF reliability in OPA, significant vertices with a 
positive amplitude were assigned to 1, all other vertices 0. For -pRF reliability in LPMA, the 
opposite was done: significant negative amplitude vertices were assigned a value of 1, and all 
other vertices set to 0.  

For each participant, after binarization, we calculated a dice-like coefficient within each ROI which 
considered all three retinotopy runs (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = !|#$%&	∩	#$%)	∩	#$%!|

|#$%&|*|#$%)|*|#$%!|
). We compared this value 

versus 5000 iterations of the same number of voxels randomly sampled from all voxels, both 
significant and non-significant, in the ROI. For each participant, this resulted in 1 “observed” dice 
coefficients, along with 5000 bootstrapped values representing the distribution of dice coefficients 
expected by chance which we used to evaluate the significance of each pRF amplitude’s run-to-
run consistency. 

Voxel-wise pRF matching 
We matched -pRFs in source (i.e., the DN) with target (i.e., +pRFs in the dATN) using the following 
procedure. Within each participant, we computed the pairwise Euclidean distance between the 
center (x,y) of each source pRF with each target pRF. For each source pRF, we considered the 
top 10 closest target pRFs the “matched pRFs” and the 10 furthest target pRFs the “antimatched 
pRFs.” So, each pRF within a memory area yielded 10 matched and 10 antimatched pRFs.  

To investigate the opponent interaction between areas for top-down interactions (below), we 
conducted this procedure using -LPMA pRFs as the source and +OPA pRFs as targets. To 
investigate bottom-up interactions, we considered +OPA pRFs as the source and -LPMA pRFs 
as targets. To investigate the importance of functional domain in retinotopic interactions, we 
considered -LPMA pRFs as the source and 1) +OFA and 2) +FFA pRFs as targets. 
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Resting-state analyses 

Individual-specific cerebral network estimation 
In each participant, we identified a set of 15 distributed networks on the cerebral cortical surface 
using a multi-session hierarchical Bayesian model (MS-HBM) functional connectivity approach 
8,40. Briefly, the MS-HBM approach calculates a connectivity profile for every vertex on the cortical 
surface derived from that vertex’s correlation to all other vertices during each run of resting-state 
fixation. The MS-HBM then uses the resulting run- and participant-level profiles, along with a 15 
network group-level prior created from a portion of the HCP S900 data44, to create a unique 15-
network parcellation for each individual. 

The MS-HBM has two primary advantages compared to other approaches used to parcellate 
functional connectivity data, such as k-mean clustering. First, it accounts for differences in 
connectivity both within an individual (likely the result of confounding variables such as scanner 
variability, time of day, etc.), and between participants (reflecting potentially meaningful individual 
differences), allowing for more reliable estimates. Second, by incorporating a group prior which 
includes all the networks of interest, we ensure that all networks will be identified in all participants, 
while allowing for idiosyncratic topographic differences. 

Correlation among cortical networks  
We calculated the unique correlation between the combined DNs and dATNs using partial 
correlation to account for variation associated with other cortical networks 43 . We averaged the 
time series from separate subnetworks of the DN and dATN prior to calculating the partial 
correlation. Then, to determine whether activity the different populations of visually responsive 
voxels (-pRFs, +pRFs, sub threshold (i.e., non-retinotopic) within the DNs was differentially 
correlated with the dATNs, we re-calculated the partial correlation between the average time 
series of these populations of DN voxels with the dATNs while accounting for the activity of all 
other cortical networks.  

Opponent interaction at rest 
To assess the influence of retinotopy on the correlation of areas at rest, we used the following 
procedure. First, we established matched source (i.e., -DN or -LPMA) and target (i.e., +dATN or 
+OPA) pRF pairs using the procedure described above. For this analysis, our primary focus was 
on the -pRFs in the DN or LPMA and their relationship with perceptual areas (dATN, OPA, OFA, 
FFA). Among these highly connected areas, large-scale fluctuations due to attention and motion 
will cause these voxels to be highly correlated. To control for this, consistent with prior work, we 
extracted the average time series of all +pRFs in the DN or LPMA and partialed out the variance 
associated with these pRFs from the -pRFs in the DN or LPMA and +pRFs in the perceptual areas 
of interest from each resting-state run 34,43. This provided an ROI-level analog to the whole-brain 
partial correlation described above (Section: Correlation among cortical networks), allowing us to 
isolate the unique contribution of the pRFs of interest from overall activity in the region as well as 
to control for global fluctuations that cause widespread positive correlations like motion and 
attentional state34,43. 
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To examine the opponent interaction for matched pRFs, we considered each resting state run 
separately. In each resting state run, we first calculated the average time series of all -pRFs in 
LPMA. We then calculated the average time series for the top 10 best matched +pRFs in OPA of 
all voxels. For example, if a participant had 211 -pRFs in LPMA, these voxels were averaged 
together to get a single -LPMA pRF time series, and the top 10 matched +pRFs in OPA (i.e., 2110 
time series) would be averaged together to constitute the +OPA time series. Note that the 
matched +OPA pRFs were not unique for each voxel. We then correlated these time series (-
LPMA and +OPA pRFs). A negative correlation was considered an opponent interaction. 

To compare the importance of retinotopy in structuring the interaction between LPMA and OPA, 
we performed the same averaging and correlation procedure described above with the 10 worst 
matched pRFs (antimatched). For each participant, all Fisher-transformed correlation values (z) 
for matched versus antimatched pRFs were averaged together and we compared these matched 
and antimatched correlation values using a paired t-test. To examine the specificity within each 
functional network, we repeated this procedure for -LPMA matched/antimatched with OFA and 
FFA-1. 

To confirm that retinotopic coding structured the opponent interaction, we repeated this anaylsis 
with two key differences: 1), to ensure that the choosing the bottom 10 voxels did not drive our 
results, we randomly sampled 10 pRFs from the furthest 33% of pRFs from each participant, and 
2) to ensure that ROI-level effect was present at the individual pRF level, we performed the 
analysis without averaging the pRF’s resting-state time series within each ROI. For each resting 
state run, we extracted each -pRF time series and correlated this time series with the time series 
from the average of its top 10 best matched +pRF in OPA. We performed this matching and 
random sampling procedure 1000 times for each pRF in the source area. For example, if a 
participant had 211 -pRFs in LPMA, we would correlated each of these pRFs with the average 
time series from the their top 10 best matched +pRFs in OPA, resulting in 211 individual r-values 
for each resting-state run, and compared each of these 211 values with the correlation of 1000 
randomly paired pRFs for that source pRF. We then Fisher-transformed these matched and 
randomly sampled values and averaged them to constitute a single value for each run. We 
repeated this procedure for all runs in all participants. The mean Fisher-transformed values were 
compared using a paired t-test. These results are described in the supplemental methods and 
results. 

Resting-state event detection 
We reasoned that the influence of top-down versus bottom-up drive on the spontaneous 
interaction between regions could be isolated by examining periods of unusually high activity in 
voxels in these respective areas (“events”)93,94. Specifically, we tested the hypothesis that top-
down events in -LPMA pRFs would co-occur with periods of lower activity in +OPA pRFs, and 
that the suppressive influence of top-down events would be stronger compared with bottom-up 
events.  To test these hypotheses, we isolated neural events in each source region’s (-LPMA (top-
down) and +OPA (bottom-up)) pRF time series and examined the activity in the corresponding 
target region at these event times.  
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Event detection was performed for each +/- pRF independently. To detect events, we z-scored 
all pRF’s resting-state time series and identified TRs with unusually high activity in source region 
pRFs. Specifically, we considered each time point with a z-value greater than 2.4 (i.e., 99.18 
percentile) as a neural event. Results were comparable with varying thresholds between 2.1 < z 
< 2.9. At each event, we extracted the 6 TRs before and after the event time (i.e., 13 TRs) 
surrounding the average time from that pRF’s top-10 matched pRFs in the target region. To make 
time series comparable across events, we normalized the event time series to the mean of the 
first 4 TRs. We repeated this procedure for all -LPMA/+OPA pRFs for top-down and bottom-up 
events. 

For top-down and bottom-up events, we compared the activity of the target region (top-down: 
+OPA pRFs; bottom up: -LPMA pRFs) at event time using paired t-tests. We only considered 
matched pRFs for this analysis. 

Statistical tests 
Statistical analyses were implemented in Matlab (Mathworks, Inc). Given the small number of 
subjects in this dataset, we used two statistical analysis methods to ensure robustness of any 
detected effects. First, borrowing analytical methods from neuroscientific studies using animal 
models, we leveraged the large within participant data by pooling observations (e.g., resting-state 
runs or pRFs) from each participant. We then tested for differences in distributions using two-
sample Kolmogorov-Smirnov goodness-of-fit hypothesis tests. Second, we adopted more classic 
statistical methods to test for effects within participants. We used paired-sample t-tests and 
corrected for multiple comparisons where appropriate.    
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Supplemental material 
 

 

 

Fig S1. PRF amplitude maps from all participants. Only voxels with greater than 8% variance 
explained by the pRF model are shown. 
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Fig S2. Cortical network parcellations for individual participants. Networks were parcellated based 
on the Yeo HCP 15-network parcellation44 using the multi-session hierarchical Bayesian model 
(MS-HBM) method40. 
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Fig. S3. Concentration of -pRFs across all cortical networks. DNs and dATNs contain the highest 
proportion of positive pRFs (of total suprethreshold pRFs). 
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Fig S4. Reliable fitting of pRF amplitude in OPA and LPMA, dATN, and DN. To assess the 
reliability amplitude (i.e., positive versus negative), we iteratively compared the amplitude of 
significant pRFs from individual runs of pRF data. We fit our pRF model on each individual run of 
pRF data. Vertices were binarized according to significance and amplitude – for +pRF reliability 
in OPA, significant vertices with a positive amplitude were assigned to 1, all other vertices 0; for -
pRF reliability in LPMA, the opposite was done: significant negative amplitude vertices were 
assigned a value of 1, and all other vertices set to 0.  

After binarization, for each pair of pRF runs  (e.g., run 1 v run 2), we calculated the dice coefficient 
within each ROI between two retinotopy runs, for each participant. For each participant, this 
resulted in 3 “observed” dice coefficients. The average of the 3 observed values was compared 
against a null distribution to evaluate the significance of each pRF amplitude’s run-to-run 
consistency. To establish the null distributions, we performed 1000 randomly shuffled iterations 
with equal proportion of significant voxels for each run pairing (resulting in 3000 bootstrapped 
values representing the distribution of dice coefficients expected by chance).  

The average dice co-efficient for amplitude exceeded the 99th percentile compared to shuffled 
data in all regions of interest, suggesting pRF amplitudes were reliable. Importantly, because of 
the noise inherent to any single run of fMRI data, this reliability assessment represents a very 
conservative measure of reliability. Bars represent mean reliability versus shuffled distribution 
across participants. Error bars represent standard error across participants. 

  

+OPA -LPMA +dATN -DN
-5

0

5

10

15

20

25

30

35

R
el

ia
bi

lit
y 

ac
ro

ss
 s

pl
its

 (z
-s

co
re

)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.09.25.615084doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.615084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 37 

 

Fig. S5. Spatial distribution of +dATN pRFs matched with -DN pRFs in cortex across all 
participants. Vertices are colored based on number of matched pRFs. Only vertices with greater 
than 7 matched pRFs (i.e., at least one for each subject) are shown. Yeo 2015 network maps44 
dATN A-B and DN A-B are shown for reference. Note that pRFs were matched in individualized 
dATN of each participant and are not expected to correspond precisely with the group network 
maps. 
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Fig. S6. Retinotopic specific co-fluctuation of +pRFs in DN and dATN. We matched +DN and 
+dATN pRFs based on their center position estimates. We evaluated the correlation between 
+DN pRFs and the correlation of the matched and antimatched time series using the same 
procedure as -DN pRFs (see methods). Left. Histogram shows the correlation of the average +DN 
and +dATN matched (pink crosses) and antimatched (light pink) time series for each resting state 
run in all participants. Right. Average correlation value across resting-state runs between +DN 
and +dATN matched and antimached pRFs for each participant. Matched pRFs had significantly 
stronger positive correlation compared to antimatched pRFs (t(6)=3.99, p=0.007). This is 
consistent with retinotopic coding structuring the interaction between +pRFs in perception and 
memory areas, and that these +pRFs are positively correlated, even during rest. 
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Fig S7. All participants OPA/LPMA and pRF amplitude. 
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Fig S8. Matched and antimatched pRFs correlation values reliability did not differ. One potential 
issue when comparing matched and antimatched pRF populations is that the antimatched 
population might be more variable in the strength of their correlation compared with matched 
pRFs. We confirmed this was not the case by examining the correlation between the matched 
and antimatched pRF time series for each pair of resting-state runs independently.  We then 
tested the correlation in these run-to-run pairs. We found no difference in run-to-run reliability 
between matched and antimatched pRFs (matched pRFs: r = 0.1502, antimatched pRFs: r = 
0.1510; difference: z = 0.0225, p = 0.98). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.09.25.615084doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.615084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 41 

 

Fig. S9. Retinotopic coding structures the interaction at rest when matched and antimatched pRFs 
are matched for center position and size. Left. Because of the differential distribution of receptive 
field centers across eccentricities, antimatched +OPA pRFs could be more likely to be eccentric 
and larger than matched pRFs. To ensure that this did not influence our results, we repeated the 
pRF matching analysis between -LPMA and +OPA with a restricted field of view (all pRFs within 
3.3°) and size (all pRFs larger than 2.5°). Center. Using these constraints, both matched and 
antimatched pRFs were matched for size. Right. Histogram shows the correlation of the average 
-LMPA and +OPA matched (dark red) and antimatched (light red) time series for each resting 
state run in all participants. These distritbutions were significantly different (D(392)=0.148, 
p=0.0244). Bars show the average correlation value across resting-state runs between -LPMA 
and +OPA matched and antimached pRFs for each participant. Matched pRFs had a stronger 
negative correlation compared to antimatched pRFs (t(6)=2.03, p=0.087; 5/7 participants). 
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Fig. S10. Retinotopic specific co-fluctuation of +pRFs in OPA and LPMA. We matched LPMA and 
OPA based on their center position estimates. We evaluated the correlation between +LPMA 
pRFs and the correlation of the matched and antimatched time series using the same procedure 
as -LPMA pRFs (see methods). Left. Histogram shows the correlation of the average +LMPA and 
+OPA matched (dark orange) and antimatched (light orange) time series for each resting state 
run in all participants. Right. Average correlation value across resting-state runs between +LPMA 
and +OPA matched and antimached pRFs for each participant. Matched pRFs had significantly 
stronger postive correlation compared to antimatched pRFs (t(6)=3.22, p=0.018). This is 
consistent with retinotopic coding structuring the interaction between +pRFs in perception and 
memory areas, and that these +pRFs are positively correlated, even during rest. 
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Fig. S11. Events are widely distributed in time. A. Example time series from each participant (each 
individual’s third resting-state session). Thick black line shows the -LPMA pRFs average time 
series, grey line shows average +OPA pRFs time series. Orange bars show the proportion of 
voxels within each ROI with events at a given time point. Events (time points where individual 
voxel time series exceeds z-score of 2.4) are widely distributed in time, with relatively few voxels 
(<15%) in each ROI exhibiting simultaneous events. This suggests that, after preprocessing, time 
series from individual voxels were effectively isolated. B. Number of events per time point 
combined for top down and bottom up events. Bars indicate the number of voxel events detected 
at a given time point within a resting-state run, aggregated across runs. Events were sparsely 
distributed: most time points contained no events (Proportion = 0.66, bar not shown), with the 
number of events decreasing approximately exponentially. This is further evidence for a wide 
temporal distribution of events. C. Proportion of voxels with events in each run. No voxel had 
more than 4 events per run. Data are combined between top down and bottom-up events. 
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Fig. S12. Left. Retintopic-specific suppression of dATN pRFs during periods of high -DN pRFs 
acitivty during rest. Periods of high -DN pRF activity were identified using the same procedure 
described for LPMA/OPA pRFs in the main text. Activity of dATN pRFs were evaluated during 
these events. -DN pRF events co-occur with suppression of retinotopically-matched +dATN pRFs. 
Peri-event time series depicts the grand average activity of matched (dark) and antimatched 
+dATN pRFs. Time series are baselined to the mean of the first three TRs (TRs -6 to -4 relative 
to event onset, dotted line). Green significance line shows time points with a significant difference 
between matched and antimatched activation, corrected for multiple comparisons (alpha-level: 
p<0.05/13 = 0.0038). Right. Robust retinotopic suppression of dATN pRFs is evident from the 
average activation of dATN pRFs at event time in all participants (Matched vs antimatched activity 
at event time: t(6)=10.43, p<0.001). 
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Supplemental methods and results 

Comparison of matched pRFs versus randomly sample pRF pairs 
One possibility is that the bottom 10 pRFs are a non-representative set of pRFs within an area. 
To control for this possibility, we implemented an alternative analysis method to compare the 
influence of retinotopic coding on voxel-scale pull-pull dynamics. For this analysis, we established 
the pairwise distances between all pRF centers across two regions (e.g., +OPA and -LPMA 
pRFS). Then, for each pRF, we randomly sampled 10 pRFs from the top 33% of distances (the 
top 1/3 furthest pRF pairs) and calculated the average correlation between these randomly 
matched pRF pairs. We considered the top 33% because the overwhelming majority of pRFs 
constituted relatively equal “good” matches. This resulted in 1000 correlation values for each pRF. 
Then, for each pRF. we compared the mean correlation from these 1000 iterations with the 
correlation of the top 10 best matched pRFs. We then averaged the matched and random pRF 
values from each participant and compared matched versus random pRFs using a paired t-test. 

Importantly, because some of the randomly sampled “poorly matched” pRFs constituted “good 
matches” for other pRFs, for this analysis we computed the correlation of the matched/random 
pRF timeseries for each pRF separately. Importantly, because the values were computed for each 
pRF separately, the correlation values are lower than the main text analysis where all pRF 
timeseries in a region were averaged together before computing the correlation value. 

Consistent with our main analysis, we found that retinotopic coding underpinned the opponent 
dynamic between the -DN and +dATN (t(6)=8.43, p<0.001) and -LPMA and +OPA pRFs 
(t(6)=3.012, p=0.024). On the other hand, retinotopic coding did not influence the interplay 
between -LPMA and OFA (t(6)=0.59, p=0.57) and -LPMA and FFA (t(6)=2.01, p=0.09). These 
results support the overall conclusions in our manuscript using the matched versus antimatched 
analysis. 

 

Supplemental results Fig. 1. Comparison of matched versus randomly paired pRFs. 
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