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Abstract

Diffusion models have shown promise in addressing the protein docking problem.
Traditionally, these models are used solely for sampling docked poses, with a
separate confidence model for ranking. We introduce DFMDock (Denoising Force
Matching Dock), a diffusion model that unifies sampling and ranking within a
single framework. DFMDock features two output heads: one for predicting forces
and the other for predicting energies. The forces are trained using a denoising
force matching objective, while the energy gradients are trained to align with the
forces. This design enables our model to sample using the predicted forces and rank
poses using the predicted energies, thereby eliminating the need for an additional
confidence model. Our approach outperforms the previous diffusion model for
protein docking, DiffDock-PP, with a sampling success rate of 44% compared to
its 8%, and a Top-1 ranking success rate of 16% compared to 0% on the Docking
Benchmark 5.5 test set. In successful decoy cases, the DFMDock Energy forms
a binding funnel similar to the physics-based Rosetta Energy, suggesting that
DFMDock can capture the underlying energy landscape.

1 Introduction

1.1 Classical docking methods

Protein-protein docking predicts the structure of a protein complex from the structures of its individual
unbound partners [1]. Classical methods involve two key components: (1) sampling algorithms, such
as exhaustive global searches, local shape-matching, and Monte Carlo algorithms, generate possible
docked structures, while (2) scoring functions evaluate these structures based on physical energy,
structural compatibility, or empirical data [2]. An alternative approach is template-based docking,
which leverages sequence similarity and evolutionary conservation [3]. However, these methods are
time-consuming due to the extensive search and evaluation processes involved. Hence, this work aims
to develop a fast and accurate deep-learning method for sampling and scoring protein complexes.

1.2 Related work

Co-folding models. Co-folding models, which predict protein complex structure from sequences,
have emerged as powerful tools for addressing protein docking. By leveraging large datasets of
protein sequences [4] and structures [5], these models have shown remarkable accuracy in predicting
protein complex structures. AlphaFold2 [6] and RoseTTAFold [7] marked a significant breakthrough
in protein structure prediction. Originally developed for monomer structure prediction, extensions
for multimers were released soon after, making these models the preferred approach for most
protein complex predictions. However, challenges remain, such as the time-consuming multiple
sequence alignment (MSA) searches and lower accuracy in predicting antibody-antigen interactions
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[8]. Recently, AlphaFold3 [9] introduced a diffusion module, replacing the previous structure module,
and expanded its capabilities to predict interactions not only between proteins but also with DNA,
RNA, and small molecules; but AlphaFold3 still fails in 40% of antibody-antigen cases.

Regression-based models. Unlike co-folding models, regression-based models generally input the
individual protein structures, either in 3D or as distance matrices, without relying on MSA. EquiDock
[10] was the first model to apply equivariant neural networks for rigid protein docking. While its
theoretical framework is robust, its success rate is lower compared to traditional and co-folding models.
Following a similar approach, ElliDock [11] introduced elliptic-paraboloid interface representations
but did not significantly improve performance. In contrast, GeoDock [12] and DockGPT [13] adopted
architectures resembling AlphaFold2, using individual protein structures without MSA while allowing
flexible backbones. Although they outperform EquiDock, these methods still underperform compared
to co-folding approaches. The limitations of regression-based models are (1) they generate only a
single prediction per model, and (2) they are less accurate for predicting protein interactions beyond
the training data compared to co-folding models with MSAs.

Diffusion models. Diffusion models [14–16] have been applied to protein docking [17]. Unlike
regression-based objectives, DiffDock [18] reformulates docking as a generative process, training the
model through denoising score matching [19] on the translation, rotation, and torsion spaces of small
molecules. DiffDock-PP [20] adapts DiffDock for protein-protein docking and diffuses only along
the translation and rotation spaces (rigid docking). DiffMaSIF [21] follows a similar framework but
incorporates additional protein interface embeddings. LatentDock [22] applies diffusion in the latent
space, first training a variational autoencoder [23] and then diffusing in the encoder’s output, akin to
Stable Diffusion [24]. All these models comprise a sampling model, which generates diverse poses
through reverse diffusion steps, and a confidence model, which ranks these poses based on their
confidence scores.

Energy-based models. Energy-based models [25] train neural networks to approximate the underly-
ing energy function of the training data. DockGame [26] introduces a framework that trains energy
functions either supervised by physics-based models or self-supervised through denoising score
matching. EBMDock [27] employs statistical potential as its energy function and uses Langevin
dynamics to sample docking poses. Arts et al. [28] developed diffusion model-based force fields for
coarse-grained molecular dynamics by parameterizing the energy of an atomic system and training
the gradient of the energy to match the denoising force. With this learned force field, they can both
sample from the distribution and perform molecular dynamics simulations. Based on the theory
that diffusion models learn the underlying training data distribution, which if well approximated
can relate to the energy of the generated samples. DSMBind [29] adopts a similar framework for
protein-protein interactions, demonstrating that the learned energy function correlates more strongly
with binding energy than previous methods.

Building on these approaches, we propose DFMDock, a diffusion generative model for protein
docking. To our knowledge, it is the first model to integrate sampling and ranking within a single
framework, utilizing forces and energies learned from diffusion models. Our results show that
DFMDock outperforms DiffDock-PP in both sampling and Top-1 ranking success rates. Furthermore,
the learned energy function exhibits a binding funnel similar to the physics-based Rosetta energy
function [30], suggesting that DFMDock can capture the underlying energy landscape for some
protein-protein interactions.

2 Methods

2.1 Model

According to statistical physics, a docking pose x is a random state sampled from the Boltzmann
distribution: p(x) = e−E(x)/kBT

Z , where E(x) is the energy, kB is the Boltzmann constant, T is
the temperature, and Z =

∫
Ω
e−E(x)/kBT is the partition function. For rigid docking between a

"receptor" protein and a "ligand" protein, the search space Ω spans all possible translations and
rotations of the ligand, with the receptor fixed. The per-residue forces on the ligand are given by:

fi = −∇riE(x) = ∇ri log p(x), (1)
where ri are the Cα coordinates of the ligand residues relative to their center. Our goal is to learn fi
and E(x), using fi for sampling docking poses and E(x) for ranking.
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Figure 1: DFMDock model overview.

We use an equivariant graph neural network (EGNN) [31] to predict the energy E and the forces fi
on each residue:

hL, xL = EGNN(h0, x0, eij). (2)

h represents the node embeddings, which for the input h0 concatenate the amino acid sequence
one-hot encoding with the ESM2 (650M) embeddings [32]. x is the set of Cα coordinates, and
eij is an edge embedding of trRosetta [33] geometry and relative positional encoding [34]. To
balance short- and long-range interactions, we construct graphs of 20 nearest neighbor edges and
40 edges selected randomly using an inverse cubic distance weighting [35]. The predicted energy is
computed as the average output of a multi-layer perceptron (MLP) ϕE that inputs the concatenated
node representations of ligand i and receptor j, where the distance between them, dij , is within a
cutoff distance d:

E =
1

N

∑
(i,j):dij<d

ϕE(h
L
i ∥hL

j ), (3)

where N is the number of residue pairs within the cutoff distance. The predicted forces on each
ligand residue are derived as the displacement vectors between the input coordinates and the updated
coordinates:

fi = xL
i − x0

i . (4)
The translational force for the ligand is obtained by averaging the per-residue forces: Ftranslation =
1
n

∑n
i=1 fi. In the Appendix, we show that the gradient of energy with respect to a rotation vector

ω is given by ∇ωE = 1
n

∑n
i=1 (ri ×∇riE). Thus, the rotational force for the ligand is: Frotation =

−∇ωE = 1
n

∑n
i=1 ri × fi.

To improve numerical stability [36], we normalize the translational and rotational forces and use two
MLPs ϕ that input the unnormalized magnitude and timestep t, to learn the scaling factors:

F̂translation =
Ftranslation

||Ftranslation||
· ϕtranslation(||Ftranslation||, t), (5)

F̂rotation =
Frotation

||Frotation||
· ϕrotation(||Frotation||, t). (6)

We train the model using denoising force matching for both translation and rotation:

Ltranslation =
∥∥∥F̂translation −∇x̂ log p(x̂|x)

∥∥∥2 , (7)

Lrotation =
∥∥∥F̂rotation −∇ω̂ log p(ω̂|ω)

∥∥∥2 , (8)

where p(x̂|x) denotes the conditional probability distribution of the noised translation x̂ given the
true translation x, modeled as a Gaussian distribution in R3, and p(ω̂|ω) represents the conditional
probability distribution of the noised rotation ω̂ given the true rotation ω, modeled as an isotropic
Gaussian distribution on SO(3) [37–39].

To train the energy function for ranking, the energy conservation loss [40] is calculated as the mean
squared error between the predicted forces and the negative gradient of the predicted energy with
respect to the coordinates:

Lconservation =
∥∥−∇riE(x)− fi

∥∥2. (9)
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To ensure that the global energy minimum aligns with the ground truth [41, 42], the energy contrastive
loss is defined as:

Lcontrastive = − log

(
e−Egt

e−Egt + e−Enoised

)
, (10)

where Egt and Enoised are the energies of the ground truth and noised structures. The final loss
function combines these components:

L = Ltranslation + Lrotation + Lconservation + Lcontrastive. (11)

2.2 Data

We trained our model on DIPS-hetero, a subset of DIPS [43, 44] with approximately 11k heterodimers.
For testing, we evaluated it on 25 targets, as selected in the EquiDock report, from the Docking
Benchmark 5.5 (DB5.5) [45], a widely used dataset for assessing docking performance.

3 Results and Discussion

Figure 2: Success rates of DFMDock and DiffDock-PP in Top-1, Top-5, and Oracle settings,
categorized by Acceptable (DockQ > 0.23), Medium (DockQ > 0.49), and High (DockQ > 0.80)
accuracy ratings [46].

3.1 DFMDock achieves higher success rate than DiffDock-PP

We compared DFMDock to DiffDock-PP (trained on DIPS) on the DB5.5 test set. Both models
generated 120 samples per target, each initialized from different starting positions, using 40 diffusion
steps. DFMDock samples were ranked using the model’s energy function (DFMDock Energy) and
DiffDock-PP samples were ranked using it’s confidence model. As shown in Figure 2, DFMDock
consistently outperforms DiffDock-PP across all settings, with the largest margin observed in the
Oracle setting. (Here Oracle refers to the highest DockQ among all samples per target). While
DiffDock-PP achieved state-of-the-art success on the DIPS test set, its performance on DB5.5
dropped significantly (8%), likely due to data leakage between the DIPS training and test sets [12, 47].
In contrast, DFMDock demonstrates better generalization to protein-protein interactions in DB5.5.

3.2 DFMDock learns physics-like energy

To evaluate our model’s energy function, we plotted both the DFMDock Energy and the Rosetta
Energy vs the Interface RMSD and DockQ (two measures of docking accuracy) for the 120 DFMDock-
generated samples per target. Figure 3a shows similar binding funnels under both scoring methods for
a sample target (PDB ID: 2SIC), suggesting that DFMDock captures the physical energy landscape
of protein docking. This funnel-like behavior indicates the model can distinguish between near-
native and non-native docking poses, making it valuable for ranking docking decoys. The contour
plot of Rosetta Energy vs DFMDock Energy shows that DFMDock ranks medium and acceptable
quality predictions higher than incorrect predictions. Figure 3b shows that DFMDock energy slightly
outperforms Rosetta in identifying acceptable quality poses (4 vs 3 targets) but underperforms in
discriminating medium quality structures (1 vs 2 targets). In 7 out of 11 cases where DFMDock
succeeded in sampling, both scoring methods failed to rank the poses correctly, suggesting that the

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615401doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615401
http://creativecommons.org/licenses/by/4.0/


Figure 3: Comparison of ranking methods between DFMDock and Rosetta. (a) Binding funnels
(Interface RMSD and DockQ) and contour plot (DFMDock Energy vs Rosetta Energy) for a target
from the DB5.5 test set (PDB ID: 2SIC), colored by DockQ ranges: Incorrect (orange), Acceptable
(blue), and Medium (green). (b) Comparison of Top-1 ranked DockQ scores for different PDB
IDs: DFMDock Energy (blue circles), Rosetta Energy (red crosses), and Oracle (black stars). The
dashed line at DockQ=0.23 and DockQ=0.49 indicates the Acceptable and Medium threshold. Only
successful decoy sampling cases from DB5.5 (11 out of 25) are shown.

sampled poses may be of lower quality or contain steric clashes, thus requiring further development
of the model.

Figure 4 shows a structural comparison between DFMDock and Rosetta’s top-ranked predictions for
two samples. For PDB ID 1N2C, DFMDock identifies an acceptable quality pose (DockQ=0.42),
while Rosetta identifies an incorrect pose (DockQ=0.00). However, for 2SNI, DFMDock fails to
identify medium quality structures as effectively as Rosetta energy, suggesting that DFMDock’s
energy function is less accurate in this case. Incorporating all-atom details into DFMDock’s energy
function could help address this issue, enhancing its ability to distinguish between acceptable and
medium-quality docking poses and improving its overall reliability across diverse protein-protein
interactions.

Figure 4: Top-1 predictions
ranked by DFMDock Energy
(green) and Rosetta Energy
(orange) aligned to the ground
truth structures (grey).

4 Conclusion

DFMDock is a generative diffusion model that integrates sampling and ranking for protein docking.
DFMDock outperforms DiffDock-PP on the DB5.5 test set and generates binding funnels comparable
to those from the Rosetta interface score, highlighting its ability to mimic physical interactions.
However, in many cases where DFMDock succeeded in sampling, it failed to rank poses accurately,
indicating the need for further development. Additionally, its accuracy in identifying medium-quality
structures can be further optimized. Currently, the model is trained on a limited dataset, which may
constrain its generalization. With the availability of larger and more comprehensive datasets [48],
future work will incorporate all-atom details to enhance DFMDock’s precision and reliability across
a broader range of protein interactions.
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Appendix

Gradient of energy E with respect to a rotation vector ω

Consider a rigid body with N points labeled r1, r2, . . . , rN , where each ri = xi − c represents the
position of point i relative to the center of mass c. When the rigid body undergoes a small rotation
dω, where ω is a rotation vector, the displacement dri of each point ri is given by:

dri = dω × ri

The energy E of the system depends on the positions ri. The change in energy dE due to small
displacements dri of the points is:

dE =
N∑
i=1

∇riE · dri

where ∇riE is the gradient of the energy with respect to the position of point ri. (In this work we
assume the direct energy dependence on rotation angle of each residue is small.)

Substituting the expression for the displacement dri, we get:

dE =

N∑
i=1

∇riE · (dω × ri)

Using the scalar triple product identity:

a · (b× c) = b · (c× a)

we can simplify the expression for dE:

dE =
N∑
i=1

dω · (ri ×∇riE)

Thus, the gradient of energy with respect to the rotation vector ω is:

∇ωE =
N∑
i=1

(ri ×∇riE)

where ri is the vector from the center of mass to the point xi, and ∇riE is the gradient of the energy
with respect to the position of point ri.

If we have a finite number of points N , we can normalize the sum by the number of points to get an
average gradient:

∇ωE =
1

N

N∑
i=1

(ri ×∇riE)

This provides an averaged estimate of the gradient of energy with respect to the rotation vector ω
when dealing with a finite set of points on the rigid body.
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