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Abstract 23 

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis disease, the greatest source 24 

of global mortality by a bacterial pathogen. Mtb adapts and responds to diverse stresses such as 25 

antibiotics by inducing transcriptional stress-response regulatory programs. Understanding how and 26 

when these mycobacterial regulatory programs are activated could enable novel treatment strategies 27 

for potentiating the efficacy of new and existing drugs. Here we sought to define and analyze Mtb 28 

regulatory programs that modulate bacterial fitness. We assembled a large Mtb RNA expression 29 

compendium and applied these to infer a comprehensive Mtb transcriptional regulatory network and 30 

compute condition-specific transcription factor activity profiles. We utilized transcriptomic and 31 

functional genomics data to train an interpretable machine learning model that can predict Mtb 32 

fitness from transcription factor activity profiles. We demonstrated that this transcription factor 33 

activity-based model can successfully predict Mtb growth arrest and growth resumption under 34 
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hypoxia and reaeration using only RNA-seq expression data as a starting point. These integrative 35 

network modeling and machine learning analyses thus enable the prediction of mycobacterial fitness 36 

under different environmental and genetic contexts. We envision these models can potentially inform 37 

the future design of prognostic assays and therapeutic intervention that can cripple Mtb growth and 38 

survival to cure tuberculosis disease. 39 

 40 

1. Introduction 41 

Mycobacterium tuberculosis (Mtb) remains a supremely successful pathogen, sickening 10.6 42 

million people and killing over 1 million people worldwide each year [1]. An important factor for 43 

Mtb’s success is its ability to adapt to a broad range of host-associated and treatment-associated 44 

stresses. The mechanisms underlying how Mtb dynamically regulates its growth and physiology in 45 

response to stress response remains incompletely understood. Characterizing the gene regulatory 46 

activities of transcription factors (TFs) under different environmental or stress conditions could help 47 

inform interventions that modulate Mtb growth and survival to cure tuberculosis disease.  48 

Several groups have previously performed analyses to characterize Mtb’s transcriptional 49 

regulatory network (TRN) using experimental and computational approaches [2; 3; 4; 5; 6; 7; 8; 9]. 50 

These efforts have largely relied on two strategies: 1) detailed profiling of the molecular impact of 51 

individual transcription factors (TFs) with recombinant induction and disruption strains, and/or 2) 52 

statistically informed TRN inference using data from large transcriptome compendia.  53 

In principle, TRNs can be empirically assembled from measurements of TF-DNA binding 54 

activities and gene expression profiles from conditions with known individual TF perturbations. 55 

These data would enable the inference of direct regulatory interactions between TFs and their 56 

putative target genes, which exhibit altered transcriptional expression in response to TF perturbations 57 

and provide evidence of TF binding events proximal to a gene. To leverage this strategy, we 58 

previously engineered a library of Mtb recombinant TF induction (TFI) strains [2; 6], from which we 59 

profiled transcriptomes in 208 TFI strains by microarray analyses (GSE59086, [6; 10]) and detected 60 

~16,000 ChIP-seq binding events for 154 TFs (~80% of all Mtb TFs) and 2,843 genes (~70% of all 61 

Mtb genes) [3; 10]. These detailed ChIP-seq and transcriptional profiles have yielded important 62 

insights into the regulatory programs active during Mtb broth culture. However, these experiments 63 

possessed several technical limitations. For example, our microarray profiling efforts were unable to 64 

measure changes in expression for 1,190 genes (~30% of Mtb genes) [6], and our ChIP-seq profiling 65 

efforts were unable to detect TF binding associated with 1,040 genes (~26% of Mtb genes) [3]. 66 

Moreover, the existing profiles have focused specifically on regulatory behavior of the Mtb 67 

laboratory strain H37Rv in log-phase growth in 7H9 media. Consequently, condition-specific 68 

interactions relevant to other environments or Mtb strains were not captured. Thus, despite such 69 

efforts, significant gaps remain in the ability to identify TF-gene regulatory interactions directly and 70 

comprehensively by only experimental activities.  71 

Bioinformatic network inference approaches that utilize expression compendia comprising 72 

transcriptome responses under diverse biological conditions are a useful complementary strategy to 73 

recombinant strain profiling. These statistically informed approaches enable assessment of regulatory 74 

interactions across the multitude of conditions present in a transcriptome compendium. However, 75 

these computational network inference strategies are constrained by two limitations. First, large and 76 

biologically diverse gene expression data are needed to fuel identification of high-confidence 77 
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statistical associations between TFs and putative target genes [11]. To meet this need, compendia of 78 

expression data may be curated from public microarray [4; 10] or RNA-seq [7; 12; 13] data. Second, 79 

statistical learning network inference algorithms differ in the assumptions made on the training data 80 

and on the interpretation of TF-gene associations. These assumptions are often biologically 81 

inaccurate. We previously performed such analyses and were able to only infer 598 clusters of 82 

coregulated gene expression for 3,922 genes [4]. Others recently performed similar analyses and 83 

inferred either 80 clusters for 3,906 genes [7] or 560 co-regulated gene modules for 3,912 genes [5]. 84 

These models have successfully revealed novel regulatory interactions impacting Mtb stress 85 

adaptation, but none of these regulatory models may be precisely interpreted as TF regulatory 86 

programs (as they only capture a fraction of Mtb’s 214 TFs) and none can be used to directly 87 

estimate TF activities (i.e., the extent of regulation that each TF exerts on its regulated target genes, 88 

TFAs, [14]) under different experimental conditions. TRN inference efforts in other microbes, 89 

including the DREAM5 challenge for E. coli and S. aureus [15], have found that robust TRNs may 90 

be assembled by aggregating the regulatory relationships inferred by different statistical algorithms. 91 

We hypothesized that implementing a similar “wisdom of crowds” approach to aggregate 92 

complementary TRNs inferred via different statistical approaches would yield a more comprehensive 93 

and higher quality Mtb TRN.  94 

Here we assembled a biologically diverse and batch corrected Mtb RNA-seq gene expression 95 

compendium. We integrated this RNA-seq compendium with the perturbative TFI microarray dataset 96 

to infer a comprehensive Mtb transcriptional regulatory network that included all 214 TFs and all 97 

4,027 genes present in our RNA-seq expression compendium. We used this TRN to estimate TFA 98 

profiles corresponding to individual RNA expression profiles. We used the TFAs calculated from our 99 

RNA-seq compendium to train an interpretable machine learning regression model that could predict 100 

growth phenotypes previously measured in TF-induced strains [16]. We demonstrated that this 101 

regression model can accurately predict Mtb fitness under stressful environmental conditions such as 102 

hypoxia. 103 

2. Methods 104 

2.1 TFI microarray expression compendium assembly and normalization 105 

Microarray expression data corresponding to TFI strains were downloaded from GEO 106 

(GSE59086). Groups were assigned to each sample by the identity of each strain. The Rv2160A gene 107 

fully encompasses the Rv2160c gene, so the Rv2160A and Rv2160c samples were combined into a 108 

single Rv2160 TFI strain group. This resulted in 208 TFI strain groups. These 208 strain groups 109 

included Rv0560, Rv3164c, and Rv3692 which were considered hypothetical TFs in TFI strain 110 

construction [6], but later determined to not be true Mtb TFs [10]. However, for the purpose of the 111 

analyses presented here, each of these 208 strains will be referred to as TFs. Smooth quantile 112 

normalization [17] was performed using PySNAIL [18] using the assigned group definitions. 113 

2.2 RNA-seq expression compendium assembly, quality control, and normalization 114 

The NCBI Sequence Read Archive (SRA) was queried with “Mycobacterium tuberculosis” for 115 

RNA expression samples containing raw FASTQ sequencing reads. 3,506 FASTQ sequencing reads 116 

were downloaded and combined with FASTQ sequencing reads from 398 unpublished RNA-seq 117 

profiles generated by our labs. We aligned these sequencing reads against the NC_000962.3 Mtb 118 

H37Rv reference genome using Bowtie 2 [19]. Read counts were compiled using featureCounts [20]. 119 

Samples with fewer than 400,000 total gene counts and samples duplicated in our preliminary 120 

compendium were excluded from further analysis. Sequencing counts between samples were 121 
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normalized by transcripts per kilobase million (TPM). Group definitions were manually added to 122 

represent unique experimental conditions from each set of experiments; biological replicates for each 123 

experimental condition were given the same group definitions. Smooth quantile normalization [17] 124 

was performed using PySNAIL [18] using the assigned group definitions. Quality data, adapter and 125 

quality trimming statistics, and alignment and counts metrics were compiled and assessed using 126 

MultiQC [21]. 127 

2.3 UMAP visualization and cluster estimation 128 

RNA expression compendia and TFAs were visualized by Uniform Manifold Approximation & 129 

Projection (UMAP) [22]. Clusters were estimated by DBSCAN [23]. The ε hyperparameter was 130 

optimized for each dataset by varying ε across 50 logarithmically distributed values from 0.1 to 10 131 

and selecting the value of the elbow of the ε vs. Number of Outliers plot. This selection delivers the 132 

minimum number of clusters that maximizes inclusion of samples without overfitting the data 133 

(Supplementary Figure S1). UMAP and DBSCAN analyses were performed in Python using their 134 

implementations in umap-learn and scikit-learn [24]. 135 

2.4 Regulatory network inference methods 136 

We implemented an ensemble of network inference methods by starting with a selection of 137 

methods featured in the DREAM5 challenge [15]. These methods were selected based on diversity in 138 

underlying statistical approach, predictive performance reported in the DREAM5 study, and the 139 

availability of a working implementation. Our initial selection consisted of ARACNe [25; 26], CLR 140 

[27], and GENIE3 [28]. We chose an ARACNe implementation that employs adaptive partitioning 141 

for more efficient processing [25; 26]. We used an R implementation of CLR available on CRAN 142 

from the parmigene package [29]. We used an R implementation of GENIE3 available on 143 

BioConductor [30]. To supplement these methods, we incorporated two other more recent advances 144 

in network inference approaches: cMonkey2 [31; 32] and iModulon [33]. We used a docker image 145 

containing a Python implementation of cMonkey2, available at 146 

https://hub.docker.com/r/weiju/cmonkey2. For iModulon, our desired output was different from the 147 

output of this algorithm implemented by the original authors. We thus made a custom 148 

implementation, borrowing heavily from https://github.com/SBRG/pymodulon and 149 

https://github.com/SBRG/iModulonMiner, in Python. In addition, we also chose to implement a 150 

regression strategy using Elastic Net regression, a more advanced technique than was used in 151 

DREAM5. Elastic Net is a regularization method that takes advantage of the unique properties of 152 

both the lasso (used extensively in DREAM5) and ridge regression [34]. Elastic Net performs better 153 

than lasso or ridge regression when predictors may be correlated and under-determined [35]. We 154 

modeled each gene individually on the expression of all the transcription factors, and used the 155 

resulting coefficients to both select significant relationships and score those relationships; this 156 

implementation was done in Python using scikit-learn [24]. Descriptions of each of these inference 157 

methods are provided in Supplementary Table 3.  158 

Each method was wrapped to produce a ranked list of putative TF regulator-target gene 159 

relationships in order of the inferred strength of the regulatory relationship, from strongest to 160 

weakest. Execution was done using docker images 161 

(https://hub.docker.com/repositories/malabcgidr?search=network-inference). Auto-regulatory (self-162 

targeting) relationships were excluded. Method hyperparameters were chosen to match either original 163 

publications or the DREAM5 challenge when possible. Execution for each method and optimization 164 

of their corresponding hyperparameters was validated by testing against the evaluation scripts 165 

provided in the supplemental material of [15; 32]. 166 
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A network was generated for each combination of the two datasets (RNA-seq and TFI 167 

microarray) and 6 inference methods, yielding 12 total constituent networks. 168 

2.5  Inferred network truncation and aggregation 169 

The constituent networks were large, as many of the network inference methods did not require a 170 

cutoff threshold and did not perform multiple testing correction; the union of all inferred edges 171 

constituted over 90% of the possible Mtb regulatory space (where 100% would be every TF 172 

harboring a regulatory association with every Mtb gene). We therefore truncated each inferred 173 

network to incorporate the unique perspective of each model without aggregating too many low-174 

confidence relationships. This was done by comparison with an independent validation set, 175 

comprising a presumed unbiased sampling of the true population of regulatory relationships in Mtb. 176 

This validation set was used to identify the extent of true positives in each network. 177 

The validation data set was gleaned from Sanz et al., Material S1 [8]. The original list was 178 

filtered for relationships whose supporting evidence included at least one high-confidence physical 179 

methodology, namely values 4-9: LacZ-promoter fusion, GFP-promoter fusion, proteomic studies, 180 

electrophoretic mobility shift assays (EMSA), one hybrid reporter system, and chip-on-chip. This 181 

yielded a set of 433 high-confidence regulator-target relationships, including 51 regulators and 160 182 

total target genes, that had little to no dependence on the transcriptional information used to build the 183 

constituent networks. 184 

A cutoff threshold was chosen for each network by binning the ranks of validation hits into 32 185 

bins and truncating the network at the first bin where the number of hits fell below the expected level 186 

of random overlap per bin. This level was calculated to equal the mean of a hypergeometric 187 

distribution, with a population size equal to the total regulatory space of Mtb, a set of true positive 188 

regulatory interactions identified by the Sanz validation set [8], and draws equal to the size of the 189 

inferred network, taken without replacement. This shrunk each network to an average of about 10% 190 

of its original size (3-28%) (Supplementary Figure 2). Three of the constituent networks displayed 191 

insufficient enrichment against the validation dataset: ARACNe/TFI, cMonkey2/TFI, and 192 

iModulon/TFI. Upon executing a Fisher’s exact test to determine the chance of a random network 193 

achieving the same enrichment, these three failed to pass a strict cutoff of 0.0001. They were thus 194 

excluded from further aggregation. 195 

The remaining truncated networks were then aggregated together, first into two combined 196 

networks, one for each underlying input transcriptome dataset (RNA-seq compendium and TFI 197 

microarray profile). Aggregation was performed by rank average as described in the DREAM5 198 

challenge [15]. Repeating the enrichment analysis performed above, it was determined that the TFI 199 

aggregate would benefit from additional truncation and was thus truncated using the same threshold 200 

strategy described in the previous paragraph, whereas the RNA-seq network was already sufficiently 201 

enriched. These two networks were then aggregated together again by rank average, yielding one 202 

final aggregate network. 203 

All these networks were validated against the Sanz et al. data set using the Matthews Correlation 204 

Coefficient (MCC), as described previously [36; 37] (Supplementary Figure 3). 205 

2.6 Principal Component Analysis 206 

Principal component analysis (PCA) was performed on the inferred networks (after truncation), 207 

the dataset-level aggregate networks, and the overall aggregate network, using the 16,792-208 
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dimensional space represented by the ranks of edges shared across at least 3 of the inferred networks. 209 

Any relevant edges not included in a given network were assigned a rank of 16,792, the size of the 210 

space. 211 

2.7 Regulatory directionality 212 

The types of the regulatory connections (whether the TF up- or down-regulates the associated 213 

gene) were explored using a combination of the regression models and measured TFI gene 214 

expression values. Two elastic net models and two unpenalized linear models were used to infer 215 

direction of regulation based on the sign of the regression coefficients, one of each for each dataset 216 

(RNA-seq compendium and TFI microarray profile). We supplemented these regression associations 217 

with the directionality of significant differential gene expression (i.e. upregulated vs. downregulated 218 

expression) measured from the TFI microarray dataset. Linear models were fit in Python with the 219 

statsmodels package. Coefficients with an FDR < 0.05 were selected as evidence. Elastic net models 220 

with an R2 of less than 0.8 were excluded; coefficients that were included by the remaining models 221 

were selected as evidence. TFI differential expression from the microarray dataset was filtered using 222 

an FDR < 0.05 and requiring at least 2-fold change in either direction. Elastic net models and TFI 223 

differential expression were considered strong evidence, whereas the unpenalized linear models were 224 

considered weak evidence. A flow chart depicting how the information from these models and 225 

differential expression analyses were used to define up vs. down regulation is shown in 226 

Supplementary Figure 5. 227 

2.8 Comparing inferred networks against independent reference information 228 

Additional orthogonal datasets were incorporated to corroborate the networks. All generated 229 

networks were tested against a set of published ChIP-seq binding relationships gleaned from Minch, 230 

et al. [3]. We took the intersection of their sets of statistically significant peaks (Supplementary Data 231 

1 from [3]) and peaks in a canonical promoter region (Supplementary Data 3 from [3]) to yield 5,178 232 

relationships, including 129 regulators and 2,271 total targets. The MCC was then calculated against 233 

this data set for each network. 234 

Gene ontology enrichment analysis was then performed to ascertain the extent to which TF 235 

targeting could be used to gauge biological function within each group [38; 39]. For each TF, each 236 

set of genes that our network identified as upregulated, downregulated, or regulated in both directions 237 

by the regulator was analyzed for GO enrichment at an FDR < 0.05. All identified GO annotations 238 

that had a child annotation also identified for a given TF were removed for the sake of simplicity 239 

(Supplementary Table 5C). Results were filtered to regulators receiving at least 3 significant GO 240 

enrichments for further manual inspection and analysis (Supplementary Tables 5A, 5B), and those 241 

TFs with an annotated name and considered to have a testably specific functional role listed in the 242 

Mycobrowser annotation [40] were juxtaposed for network validation (Table 1). GO analysis was 243 

performed in Python using the goatools package [41]. Gene ontology data was taken from the 2024-244 

06-17 release of go-basic.obo from the Gene Ontology knowledgebase [42] 245 

(https://purl.obolibrary.org/obo/go/releases/2024-06-17/go-basic.obo), and mappings to Mtb genes 246 

were taken from the European Bioinformatics Institute GOA project, release 20240805 247 

(https://ftp.ebi.ac.uk/pub/databases/GO/goa/proteomes/30.M_tuberculosis_ATCC_25618.goa). 248 

2.9 Calculating transcription factor activity profiles from network component analysis 249 

Transcription factor activities for each expression profile was computed using Robust Network 250 

Component Analysis (ROBNCA) [43]. ROBNCA was implemented in Python, using code adapted 251 
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from 252 

https://github.com/CovertLab/WholeCellEcoliRelease/tree/00cf7738cb8379c14d65ef632b2156bdf7c253 

23434/reconstruction/ecoli/scripts/nca [44]. 254 

2.10 Associating network activity with bacterial fitness 255 

We built a model associating mycobacterial growth with TF activity, as inferred from measured 256 

gene expression data. The GSE59086 microarray dataset was again used as a broad measure of TFI 257 

conditions, with relative growth data for 194 matching TFI conditions added from Ma et al., 2021, 258 

Table S1 as training data [16]. Expression levels in the form of log-2 fold-change were transformed 259 

into putative TFAs using the control strengths calculated via NCA from the aggregate network and 260 

RNA-seq compendium. A gradient boosted machine (GBM) model was trained to regress growth on 261 

TFAs, using a grid search cross-validation scheme to optimize hyperparameters based on bounds 262 

derived from [34], using the number of estimators to reward better performing models. The number 263 

of estimators was then optimized with a simple grid search. The model was implemented in Python 264 

using the lightgbm package [45; 46]. 265 

2.11 Hypoxia time-course experiment 266 

Wildtype H37Rv (ATCC 27294) and H37Rv transformed with a control anhydrotetracycline 267 

(ATc)-inducible expression vector (H37Rv::pEXCF-empty, which does not induce recombinant gene 268 

expression) were cultured under in Middlebrook 7H9 with the oleic acid, bovine albumin, dextrose, 269 

and catalase (OADC) supplement (Difco) and with 0.05% Tween 80 at 37°C. H37Rv::pEXCF-empty 270 

was grown with the addition of 50 µg/ml hygromycin B to maintain the plasmid and induced with 271 

100ng/mL ATc one day prior to onset of hypoxia. For hypoxia, strains were cultured in oxygen-272 

limited conditions (1% aerobic O2 tension) for 7 days, followed by reaeration on day 7-12, initiated 273 

by transferring cultures into continuously rolled bottles with 5:1 head space ratio using methods 274 

described previously [2; 47; 48; 49]. Bacterial survival and growth were enumerated by plating for 275 

colony forming units (CFU) on Middlebrook 7H10 solid media plates using standard microbiological 276 

methods.  277 

Transcriptomes were generated by RNA-seq from bacterial cultures sampled from the 278 

aforementioned conditions using methods described previously [50]. Briefly, bacterial pellets 279 

suspended in TRIzol were transferred to a tube containing Lysing Matrix B (QBiogene) and 280 

vigorously shaken in a homogenizer. The mixture was centrifuged, and RNA was extracted from the 281 

supernatant with chloroform, followed by RNA precipitation by isopropanol and high-salt solution 282 

(0.8 M Na citrate, 1.2 M NaCl). Total RNA was purified using a RNeasy kit following the 283 

manufacturer’s recommendations (Qiagen). rRNA was depleted from samples using the RiboZero 284 

rRNA removal (bacteria) magnetic kit (Illumina Inc., San Diego, CA). Illumina sequencing libraries 285 

were prepared from the resulting samples using the NEBNext Ultra RNA Library Prep kit for 286 

Illumina (New England Biolabs, Ipswich, MA) according to the manufacturer’s instructions, and 287 

using the AMPure XP reagent (Agencourt Bioscience Corporation, Beverly, MA) for size selection 288 

and cleanup of adaptor-ligated DNA. We used the NEBNext Multiplex Oligos for Illumina (Dual 289 

Index Primers Set 1) to barcode the libraries to enable sample multiplexing per sequencing run. The 290 

prepared libraries were quantified using the Kapa quantitative PCR (qPCR) quantification kit and 291 

sequenced at the University of Washington Northwest Genomics Center with the Illumina NextSeq 292 

500 High Output v2 kit (Illumina Inc., San Diego, CA). The sequencing run generated an average of 293 

75 million base-pair paired-end raw read counts per library. Read alignment and gene expression 294 

estimation was carried out using a custom processing pipeline in R that harnesses the Bowtie 2 295 
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utilities [19; 51], which is publicly accessible at 296 

https://github.com/robertdouglasmorrison/DuffyTools, and 297 

https://github.com/robertdouglasmorrison/DuffyNGS. 298 

Gene expression data were transformed from log-2 fold-change to putative TFAs using the 299 

control strengths calculated via NCA above and run through the GBM model to predict relative 300 

fitness level of the Mtb culture as it progressed through the hypoxia time-course. 301 

2.12 False discovery rate correction 302 

False discovery rate correction was performed using the two-stage Benjamini-Krieger-Yekutieli 303 

method [52]. 304 

 305 

3. Results 306 

3.1 Generation of a large and biologically diverse Mtb gene expression compendium for TRN 307 

inference  308 

Our previous attempts at TRN characterization utilized microarray expression profiles from 309 

recombinant TFI strains as perturbative training data (GSE59086, [6]). However, while this dataset 310 

enabled detailed characterization of transcriptional regulation of Mtb physiology during log-phase 311 

broth culture, it possessed poor biological diversity. UMAP and DBSCAN analyses reveal that 312 

expression profiles from these 698 microarray experiments and 208 TFI conditions only yielded 16 313 

clusters of expression profiles (Figure 1A). This poor diversity likely arises from the original 314 

experimental design for these data, in which each TFI strain was grown to log-phase in albumin-315 

dextrose-catalase (ADC)-supplemented 7H9 media before isolating RNA. UMAP and DBSCAN 316 

analyses suggested that this TFI microarray dataset alone would be insufficient for predicting TFAs 317 

corresponding to diverse experimental conditions. Moreover, microarray technologies have poor 318 

sensitivity and dynamic range for quantifying gene expression [53]. We found that 101 genes in this 319 

dataset did not possess expression measurements greater than 10 counts, indicating poor detection or 320 

poor evidence for expression in these experiments (Figure 1B). In addition, the median absolute 321 

deviation (MAD) was small (< 1) for nearly all genes, indicating the ability to detect gene expression 322 

changes across conditions was limited. These analyses collectively motivated the need to assemble a 323 

new RNA expression compendium.  324 

We therefore collected samples from the NCBI Sequence Read Archive (SRA) and our own labs, 325 

aligned, filtered, normalized, and batch corrected by smooth quantile normalization [17; 18] (see 326 

Methods for details). Batch correction is an important pre-processing step for unifying data from 327 

different sources that is frequently overlooked in Mtb RNA expression compendium analyses [4; 7; 328 

12; 13]. After performing these pre-processing steps, our final compendium comprised 3,496 RNA-329 

seq samples from 1,288 experimental conditions (Supplementary Table 1). Expression counts for 330 

the RNA-seq compendium can be queried at https://tfnetwork.streamlit.app/. 331 

UMAP and DBSCAN analyses of the batch corrected RNA-seq expression compendium 332 

validated its biological diversity (Figure 1C-D, Supplementary Table 2). We identified 142 unique 333 

expression clusters. This RNA-seq transcriptome compendium exhibited significantly greater 334 

dynamic range and variation in gene expression than in the TFI microarray dataset (Figure 1D). Of 335 

note, genes with high variation (high MAD) were mostly well-characterized stress response genes 336 
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(e.g., Rv2031c (hspX), Rv2626c (hrp1), and Rv2623 (TB31.7)), with Rv2007c (fdxA) having higher 337 

variation than the commonly studied Rv3133c (devR) stress response regulator. These are consistent 338 

with expectation, as most stress response genes would be expected to only be induced in the presence 339 

of their specific stressor. 340 

3.2 Inferred transcriptional regulatory network interactions enrich for shared functional 341 

processes 342 

Network inference studies in other bacteria have shown that combining regulatory interactions 343 

from multiple different inference algorithms results in a TRN that outperform networks generated by 344 

a single method [15]. To more comprehensively characterize Mtb regulatory interactions, we applied 345 

a “wisdom of crowds” ensemble inference approach. We first applied a collection of regulatory 346 

network inference tools to generate TRN models using individual methods (see Methods). These 347 

tools were selected because they have been shown to be sensitive to distinct types of regulatory 348 

relationships in other bacteria [15] or they have previously been successfully applied to infer 349 

regulatory relationships in Mtb [4; 5; 7]. To further diversify the regulatory relationships inferred 350 

from these approaches, we applied these tools to both our assembled RNA-seq compendium as well 351 

as the TFI microarray dataset. Collectively, these inference activities yielded 12 networks that 352 

describe 779,213 unique interactions between 214 regulators and 4,029 target genes. We truncated 353 

these networks using a benchmark dataset of high confidence regulatory interactions with 354 

biochemical evidence that was curated by Sanz et al. [8] (see Methods). We used this high 355 

confidence regulatory interaction dataset to inform pruning of low-confidence regulatory 356 

relationships inferred from each of the individual inference methods (Supplementary Figure 2), 357 

yielding a shorter, more high-confidence network for each method. Principal component analysis of 358 

these networks revealed substantial diversity in the regulatory interactions identified between the 359 

different approaches applied to the two source datasets (Figure 2B).  360 

We rank-aggregated the resulting 12 networks to consolidate regulatory relationships across the 361 

individual inference methods. The resulting aggregate network has 68,226 regulatory interactions that 362 

connect 214 transcriptional regulators with 4,027 target genes. Of these interactions, 37,236 are 363 

associated with transcriptional activation across conditions, 15,820 interactions are associated with 364 

transcriptional repression across conditions, 1,496 relationships are predicted to be either activating 365 

or repressing, depending on the environmental condition, and 11,766 regulatory relationships have an 366 

undetermined regulatory directionality (Supplementary Table 4). These interactions represent both 367 

direct, biophysical regulatory events as well as indirect regulatory relationships mediated by 368 

downstream regulators. These interactions also represent the union of regulatory relationships that are 369 

active in at least a subset of all the different environmental conditions profiled in our assembled 370 

source RNA-seq compendium and TF induction profiling datasets. Notably, not all these regulatory 371 

relationships will be active under all environmental conditions. The distribution of regulatory 372 

interactions per TF largely follows a power law distribution consistent with the scale free networks 373 

found to represent transcriptional regulation in other bacteria (Supplementary Figure 4). We found 374 

a deviation between the distribution of our aggregate network and the expected power law 375 

distribution for regulators with relatively few target genes. This is likely due to the inclusion of 376 

indirect regulatory relationships and relationships that are active under some but not all 377 

environmental conditions. The networks can be viewed at https://tfnetwork.streamlit.app/, and the 378 

TF-gene interactions are described in Supplementary Table 4.   379 

To validate the connectivity of our aggregate network, we benchmarked it against experimentally 380 

profiled TF binding data we previously profiled by ChIP-seq in the TFI strains under log-phase broth 381 
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culture [3]. To assemble a high-confidence regulatory association dataset, we included only 382 

significant ChIP-seq peaks associated with TF binding in the promoter region of target genes. We 383 

evaluated overlap between this high-confidence ChIP-seq regulatory interaction dataset and our 384 

inferred regulatory networks with the Matthews correlation coefficient (MCC). We find that most of 385 

the inferred networks that we generated had significant MCCs, and that the aggregate network 386 

outperforms the majority of inferred networks using individual methods (Supplementary Figure 3), 387 

whilst still retaining a large number of regulatory relationships (most of the better performing 388 

individual inference networks have relatively few regulatory interactions).  389 

We also assessed the extent to which the regulatory relationships captured by our aggregate 390 

network preserved biological functional relationships between the regulating TFs and the target 391 

genes. For TFs with clear literature characterization of its function, we found a high degree of 392 

correspondence with the gene ontologies and annotated functions of its regulated target genes (Table 393 

1, Supplementary Table 5). For example, Rv3574 (kstR) is a TF that has been linked to regulating 394 

cholesterol metabolism [54], and the target genes associated with kstR in our aggregate network also 395 

have gene ontology annotations linked to cholesterol metabolism (Table 1). Additionally, toxin-396 

antitoxin target genes were enriched for growth regulation, highlighting that the regulatory 397 

relationships captured by the aggregate network include indirect regulatory relations. Collectively, 398 

this suggests the significant ontology and functional annotation enrichments made for genes and TFs 399 

that are currently poorly annotated represent testable hypotheses for function – this is one of the 400 

major advances from the aggregate network.  401 

3.3 Network component analyses reveal per-sample Mtb TF activities under different 402 

conditions 403 

Understanding when TFs are actively exerting their regulatory influence on their target genes can 404 

reveal mechanistic insights into bacterial physiology and stress response. Network component 405 

analysis (NCA) is an efficient way of estimating these TFA profiles from expression data by using a 406 

TRN to perform matrix decomposition [14]. Robust NCA (ROBNCA) is a variant of NCA that 407 

improves the performance of NCA calculations on noisy data with outlier measurements [43]. We 408 

applied ROBNCA to estimate TFAs corresponding to each sample in our TFI microarray and RNA-409 

seq compendium. 410 

To first determine and validate the ROBNCA TFA estimation approach on our data, we 411 

performed ROBNCA on the TFI microarray data using the aggregate network inferred only from the 412 

TFI data, as well as on 10 randomized networks to be used as negative controls. We hypothesized 413 

that if the estimated TFAs represent true TF activities, with high TFAs indicating strong net activator 414 

activity and low TFAs indicating strong net repressor activity, then the percentile ranks of TFAs for 415 

highly expressed TFs should be either very high or very low in their corresponding TFI strains. On 416 

the other hand, if the ROBNCA-calculated TFAs were spurious, then the TFA percentile ranks 417 

should be statistically indistinguishable from the TFA percentile ranks from randomized networks. 418 

For each of the 208 TFI strains within the microarray expression dataset, we averaged the TFAs 419 

for all TFs across their biological replicates. We rank ordered TFs by their activities for each TFI 420 

strain, calculated the rank percentile activity of the induced TF for each TFI strain, and analyzed the 421 

distribution of these percentiles (Figure 3A). For the TFI microarray network, 31 TFs were ranked in 422 

the highest or lowest 15% of TFA ranks (greater than 1 standard deviation from the mean), implying 423 

that these TFs were the dominant regulators active in their respective TFI strain profiling condition. 424 

Interestingly, 91 TFs had TFAs in the middle 30% from 35-65%. These TFs were fairly uniformly 425 

distributed suggesting their related transcriptional programs were likely cross-regulated by other TFs. 426 
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Importantly, this suggested that induction of TF expression alone may be insufficient for fully 427 

inducing some transcriptional programs, thus supporting the use of TFAs over untransformed gene 428 

expression for downstream analysis. 429 

We performed similar calculations for each of the randomized networks (Supplementary Figure 430 

6) and averaged the TFA rank percentiles for all TFs from each randomized network (Figure 3B). 431 

We found that there were significantly fewer TFAs in the highest or lowest 15% of TFA ranks in 432 

these randomized networks than the TFAs calculated from the TFI expression dataset (p = 1.66e-49, 433 

z-test [55]). Similarly, there were significantly more TFAs in the middle 30% (p = 1.66e-49, z-test 434 

[55]). These differences between the ROBNCA-calculated TFA percentile distributions between TFI 435 

and randomized networks indicated that the TFAs estimated by ROBNCA were not spurious and 436 

likely reported on true biological condition-specific activities. 437 

We next applied ROBNCA to our RNA-seq compendium using the TRN inferred from the RNA-438 

seq compendium. UMAP and DBSCAN analyses revealed that the level of biological diversity of 439 

ROBNCA-predicted TFAs was similar to the diversity within the expression compendium, with 112 440 

clusters of TFAs across the 3,496 samples (versus 142 for untransformed expression; Figure 3C). 441 

Amongst the TFs with the highest level of median activity were the essential nitric oxide-sensing 442 

Rv3219 (whiB1), histone-like protein Rv2986c (hupB), and sigma factor Rv2703 (sigA) (Figure 3D). 443 

Each of these would be expected to be constitutively active in live Mtb cells. Also consistent with 444 

expectation, the well-characterized stress response regulators Rv3133c (devR), Rv1994c (cmtR), 445 

Rv0827c (kmtR) and two-component system regulators Rv0602c (tcrA) and Rv0981 (mprA) were 446 

amongst the TFs with the highest TFA MAD. 447 

Interestingly, the distribution of TFAs appeared different from the distribution of TF expression 448 

levels measured for each RNA-seq sample across the compendium (Figure 3E). We tested the 449 

correlation of expression level vs. activity for each TF across the entire compendium and found that 450 

expression and activity were only moderately correlated across the dataset (Pearson’s r = 0.48 ± 0.16 451 

median ± MAD) (Figure 3F). 31 TFs were strongly correlated (|Pearson’s r| ≥ 0.7), 66 TFs were 452 

moderately correlated (0.7 > |r| ≥ 0.5), and 61 TFs were weakly correlated (0.5 > |r| ≥ 0.3). Relatedly, 453 

both median and MAD expression and activity were only weakly correlated across all TFs (median: r 454 

= 0.43; MAD: r = 0.32). These analyses further support our observation that TF expression level is 455 

not the sole determinant for TFAs for most TFs. Rather, expression and activity convey two distinct 456 

but complementary insights into transcriptional regulation, highlighting the importance of accounting 457 

for network interactions when investigating transcriptional regulation. In particular, we posit that TFs 458 

with weak correlation between expression and activity may require allosteric or other post-459 

translational modification to trigger activation of transcriptional regulation. This hypothesis can be 460 

tested in future studies. 461 

3.4 Transcription factor activity profiles can predict condition-specific bacterial fitness 462 

Because transcriptional regulation plays important roles in coordinating Mtb growth adaptations 463 

under stress, we asked whether our regulatory network models could be used to predict fitness 464 

consequences of TF regulatory activities. To test this hypothesis, we utilized gradient boosting 465 

machine learning to construct an interpretable TFA regression model designed to predict the fitness 466 

of each TFI strain during log-phase culture based on each strain’s calculated TFA profiles. We 467 

trained this model using the TFAs computed by ROBNCA from the RNA-seq compendium, paired 468 

with TFI fitness measurements that we previously collected in a Transcriptional Regulator Induced 469 
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Phenotype (TRIP) screen [16]. This TFA–fitness regression model was able to explain 87% of the 470 

observed variation of growth between the TFI strains in the TRIP screen (Supplementary Figure 7).  471 

To determine if this TFA–fitness regression model could predict changes in Mtb fitness or growth 472 

from new data that were not used to train the model (e.g., under differing experimental conditions), 473 

we generated fitness predictions with our model using transcriptomes that we profiled from Mtb cells 474 

undergoing hypoxia and reaeration stress. From the TFA profiles calculated for cells exposed to 475 

hypoxia, the TFA–fitness regression model predicted a significant decrease in growth that persisted 476 

for each of the timepoints profiled under hypoxia (Figure 4A, Supplementary Figure 8). From the 477 

TFA profiles calculated for cells under reaeration, the model predicted a rebound in Mtb growth 478 

comparable to growth levels experimentally measured during log-phase culture. The kinetics of the 479 

shifts in growth predicted by the TFA–fitness regression model aligned well with the experimental 480 

measurements of Mtb bacteriostasis in hypoxia, followed by growth during reaeration (Figure 4A, 481 

Supplementary Figure 8). Importantly, the experimental growth data from the hypoxia-reaeration 482 

time course aligned better with the predictions from the TFA regression model than from an 483 

analogous regression model trained from TF expression data alone (Supplementary Figure 10). 484 

These results further support our premise that TFAs more effectively capture condition-specific 485 

transcriptional regulation than TF expression alone and implies that the activation and regulation of 486 

transcriptional programs under hypoxia and reaeration may involve allosteric or other post-487 

transcriptional mechanisms. 488 

Because the TFA–fitness regression model is openly interpretable, we examined which TFAs 489 

most strongly predicted the fitness changes under hypoxia and reaeration. We found that our TFA–490 

fitness regression model predicts that growth restriction during hypoxia is primarily driven by the 491 

activities of 7 TFs whose TFA profiles changed significantly during hypoxia (Figure 4B). 492 

Importantly, each of these TFs have direct or indirect links to hypoxia in the literature 493 

(Supplementary Figure 9, Supplementary Table 7), thus further validating these model predictions 494 

and the use of TFAs as a lens into condition-specific stress response biology. 495 

 496 

4. Discussion 497 

Understanding the molecular drivers of phenotypic changes in an organism is a fundamental goal 498 

of biological research. In this study, we applied machine learning approaches to construct an 499 

interpretable TFA–fitness regression model that can utilize Mtb TRNs to predict experimentally 500 

measured changes in Mtb growth state in diverse environmental conditions. Our models build upon 501 

existing experimental profiling and network inference modeling efforts to characterize Mtb 502 

transcriptional regulation by integrating the data and algorithms developed in these prior studies [2; 503 

3; 4; 5; 6; 7; 14; 15; 43]. Moreover, by integrating Mtb fitness profiling data from TRIP, our models 504 

have also enabled direct prediction of growth/survival phenotypic outcomes from condition-specific 505 

gene expression data inputs. 506 

Our “wisdom of crowds” approach for inferring transcriptional regulatory interactions yielded 507 

significant enrichment of known regulatory relationships while also expanding the scope of 508 

represented experimental conditions. Our resulting TRN is substantially larger than the networks 509 

inferred by individual algorithms, while enriched for experimentally validated interactions. This 510 

highlights the utility of ensemble inference algorithms, as has been previously shown for regulatory 511 

network inference in other bacteria [15]. 512 
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Importantly, our results demonstrate how network models can generate hypotheses on gene 513 

function in at least two complementary ways. First, we show by gene ontology enrichment analysis 514 

that there is significant correlation between the annotated function of a TF’s target genes and the 515 

condition-specific regulatory function of the TF. It is important to note that the regulatory 516 

interactions identified by our aggregate TRN includes both direct regulatory interactions involving 517 

physical interactions between a TF and its target gene as well as indirect associations mediated by 518 

other factors. Both direct and indirect regulatory associations are important for coordinating changes 519 

in bacterial physiology [56], so it is expected that both types of interactions share annotated 520 

ontologies. Because ~25% of Mtb genes lack functional annotation [57], we think the regulatory 521 

relationships identified in our TRN can aid basic microbiological efforts in investigating Mtb gene 522 

function by generating hypotheses for the functions of these poorly characterized or unknown genes 523 

(Supplementary Table 5). 524 

Second, we show that TFA regression models can be trained to link condition-specific TFAs with 525 

TF fitness in log-phase broth culture to predict Mtb fitness under stress. Notably, we show that our 526 

TFA regression model was able to predict Mtb growth and bacteriostasis under hypoxia and 527 

reaeration – environmental conditions not used in training the TFA regression model. Our results 528 

biologically suggest that TFAs are a useful determinant of condition-specific changes in bacterial 529 

growth, and that the estimated TFA is more predictive of growth phenotypes that TF expression 530 

alone. This is consistent with expectation as Mtb uses transcriptional regulation to orchestrate 531 

behavioral adaptations to varying environments, including in growth phenotypes. Our modeling also 532 

enables inspection of which TFAs are driving the predicted bacterial fitness outcomes. This can 533 

inform the generation of hypotheses on the mechanisms underlying how TFs and their corresponding 534 

transcriptional programs are activated (e.g., via allosteric mechanisms and/or network interactions). 535 

Our TRN and TFA–fitness models could potentially inform the identification of regulatory 536 

mechanisms mediating Mtb response and adaptation to other clinically relevant stress conditions 537 

where gene expression profiling data are available. The TFs and target genes highlighted by these 538 

models may potentially represent future intervention targets aimed at modulating Mtb fitness in a 539 

therapeutically beneficial way. In light of the growing crisis of antimicrobial resistance [58] and 540 

multi- and extensively-drug-resistant tuberculosis [59], we think our approach will be important for 541 

curing tuberculosis disease [60]. 542 

More broadly, our work here demonstrates how network models can be utilized for biologically 543 

meaningful interpretable machine learning applications. A fundamental challenge in current machine 544 

learning activities is the difficulty in understanding how a trained machine learning model makes 545 

predictions [61; 62]. We previously demonstrated that machine learning regression models can be 546 

used to elucidate metabolic mechanisms underlying antibiotic lethality in E. coli [63], as well as to 547 

predict multidrug interaction outcomes in Mtb [50]. Our study here analogously extends this 548 

approach by training a regression model on TFAs estimated from TRN analyses to predict changes in 549 

Mtb growth state. The advantage of this strategy over other contemporary machine learning 550 

approaches is the direct utilization of prior knowledge encompassed by biological network models, 551 

which directly enable the generation of hypotheses for mechanisms linking network interactions to 552 

cell phenotypes. These hypotheses can then be experimentally tested [50; 63] and used as the basis 553 

for further mechanistic study [64] and investigation of translational potential.  554 

Looking forward, we envision that this approach and our TFA regression model can be useful for 555 

several facets of tuberculosis research. We demonstrated that our model can be used to predict 556 

changes in Mtb growth state under environmental stress, which may inform the design of growth 557 

state assays under conditions where standard microbiological tools are not feasible. There is 558 
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increasing appreciation that Mtb drug susceptibility is regulated by its environment [65; 66]. Our 559 

TFA–fitness regression model can be used to elucidate the molecular mechanisms underlying these 560 

phenotypes. Moreover, functional genetic datasets are becoming increasingly available using 561 

different technologies [16; 67; 68; 69; 70; 71; 72]. These data can be applied to train next-generation 562 

TFA–fitness regression models with improved predictive power. Finally, detailed characterizations of 563 

Mtb clinical strains are now providing significant insights into the how mutations or other forms of 564 

genomic diversity regulate drug susceptibility in human patients [72; 73; 74; 75]. We envision the 565 

TRN and TFA-fitness regression framework established here can be extended not only to study the 566 

mechanistic basis for differences between drug susceptibility amongst clinical isolates, but also to 567 

anticipate the drug susceptibility of new clinical isolates as they become curated. 568 
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Figures 597 

Figure 1: A biologically diverse Mtb RNA expression compendium. (A) UMAP visualization of 598 

biological diversity in the TFI microarray data. TFI data were batch corrected by smooth quantile 599 

normalization before computing the UMAP. Density-based spatial clustering (DBSCAN) was 600 

performed on the UMAP to identify clusters of samples with similar gene expression. UMAP and 601 

DBSCAN analyses revealed 16 total expression clusters in the TFI dataset. (B) Median vs. median 602 

absolute deviation (MAD) plot of expression for each gene across the TFI dataset. Each point 603 

represents a gene. Median expression and MAD were calculated for each gene across the 698 604 

samples. Colors reveal point density (yellow: high density, blue: low density). (C) UMAP 605 

visualization of samples from the normalized and batch corrected RNA-seq compendium determined 606 

by gene expression. UMAP and DBSCAN analyses reveal 142 clusters of samples with similar gene 607 

expression. (D) Median vs MAD plot of expression for each gene across the RNA-seq compendium. 608 

Figure 2: Overview of aggregate network. (A) PCA was performed on each of the generated 609 

networks. The networks inferred from the RNASeq compendium (triangle symbols) cluster to the 610 

right, whereas the networks inferred from the recombinant TF induction transcriptomes (x symbols) 611 

fall to the left. The dataset-level aggregates each cluster loosely with the same-dataset constituent 612 

networks at the horizontal extremes, whereas the overall aggregate falls near the centroid of all 613 

networks. (B) Performance of each inferred and aggregate network, calculated against a set of TF–614 

target gene relationships defined by a ChIP-Seq DNA-binding investigation of recombinant TFI 615 

strains [3], as measured by Matthews correlation coefficient (MCC). MCC quantifies the level of 616 

correlation between the two sets, with higher values indicating more correspondence. Blue bars 617 

depict the MCC for aggregate networks; the other colors depict the MCC for the individual inferred 618 

networks. Hatched bars indicate networks that were excluded from aggregation. The horizontal 619 

dashed line represents the 95th percentile MCC performance of 1000 randomly generated networks. 620 

Note that the excluded iModulon/TF induction network scores relatively highly by this metric, likely 621 

because of its size (~7k edges, versus an average of ~180k). See Methods for information about the 622 

exclusion criteria. 623 

Figure 3: Compendium-wide transcription factor activities. (A) Distribution of the TFA rank 624 

percentiles for each induced TF in each strain from the TFI microarray dataset. ROBNCA was 625 

applied to the TFI microarray dataset using the network specifically inferred from the TFI dataset. 626 

For each sample, rank percentiles were computed for each TFA. TFAs were averaged across 627 

biological replicates for each TFI strain. Histogram depicts the percentile rank for TFAs 628 

corresponding to the over-expressed gene in each TFI strain. (B) Averaged distribution of TFA 629 

percentile ranks from ROBNCA using 10 randomized networks (Supplementary Figure 6). (C) 630 

UMAP visualization of samples from the normalized and batch corrected RNA-seq compendium as 631 

determined by TFA. UMAP and DBSCAN analyses reveal 112 clusters of samples with similar 632 

TFAs. (D) Median vs. MAD plot of activity for each TF across the RNA-seq compendium. (E) 633 

Median vs. MAD plot of expression for each TF across the RNA-seq compendium. (F) Distribution 634 

of Pearson’s correlation coefficients between expression and activity for each TF across the RNA-seq 635 

compendium. 636 

Figure 4: Machine learning model insights into Mtb growth through a hypoxic time-course. (A) Top: 637 

When Mtb grown for two days in log phase was subjected to hypoxic conditions (starting from day 638 

0), the bacteria stopped growing for the duration of the imposed hypoxia, as indicated by the stable 639 

CFU between day 0 and day 7. When the culture was reintroduced to oxygen (“Reaeration”, starting 640 

from day 7), the bacteria resumed growth, as indicated by significantly higher CFU after day 8. 641 
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Bottom: Our GBM model predicted a decrease in growth over the course of the period of hypoxia, 642 

and an increase in growth again upon reaeration, based only on transcriptional data measured over 643 

the course of the experiment. Each point represents an RNA-seq timepoint. (B) The GBM model can 644 

be interrogated to determine the primary drivers of the phenotype it predicts; when comparing the 645 

most impactful TFAs in hypoxic conditions (days 2-7) versus those in reliably reaerated conditions 646 

(days 9-12), 7 TFs were predicted to be particularly influential to the reduced growth in hypoxia 647 

versus reaeration, each contributing at least 5% of the total absolute impact predicted by the model. 648 

Shown here is the mean TFA change for each of the impactful TFs across days 2-7; other TFAs show 649 

no net activity change overall (see Methods for details on TFA change calculation). 650 

  651 
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Tables 652 

 653 

Table 1. Network regulators: annotation versus gene set enrichment analysis of inferred regulon. 654 

Regulator Name Mycobrowser gene product and function information 

Inferred Regulon GO 

Annots. (FDR <0.05) 

# Summary 

Rv0353 hspR 

Probable MerR family heat shock protein transcriptional 

repressor. Involved in repression of heat shock proteins. 

Binds to three inverted repeats in the promoter region of 

the DnaK operon. Induced by heat shock. 

3 heat response 

Rv1657 argR 
Probable arginine repressor (AHRC). Regulates arginine 

biosynthesis genes. 
4 

cobalamin synthesis; 

UMP synthesis; C-N 

bond formation 

Rv2215 dlaT 

Dihydrolipoamide acyltransferase, component of pyruvate 

dehydrogenase. Involved in TCA cycle; converts pyruvate 

to acetyl-CoA and CO2. Also involved in defense against 

oxidative stress. 

51 

TCA cycle, respiration, 

downregulation of 

virulence factors 

Rv2359 zur 

Probable zinc uptake regulation protein. Acts as a global 

negative controlling element, with Zn2+ binds operator of 

repressed genes. 

8 
downregulating 

translation, iron import 

Rv2374c hrcA 

Probable heat shock protein transcriptional repressor. 

Involved in repression of class I heat shock proteins. 

Prevents heat-shock induction of these operons. 

17 
transcription and 

translation 

Rv2610c pimA 

Alpha-mannosyltransferase. Involved in the first 

mannosylation step in phosphatidylinositol mannoside 

biosynthesis (transfer of mannose residues onto PI). 

64 

amino acid and 

nucleobase synth., 

respiration, 

growth/proliferation 

Rv2720 lexA 

Repressor. Represses genes involved in nucleotide 

excision repair and SOS response. Binds 14-bp 

palindromic sequence. 

10 
DNA binding, repair, 

cleavage 

Rv3301c phoY1 

Probable transcriptional regulatory protein PhoU-homolog 

1. Involved in regulation of active transport of inorganic 

phosphate across the membrane. 

18 
ETC, oxidative 

phosphorylation 

Rv3417c groEL1 

60 kDa chaperonin 1 (protein CPN60-1). Prevents 

misfolding, promotes refolding and proper assembly of 

unfolded polypeptides generated under stress conditions. 

15 stress response 

Rv3574 kstR 

Transcriptional regulatory protein (probably TetR-family). 

Involved in transcriptional mechanism. Predicted to 

control regulon involved in lipid metabolism. 

22 
cholesterol, lipid, and 

carbon metabolism 

Rv0599c vapB27 Possible antitoxin. 13 
growth regulation, toxin 

sequestration, RNase 

Rv0608 vapB28 Possible antitoxin. 12 
growth regulation, toxin 

sequestration, RNase 

Rv0623 vapB30 Possible antitoxin. 12 
growth regulation, toxin 

sequestration, RNase 
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Rv1560 vapB11 Possible antitoxin. 6 growth regulation 

Rv1740 vapB34 Possible antitoxin. 7 growth regulation 

Rv1960c parD1 Possible antitoxin. 18 
growth regulation, toxin 

sequestration, RNase 

Rv2009 vapB15 Antitoxin. 13 
growth regulation, 

RNase 

Rv2595 vapB40 Possible antitoxin. 8 
growth regulation, toxin 

sequestration 

Rv2760c vapB42 Possible antitoxin. 4 
growth regulation, DNA 

repair 

 655 

 656 

  657 
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Supplementary Material 658 

1 Supplementary Figure 1 UMAP. Hyperparameter optimization was performed on UMAPs 659 

from the (A) TFI microarray compendium, (B) RNA-seq compendium, or (C) TFAs calculated 660 

from the RNA-seq compendium. ε was varied from 0.1 to 10 on a logarithmic scale and 661 

numbers of clusters (left), numbers of outliers (center), and maximum cluster size (right) were 662 

computed for each ε. ε was selected from the elbow of the outliers plot (ε = 0.281 for TFI data, 663 

0.309 for RNA-seq compendium and estimated TFAs). 664 

 665 

2 Supplementary Figure 2 Inferred network validation. Distribution of the ranks, in each 666 

network, of edges shared with the validation dataset from Sanz et al., 2011, [8] from each 667 

network. Each histogram is divided into 32 bins. Horizontal dashed lines represent the expected 668 

number of random matches between each network and the validation dataset. Truncation was 669 

performed on these networks at the first bin where the count dropped below the dashed line 670 

(see Methods). Panels with hashed backgrounds (B, F, and L) represent networks that were 671 

excluded from the aggregation due to insufficient enrichment. 672 

 673 

3 Supplementary Figure 3. Inferred network performance. Performance of each inferred and 674 

aggregate network, calculated against a set of TF–target gene relationships identified by Sanz et 675 

al., 2011 [8] (see Methods), as measured by Matthews correlation coefficient (MCC). MCC 676 

quantifies the level of correlation between the two independent sets of relationships. Higher 677 

values indicate greater correlation. The blue bars depict the MCC for the dataset-level and 678 

overall aggregates. Other colors are used to depict the MCC for the individually inferred 679 

networks. Hatched bars indicate the networks that were excluded from aggregation. The 680 

horizontal dashed line represents the 95th percentile MCC performance of 1,000 randomly 681 

generated networks. See Methods for exclusion criteria. 682 

 683 

4 Supplementary Figure 4 TRN properties. Out-degree distribution of TF-gene interactions 684 

(edges) from the overall aggregate network. This distribution significantly differs from a power 685 

law distribution on the left side of the plot, likely because the network includes indirect 686 

interactions. These will deflate counts of low-degree TFs (nodes) and inflate counts of higher-687 

degree nodes. 688 

 689 

5 Supplementary Figure 5 Assignment of activating vs repressing regulatory interactions.  690 

Flow chart depicting the logic used to assign directionality to regulatory relationships. 691 

Abbreviations used are defined in the legend in the bottom left. 692 

 693 

6 Supplementary Figure 6 TFA rank percentiles for randomized networks. TRNs were 694 

randomized 10 times. For each random network, ROBNCA was used to compute TFAs for the 695 

TFI dataset. Rank percentiles were assigned to each TFA for each TFI microarray profile and 696 

averaged across replicates for each TFI strain. Plotted are TFA rank percentile distributions for 697 

all over-expressed TFs corresponding to their respective TFI strain from each randomized 698 

network. 699 

 700 

7 Supplementary Figure 7. TFA-fitness regression model performance. (A) Fitness values 701 

predicted by the gradient boosted machine (GBM) model versus the experimentally measured 702 

values supplied to the model upon training. The line of best fit depicts the relationship between 703 

predicted and measured values. The slope of this line is slightly less than 1, indicating that the 704 

regression model modestly underestimates relative fitness changes. The model achieved a 705 
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coefficient of determination (R2) of 0.87 against its training set, indicating that the model can 706 

explain 87% of the variation in fitness from the TRIP screen. (B) Residuals of the model 707 

predictions versus measured values form a roughly normal distribution, indicating a lack of 708 

bias and overall reliable predictive ability. 709 

 710 

8 Supplementary Figure 8 TFA hypoxia prediction. Our TFA-fitness regression model 711 

predicted a decrease in growth over the course of the period of hypoxia, and an increase in 712 

growth again upon reaeration, based only on transcriptional data measured over the course of 713 

the experiment (each point represents an RNA-seq timepoint), in both the empty plasmid strain 714 

(blue) and wild-type H37Rv (orange). 715 

 716 

Supplementary Figure 9 Hypoxia-responsive TFAs. The TFA-fitness regression model can 717 

be interrogated to determine drivers of hypoxia by comparing the most impactful TFAs under 718 

hypoxia (days 2-7) versus reaeration (days 9-12). 7 TFs were most important for predicting 719 

reduced growth under hypoxia versus reaeration. Each contributes at least 5% to total model 720 

predictions. Depicted is the mean change in TFA for each of the impactful TFs across days 2-7 721 

(orange) versus days 9-12 (cyan). Other TFAs show negligible changes in activity across 722 

hypoxia or (see Methods for details on calculations for changes in TFA). 723 

 724 

9 Supplementary Figure 10 TF expression hypoxia prediction. Hypoxia and reaeration fitness 725 

changes predicted by a GBM model trained using only TF expression data instead of TFAs. 726 

 727 

10 Supplementary Table 1 Expression data from the TFI microarray dataset. Batch 728 

correction group assignments for each sample in the TFI microarray dataset. Smooth quantile 729 

normalized and microarray expression for all genes and all samples in the TFI microarray 730 

dataset. Median and MAD expression for each gene. Group assignments were used by the 731 

PySNAIL smooth quantile normalization algorithm for batch correction [18]. 732 

 733 

11 Supplementary Table 2 Expression data from the RNA-seq expression compendium. 734 

Batch correction group assignments for each sample in the RNA-seq compendium. Group 735 

assignments were used by the PySNAIL smooth quantile normalization algorithm for batch 736 

correction [18]. Median and MAD expression for each gene. 737 

 738 

12 Supplementary Table 3 Network inference methods. Description of transcriptional 739 

regulatory network inference methods. 740 

 741 

13 Supplementary Table 4. Aggregate network directionality of regulation. Summary of the 742 

assignments of activating (up) vs. repressing (down) regulatory interactions for all TF-gene 743 

regulatory interactions in the aggregate transcriptional regulatory network (TRN).   744 

 745 

14 Supplementary Table 5 TF Gene Ontology assignments. GO enrichment for each 746 

transcriptional program regulated by each TF inferred by our aggregate TRN. (A) Annotated 747 

functions and a summary of GO enrichments found for targets from selected TFs. All TFs with 748 

at least 3 significant GO enrichment terms and a non-locus gene name in Mycobrowser [40].  749 

45 TFs meet these criteria. These data validate the accuracy of our network, as one would 750 

expect an accurate regulatory network to have target sets significantly enriched for the known 751 

functions of each TF. (B) Remaining TFs with at least 3 significant GO enrichments assigned 752 

by our analysis but without an annotated gene name (36 additional TFs). These data represent 753 
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predictions for potentially novel TF functions. (C) All GO enrichments identified by our 754 

analysis were corrected for FDR with a cutoff of 0.05. 755 

 756 

15 Supplementary Table 6 Transcription Factor Activities. Median and MAD expression and 757 

activity for each TF in the RNA-seq compendium. Pearson correlation coefficient between TF 758 

expression and TFA for each TF across all samples in the RNA-seq compendium. 759 

 760 

16 Supplementary Table 7 Overview of the top 7 most important TFAs for predicting fitness 761 

under hypoxia as identified by our TFA regression model, validated by published evidence for 762 

mechanistic activation under hypoxia [3; 6; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86]. 763 

  764 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614645doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.614645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
22 

Data Availability Statement 765 

The transcriptome datasets analyzed for this study can be found in the supplemental material and at 766 

https://tfnetwork.streamlit.app. The code and software implementations associated with this study 767 

can be found at https://github.com/Ma-Lab-Seattle-Childrens-CGIDR/Mtb-TFA-fitness-regression 768 

and https://hub.docker.com/repositories/malabcgidr. 769 

 770 

 771 
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