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Abstract

Accumulation of abnormal tau protein into neurofibrillary tangles (NFTs) is a pathologic

hallmark of Alzheimer disease (AD). Accurate detection of NFTs in tissue samples can reveal

relationships with clinical, demographic, and genetic features through deep phenotyping.

However, expert manual analysis is time-consuming, subject to observer variability, and cannot

handle the data amounts generated by modern imaging. We present a scalable, open-source,

deep-learning approach to quantify NFT burden in digital whole slide images (WSIs) of

post-mortem human brain tissue. To achieve this, we developed a method to generate detailed

NFT boundaries directly from single-point-per-NFT annotations. We then trained a semantic

segmentation model on 45 annotated 2400µm by 1200µm regions of interest (ROIs) selected

from 15 unique temporal cortex WSIs of AD cases from three institutions (University of

California (UC)-Davis, UC-San Diego, and Columbia University). Segmenting NFTs at the

single-pixel level, the model achieved an area under the receiver operating characteristic of 0.832

and an F1 of 0.527 (196-fold over random) on a held-out test set of 664 NFTs from 20 ROIs (7

WSIs). We compared this to deep object detection, which achieved comparable but

coarser-grained performance that was 60% faster. The segmentation and object detection models

correlated well with expert semi-quantitative scores at the whole-slide level (Spearman’s rho

ρ=0.654 (p=6.50e-5) and ρ=0.513 (p=3.18e-3), respectively). We openly release this

multi-institution deep-learning pipeline to provide detailed NFT spatial distribution and

morphology analysis capability at a scale otherwise infeasible by manual assessment.
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Introduction

Accurate identification and quantification of neuropathological hallmarks such as

neurofibrillary tangles (NFTs) may be crucial for advancing our knowledge of Alzheimer disease

progression and developing effective interventions[1]. Convolutional Neural Networks (CNNs)

and their variants have demonstrated remarkable capabilities for image recognition and

segmentation[2] tasks in the medical domain[3]. In neuropathology, deep learning on digitized

whole slide images (WSIs) of brain tissue can automate detecting and quantifying distinct

pathological features such as amyloid beta plaques[4–6]. This includes recognizing and

quantifying the NFTs central to AD diagnosis and staging[7–10]. However, several challenges

persist. Variability in staining techniques, tissue preparation, and imaging conditions across

laboratories hinders the generalization of deep learning models[11,12]. Additionally, limited

expert annotator bandwidth creates a scarcity of large, well-annotated datasets for

neuropathologies, encouraging research in self-supervision, weak supervision, and

multiple-instance learning[13–15]. Addressing these challenges is essential to deploy deep

learning in neuropathology as consistent and reproducible analyses.

Building on our deep-learning-based neuropathological image analysis

research[4,5,11,12,16], we introduce an open-source robust algorithm for automated detection,

segmentation, and quantification of mature NFTs in the temporal lobe of AD brain tissue WSIs.

Crucially, we develop a framework for automatically converting point-annotated NFTs to

detailed ground-truth segmentation masks to maximize annotator bandwidth and harness active

learning approaches more effectively. We leverage a carefully curated dataset from multiple

Alzheimer’s Disease Research Centers (ADRCs) and employ a straightforward and reproducible

modeling architecture to segment NFTs. The objective is to provide researchers with an efficient

and reliable tool and framework to enhance NFT burden quantification to ultimately advance our

understanding of Alzheimer disease and other neurodegenerative diseases. Quantitative data on

NFT burden can aid in more robust correlations to clinical, demographic, and other data

collected.

The model strongly correlates to expert-assigned WSI semi-quantitative scores on a

23-case hold-out set. These “CERAD-like” scores follow a scale for NFTs similar to that from

the original CERAD criteria for neuritic plaques[5,17]. We present the methodology, including
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dataset curation, deep learning model architecture, evaluation metrics, and object detection

benchmarks. Finally, we discuss the approach’s clinical implications and potential benefits in the

broader neuropathology research context of harnessing computational methods for more accurate

and consistent analysis.

Methods

Dataset Curation

Cohort selection

We obtained de-identified autopsy brain tissue samples devoid of personal identifiers and

compliant with HIPAA regulations consistent with previous practices[4,5,11,12,16,18]. The

annotated dataset comprises a subset of 23 cases from 295 cases collected from three distinct

Alzheimer's Disease Research Centers (ADRCs): the University of California Davis ADRC, the

Columbia ADRC, and the University of California San Diego ADRC, following published

case-specific inclusion/exclusion criteria[18]. These cases came from a diverse pool of research

subjects recruited from various sources, including the practices of participating neurologists and

community-based recruitment. The source publication delineates additional recruitment strategy

information[18]. All cases met the pathological criteria for Alzheimer disease (AD), meeting

NIA Reagan or NIA-AA intermediate/high criteria[19,20]. Ethical approval for this study was

granted by the Institutional Review Boards at the home institutions of each ADRC, and written

consent was obtained from individuals both during their lifetimes and posthumously. As the

dataset originates from ADRCs, we consistently collected select data using standardized forms

from the National Alzheimer’s Coordinating Center to ensure data integrity and consistency

across cases[21].

Histology and slide-level assessments

This study used 5-7µm formalin-fixed paraffin-embedded (FFPE) sections from the

temporal cortex. These sections arose from designated anatomical regions available at each

ADRC. Each ADRC prepared its FFPE sections, mounted the slides, and shipped unstained

slides to the University of California Davis (UCD) for staining to minimize batch effects. As
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previously published[18], we performed all antibody staining procedures under laboratory best

practice standards, meeting Federal, State of California, and UC Davis guidelines and

regulations. We used appropriate positive and negative controls for each antibody in each run.

We stained temporal cortex slides with the AT8 antibody (1:1000, Thermo Scientific,

Waltham, MA, USA). All slide sections were digitized, capturing whole slide images (WSI)

using a Zeiss Axio Scan Z.1 microscope at 40x magnification, creating images with a 0.11

µm/pixel resolution saved in the proprietary Carl Zeiss (.CZI) format.

An expert (BND) performed semi-quantitative histopathological assessments of NFTs on

each WSI, blinded to demographic, clinical, and genetic information. The assessments followed

semi-quantitative protocols outlined by the Consortium to Establish a Registry for Alzheimer's

Disease (CERAD)[17]. This protocol consisted of denoting the densest 1mm2 area of NFTs per

WSI as none (no NFTs present), sparse (0-5 NFTs), moderate (6-20 NFTs), or frequent (greater

than 20 NFTs).

Data annotation (annotations version one)

We used Zen Blue 3.2 software for WSI annotation. We visually explored the tissue and

identified three regions of interest (ROIs), each measuring 10,680 x 21,236 pixels with a

resolution of 0.011 microns per pixel. We designated two gray matter ROIs that spanned the

entire cortical region and one ROI along the gray matter-white matter junction (e.g., Fig. 1a).

The annotation process referred to the visualizations and descriptors outlined in Moloney et al.

2021[1] to determine whether a neuron met the criteria for being a neurofibrillary tangle. While

Moloney et al. 2021 define criteria for identifying pre-tangles, mature tangles, and ghost tangles,

we focused solely on marking mature tangles within a cell with a clearly defined nucleolus. The

trained annotator (KN) meticulously scanned the ROI, looking for flame-shaped tangles that

conformed to the shape of the respective neuron defined by a visible nucleolus.

We annotated neurofibrillary tangles that exhibited defined boundaries with smooth

curves, contained a nucleolus, had AT8 staining filling the cell, were located in gray matter, and

typically featured 1-2 protrusions. The NFT was marked at the nucleolus (Fig. 1b) if and only if

it met all criteria; otherwise, it was left unmarked. Identifying the nucleolus with a cross marking

ensured a consistent size and relative location, which was crucial for subsequent training. We

used a clear-cut framework following a uniform NFT definition to enhance consistency in the
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automated detection model (Supp. Fig. 1). A total of 1476 NFTs were annotated across the 74

ROIs.

Datatype conversion

We converted the Carl Zeiss proprietary format images into the open-source Zarr file

format to facilitate data analysis pipelines[22]. We loaded the highest resolution view of each

WSI into an intermediary numpy[23] array in memory and then saved it to disk in Zarr. We set

the storage chunk size to 5000 pixels in X and Y dimensions. When images had multiple scenes,

we separated them into distinct files with the same base name and a suffix indicating the

corresponding scene (e.g., 1-343-Temporal_AT8_s1). The Carl Zeiss format’s native

compression method (JPEG XR) saves disk space at the cost of read and write speed. We used a

lossless compressor (Blosc-zstd, clevel=5, bit shuffling enabled) that achieves significantly

higher read and write speeds during WSI-level segmentation at the cost of disk space usage.

Other users can change this compressor to suit their needs. We provide WSIs in the data

repository in Zarr using the JPEG XR compression algorithm to reduce disk space and transfer

bandwidth. Users will benefit from recompressing the files with the Blosc-zstd compressor for

faster processing.

Rotated ROI correction

Annotated region of interest (ROI) orientations within WSIs were not guaranteed to align

with slide or image edges. This introduced complexity when loading the ROI, as arrays require

slicing along fixed columns and rows parallel to boundaries. Ensuring the isolation of the ROI

was crucial to prevent the inadvertent introduction of non-annotated NFTs into the dataset while

preserving the total count of manually annotated NFTs. We first sliced the minimum inscribing

region around the rotated ROI to address this. Second, we used the skimage library's

transform.warp method to crop the ROI. We stored each corrected ROI as a Zarr file and

attached its path to a custom WSIAnnotation Python object, which was saved to disk using the

pickle format for easy downstream processing[24].
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Point annotation to segmentation masks

We procedurally converted NFT point annotations to ground truth NFT pixel-boundary

masks to train a semantic segmentation model. Bootstrapping point annotations into masks saves

expert annotators time and scales to more annotations, facilitating efficient expert pathologist

active-learning iterations. Additionally, this approach unlocks retrospective analysis for old

datasets, reducing the annotation starting requirement from bounding boxes or masks to simple

point annotations. Semantic segmentation enables detailed morphological analyses, WSI counts,

and spatial distribution analyses of NFTs[10].

We began this procedure by cropping 400x400px tiles around each NFT in the dataset

(Fig. 1c, Fig. 2a). We padded NFTs at the ROI boundary to ensure consistent centering of the

NFT in the cropped tile. Each tile, centered on an NFT, underwent a custom conventional

image-processing segmentation pipeline to generate a 400x400px binary mask. This pipeline

involved color deconvolution using skimage's color.rgb2hed method to convert the tile to HED

color channels, followed by min-max normalization for enhanced diaminobenzidine (DAB)

channel extraction[25]. The tile was then Otsu thresholded and binarized, followed by

post-processing with morphological opening and closing operations[26] (Fig. 2b), isolating the

AT8 immunohistochemically (IHC) stained tissue.

Certain tiles posed challenges, such as those having closely clustered NFTs or

background noise due to the high density of phosphorylated tau protein in the surrounding tissue.

To specifically segment the target NFT, we used skimage’s measure.label method to label

contiguous regions of the IHC mask. Subsequently, we iteratively removed all labeled regions

(blobs) whose center of mass was not within 80px of the tile’s center. This “center bias”

segmentation procedure favored the NFT most centrally located within the tile. Finally, we

identified the largest blob in this region, and we removed all other blobs <50% of its pixel size

(Fig. 2c). We plotted the distribution of ground-truth NFT segmentations across all ROIs to

check for outlying tiles and verified no tiles had mask sizes much smaller than expected (close to

0) (Supp. Fig. 2). Finally, we employed union operations and the coordinates of each tile to stitch

together all masks corresponding to a single ROI upon an empty numpy array with a shape equal

to its corresponding ROI, creating an ROI mask with each NFT segmented rather than

point-annotated (Fig. 1e, 2d).
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We applied this procedure to each WSI in the dataset (ntrain/test= 22, nval-batch= 26). We

encapsulated all relevant annotation information for a WSI into a WSIAnnotation object and then

saved it to disk using Python’s native object serialization library, pickle[27]. We generated

lightweight pickle objects by employing Zarr for both the cropped and ground truth ROIs — we

stored independent Zarr arrays and simply referenced their paths in the pickled objects. This

strategy eliminated the requirement for time-consuming unpickling of the WSIAnnotation during

model training and evaluation. While we successfully parallelized the creation of WSIAnnotation

objects at the WSI level, the maximum RAM capacity of a workstation can still be a bottleneck.

Each worker loaded a distinct WSI; considering each worker's large memory footprint, this

constraint was a significant factor.

Model training and evaluation

We split the dataset 80/20 into training (n=15) and hold-out test (n=7) datasets stratified

by WSI. We further split the training dataset into static training (n=10) and validation (n=5) sets

in the same proportions stratified by WSI (Supp. Table 8).

To load tiles and their segmentation masks from disk efficiently, we designed a custom

PyTorch[28] Dataset combining Zarr with weighted random sampling. We created a static data

frame with rows containing coordinates generated with a stride of 1024 (equivalent to the tile

size) and mappings to a single ROI/WSI pair. We assigned it a positive binary label if an NFT

point annotation was present within a 1024x1024 tile loaded at the given coordinate. We

employed a custom PyTorch weighted random sampler with 50/50 class balancing during

training. These oversampled tiles contain NFTs across all ROIs in the training set, addressing the

sparsity of NFT tiles when randomly sampled. For instance, with a batch size of 32 in our

training dataloader, we generated 32 1024x1024px tiles from random locations across all training

set ROIs, ensuring that, on average, 50% contained NFTs instead of including many empty

ground truth tiles. In validation, testing, and inference, we loaded tiles across ROIs

non-randomly to guarantee full coverage of the input image.

We deployed Kornia’s geometric and color augmentation procedures to increase our

training set size and enhance the model’s robustness on the hold-out test set[29]. Kornia utilizes

GPU processing to generate these augmentations and dynamically considers which

transformations should apply to the image and mask, respectively (e.g., masks should not be
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ColorJittered). Augmentations included horizontal and vertical flips, affine transformations (e.g.,

rotation, rescaling, shear), color jiggle of saturation, hue, brightness, and contrast, and Gaussian

blurring.

We chose a standard UNet model with a ResNet50 encoder, pre-trained on

ImageNet[30–32]. We ImageNet normalized the input images to account for this pretraining.

Due to the imbalanced nature of the ground truth masks (i.e., NFTs take up much less than 50%

of a tile), we desired a loss function that allowed for weighing false negative classifications more

heavily. We chose Tversky loss with alpha and beta parameters defined by hyperparameter

optimization via Weights and Biases’ (W&B) sweeps[33,34]. We monitored the training and

validation losses, F1 scores, and positive IOUs using the W&B integration with Pytorch

Lightning[35].

We conducted training across two NVIDIA RTX 3090 GPUs using Pytorch Lightning’s

distributed data-parallel scheme. We selected hyperparameters using W&B’s Bayesian optimizer

and Hyperband early-stopping procedures[36]. Sweep parameters included learning rate, weight

decay, optimizers, momentum, and alpha parameters for the Tversky loss function (Supp. Fig.

3a). We tested on a single GPU with non-overlapping tiles to avoid potentially duplicated

samples. Key metrics for assessing the best model performance included positive IOU, F1 score,

and mIOU. We chose the epoch with the lowest validation loss for the final evaluation of the test

set.

Agreement maps

We visualized model performance across varying fields of view to better understand the

model’s selection criteria for NFTs. We thresholded predictions at 0.5 to convert pixel values

from continuous to binary class labels that correspond to whether an NFT is present (value of 1)

or absent (value of 0). We then constructed ‘agreement maps’ by directly comparing pixel-wise

values between the ground truth and predictions (Fig. 3). Pixels are ‘true positive’ (TP) if their

ground truth and predicted value at a given index are equal to 1 and ‘true negative’ (TN) if the

ground truth and predicted values are 0. We assigned ‘false positive’ (FP) labels where the model

incorrectly predicts an NFT that is not present in the ground truth (i.e., ground truth pixel value =

0, predicted pixel value = 1) and ‘false negative’ (FN) labels to the inverse. We used Matplotlib’s
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LinearSegmentedColormap class to distinguish TP, FP, and FN masks[37]. All other regions of

the ROI, i.e., those without annotated NFTs, were considered TN.

Data re-annotation (annotations version two)

When examining preliminary results from the agreement maps, we observed many FP

masks across the ROIs throughout the entire dataset (Fig. 3c, 4a). A closer examination of the

FP-labeled raw image areas revealed many plausible predicted NFTs meeting the annotation

criteria described earlier (which was carried out by a trained novice) (Fig. 4a, 4c). To stress-test

the correctness and validity of our ground truth data, we initiated a re-annotation experiment

conducted by an expert (BND) to rescue any NFTs overlooked in the initial round of annotations.

We sliced each ROI into fifteen 4247x3560 pixel “super-tiles,” which were large enough

for our expert annotator to process efficiently while maintaining sufficient resolution to evaluate

NFTs displayed in the super-tiles. We uploaded all super-tiles to the SuperAnnotate[38] platform

in a randomized order. Each re-annotation study image consisted of two identical side-by-side

super-tiles — with the raw super-tile image on the right and the same image overlaid with the

agreement map labels on the left (Supp. Fig. 4). We chose this approach to accommodate

annotator bandwidth limitations. As the focus was on correcting potentially mislabeled FP

objects, the expert annotator concentrated on objects with FP masks, using SuperAnnotate’s

point annotation tool to rapidly annotate any object meeting the NFT annotation criteria

described earlier. No objects/NFTs were removed during the re-annotation experiment.

Following the expert’s examination of the super-tiles in the re-annotation procedure, we

downloaded the re-annotation data from SuperAnnotate, which included JSON files for each

image with new point annotations. We parsed these files and generated a table containing the

WSI and ROI IDs, super-tile coordinates relative to the ROIs they originated from, and the

coordinates of the new point annotations. In total, 280 new point annotations (a 19% addition

overall) across 17 WSIs were added in the re-annotation experiment, providing higher-quality

ground truth labels for training and evaluating the model (Fig. 4b, 4d). The entire dataset was

re-annotated by BND in less than 90 minutes, facilitated by the platform and the outlined

scheme.
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Correlating WSI-level model scores with semi-quantitative scoring

We performed rapid inference using structured slices (sliding window approach) to

construct WSI-level segmentations with the model. This allows for manual inspection of

segmentations across the entire WSI by overlapping the produced segmentation mask and the

original WSI (Fig. 5a). Subsequently, we generated a score summarizing the image’s NFT

burden. We opted for a count-based score, which tallies the total number of contiguous blobs in a

downscaled image using skimage’s measure.label function. The downscaled tissue area then

normalizes this count to ensure consistent burden scores. The tissue area is calculated by

applying histomicsTK’s[39] tissue detection algorithm to isolate a binary mask and then

summing the pixel area. Finally, we rescaled scores by the median tissue area of the training set

to produce an interpretable result. We refer to this score as an NFTDetector score.

We ran all slides in the training, validation, and testing datasets and a separate hold-out

batch of images (not point-annotated, only having slide-level scores) through the model to

generate a distribution of NFTDetector scores (Supp. Table 7, 9). We then assign the WSIs and

their NFTDetector scores into groups corresponding to their slide-level CERAD-like scores

assigned by an expert pathologist (four grades ranging from None to Severe) and tested for

statistical difference via Welch’s t-test using the statannotations3 library (Fig. 5b).

We compared the model’s slide-level semi-quantitative correlative performance with the

trainee’s by applying the same score generation logic directly to the ground truth point

annotations. By counting the number of point annotations across all ROIs for a given WSI and

then normalizing by the total pixel area of the ROI, we generated a human analog to the

NFTDetector score. We scaled scores by the median tissue area and min-max normalized to

achieve better alignment of the y-axis for plotting purposes only. The null hypotheses aimed to

validate whether the trainee’s semi-quantitative score groups were statistically different; this was

confirmed via Welch’s t-test, as scores were not guaranteed to be normally distributed (Fig. 3b).

Comparing model predictions with AT8 burden and semi-quantitative scores

We generated simple AT8 burden scores by calculating the proportion of DAB signal

present in an ROI. To do this, we applied a similar pipeline to the initial steps of the

point-to-mask pipeline. We first converted the image from RGB to HED channels via skimage,
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then binarized the image using Otsu thresholding (Supp. Fig. 5a). We then counted the total

number of detected DAB positive pixels and normalized by the total number of pixels in the

grayscale image to generate a DAB Proportion score (Supp. Fig. 5b). We used this DAB

Proportion score and the expert-assigned semi-quantitative CERAD-like scores as correlative

variables with the models’ performance metrics (Supp. Fig. 5b, 5c). We constructed boxplots and

scatterplots with seaborn and tested for significant differences with statannotations[40,41].

Statistical methods

This study operates at any of four levels. From the most to least granular: individual NFT

objects (ntest=664), tiles (ntest=4620), ROIs (ntest=20), and WSI images (or decedents, ntest=7). Only

the object detection analyses (YOLOv8, segmentation bounding boxes) can operate at the level

of individual NFTs (“object-level”). We use this level for Figure 7 or whenever explicitly

denoted. We use a tile-level loss function to train the segmentation and object detection models,

reported in Supp. Fig. 3. We report ROI-level metrics in Figure 6b because the ground truth only

exists at the ROI level. Performance and other characteristics are available in detail at the ROI

level (Supp. Tables 3-6). Finally, at the WSI level (1-to-1 with decedent), we report correlations

against semi-quantitative scores as in Figures 5b, 5c, and 7c (Supp. Table 7). The sample sizes

for the training data were as follows: objects (ntrain=792), tiles (ntrain=13860), ROIs (ntrain=45), and

WSI images (or decedents, ntrain=15).

To calculate statistical significance, we proceeded as follows. In Table 1, we tested

continuous and normally distributed variables using one-way ANOVA, continuous and

non-normal variables using Kruskal-Wallis, and categorical variables via Chi-squared (Supp.

Table 2). We used Welch’s t-test to compare continuous vs. categorical variables, as in Figures

5b, 7c, and Supp. Figs. 5b-c, and 9, and student’s t-test for Supp. Fig. 10a. Combining annotated

(n=21) and model (n=44) scores of 44 decedents, we assessed score differences among Severe,

Moderate, and Mild CERAD-like categories and score type (annotator vs. model). We excluded

the None CERAD-like category due to insufficient examples (n=1); however, both the annotator

and the model correctly assigned this slide. To meet model assumptions, we used a mixed-effect

model and transformed scores using the natural logarithm. For Figure 6b, we use linear mixed

models (Statsmodels.formula.api mixedlm [42]) to estimate the mean values and 95% confidence
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intervals for ROI-level metrics (e.g., pIOU, F1, and mIOU) from 7 decedents in the test set with

repeated samples from each decedent, typically corresponding to 3 ROIs.

Metric choices

Object detection and instance segmentation models typically report mean average

precision (mAP), while fewer studies report segmentation model performance by mAP. Since we

perform binary segmentation, mAP is equivalent to AUPRC for the positive class[43]. We

observed that the model’s confidences are highly skewed towards 0 or 1, such that varying the

confidence threshold for the segmentation predictions does not meaningfully alter performance

(Supp. Fig. 6). For this reason, we report F1 instead (i.e., Dice score for pixel-based

calculations), as it is approximately the same as mAP given the above constraints. To determine

a random F1 baseline, we used a null random model that achieves a precision equal to the test set

ROIs’ positive pixel prevalence of 0.000898 (CI: [0.000205, 0.00159]) and a recall of 0.5. F1

can be further deconstructed into precision and recall at the chosen threshold, displayed within

the figures of this study. We also report mean intersection over union (mIOU) — the average of

positive and negative IOUs — and another standard segmentation metric. We calculate AUROC

using sklearn.metrics.RocCurveDisplay [44]. We aggregate these metrics across all pixels in the

dataset during training (i.e., flattening the predictions) but report the test set metrics at the ROI

level.

Object detection: Converting masks to bounding boxes for instance detection

metrics

To align with Signaevsky et al. 2019[8] when comparing model performance, we

transformed NFT segmentations into object detections to obtain object-level metrics, as they

appear to have done in their study (we could not find precise metric details). While this

assessment method may not offer the granularity of pixel-level metrics, it can be more forgiving

if an entire NFT prediction does not perfectly align with its ground truth mask.

To implement this, we leveraged histomicsTK’s contour generation functions to generate

bounding boxes from stitched ROI prediction masks. We merged nearby bounding boxes within

150 pixels from center to center via a custom algorithm (Supp. Fig. 7a). We generated bounding
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boxes around the ground truth masks by taking the minimum and maximum coordinates of the

mask in a cropped 400x400px view of each point-annotated NFT, consistent with the tile size

used to construct the masks (Supp. Fig. 7b). We then matched bounding boxes from the same

ROI for greatest IOU. We assigned unmatched and very low IOU prediction boxes (i.e., IOU <

0.001) as false positives and unmatched ground truth boxes as false negatives. We used these

values to calculate our dataset splits’ precision, recall, and F1 scores.

Object detection: Training an object detection model from bootstrapped

bounding boxes

We generated ROI-level ground truth bounding boxes as described above (i.e., min/max

coordinates of ground truth masks cropped around each NFT, performed at the ROI level). We

then leveraged these ROI-level bounding boxes to create tile-level bounding boxes to train a

YOLOv8 model[45,46]. We assigned an ROI-level bounding box to a single tile if it contained

the center of the bounding box. We saved non-overlapping 1024x1024px tiles from the ROIs as

static PNG files due to a limitation of the Ultralytics library, which we used to train the YOLOv8

model[45,46]. We shifted bounding box coordinates according to their assigned tile’s

coordinates, clipped them to fit within the tile, converted them to YOLO format ([label, xmin,

ymin, xmax, ymax]), and then saved them into a text file with the same name as its

corresponding tile PNG.

We followed the protocol to generate a YOLOv8 configuration file in YAML format. In

this file, we defined the paths to the train, validation, test directories, and the names of our labels

(e.g., 0: NFT). Training a YOLOv8 model was straightforward after constructing the dataset with

the correct input format (see Supp. Fig. 3b for loss curves). To maximize performance, we

optimized hyperparameters with the default search parameters suggested by Ultralytics and their

built-in hyperparameter search evolution algorithm via model.tune() for 30 iterations. The best

hyperparameter settings are included in the Github repo file, “best_hyperparameters_yolo.yaml,”

and tuning results can be found in Supp. Fig. 8.
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Use of LLMs

We used ChatGPT (https://chat.openai.com/, February 2024) to provide editing feedback

for the manuscript and code. We also used it to convert tables from raw text into Markdown and

to generate a first draft of the Abstract from the study results and field context, which we further

edited. During manuscript editing, we subjected specific sections of the text to editing review by

ChatGPT to enhance clarity and conciseness, manually incorporating suggestions as appropriate.

Results

We automatically generated pixel-wise masks of NFTs from single-point

annotations

We developed an automated point-to-mask image processing pipeline to reproducibly

generate pixel-level masks (outlines) around NFTs solely from manual point annotations. The

motivation was that manually outlining these objects at a sufficient scale to train a deep learning

model is exceedingly time-consuming, nuanced, and prone to high degrees of interobserver

variation in determining the precise boundary of an NFT. The resulting point-to-mask pipeline

generated high-quality ground truth segmentations with few visually erroneous examples despite

leveraging solely conventional image-processing libraries (see Methods). We sampled 10 ROIs

across semi-quantitative categories to assess the generated segmentation masks’ accuracy,

inspecting 50 ground truth NFT segmentations per ROI. We also empirically validated results by

generating a distribution of NFT ground-truth masked pixel areas and then visually inspecting

examples of the largest and smallest masks in the dataset.

Using this automated pipeline, we processed 1476 objects across the 74 ROIs. The

resulting masks, on average, comprised 5.5% of a tile (or 8800 pixels in area at 0.11 microns per

pixel), with a minimum of 0.25% (~400 pixels), a maximum of 32% (51,000 pixels), and a

standard deviation of 3% (4940 pixels). By this method, we proceeded through an iterative

process to refine parameters of the point-to-mask pipeline, such as the center bias and minimum

size variables, to ensure NFT masks were sufficiently large and to minimize the chance that they

are over-segmented as sometimes seen in high-background regions (Supp. Fig. 2). In the

originally calculated masks, many objects would be missed due to an over-stringent center bias
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parameter. We corrected this by increasing the “center bias” parameter from 80 pixels to 120

pixels. The center bias procedure ensured that the detected blob’s center of mass was within a

predefined number of pixels from the center of the point annotation. This automatically fixed the

~7% of the tiles missed in the first iteration. NFTs that were typically affected by this procedure

were those with longer tails and contiguous staining from nucleus to axon. After applying the

filtering pipeline, we inspected the histogram of mask sizes and found the proportion of

over-segmented tiles to be acceptable (<1% of tiles). Rather than manually adjust these masks,

we included them to maintain a fully automated pipeline and to determine whether the trained

model would be robust to the noisier ground truth labels.

We compared how guided expert reannotation affected segmentation model

quality

As there is no single metric to score how well a model identifies (segments) an object at

the pixel level, we used standard segmentation metrics of mIOU and F1. As it may not be clear

from numerical scores alone what constitutes mediocre, acceptable, versus exceptional

performance, we frequently inspected representative examples visually (Fig. 6a). In the “version

1” model before expert reannotation, the F1 at the ROI level was 0.49 (CI: [0.44, 0.54]).

Following retraining on the re-annotated dataset, the final (“version 2”) model performance

improved by about 8% at the ROI level to a precision of 0.53 (CI: [0.37, 0.7]), recall of 0.60 (CI:

[0.49, 0.71]), F1 of 0.53 (CI: [0.45, 0.61]), mIOU of 0.68 (CI: [0.65, 0.72]) and AUROC of

0.832 (CI: [0.781, 0.883]) on a test set of seven held-out whole slide images (WSIs) (Fig. 6b).

Additionally, the model’s area-normalized WSI score increased its correlation with

semi-quantitative scores on the hold-out test sets (Spearman’s rho, ρ, increased from 0.624 to

0.654) (Supp. Fig. 9).

Segmentation and repurposed instance-detection interpretations were

consistent

Compared with other studies, we also repurposed the segmentation model predictions as

though the masks only predicted objects – i.e., independently of whether the predicted NFT pixel

boundaries were precisely accurate. We calculated approximate bounding boxes from the ground
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truth and prediction masks (see Methods) to do this. This allowed us to assess the NFT

segmentation model as a coarse-grained object detector model instead. We scored NFTs as true

positive (TP) if the intersection over union (IOU) between the prediction and ground truth

bounding boxes exceeded 0, as reported previously in the field[47]. False positive (FP) NFTs

were predictions that did not overlap with ground truth bounding boxes, while FNs were ground

truth bounding boxes that did not overlap with predictions. Intriguingly, this more categorical

and coarse-grained object-level performance nonetheless mirrors pixel-level performance,

yielding a test set F1 of 0.53 (CI: [0.45, 0.62]; Supp. Table 1).

A dedicated YOLOv8 model did not improve NFT instance detection

Whereas the above approach reinterpreted the NFT segmentation model post hoc as an

NFT object detector, we posited that an established object-detection architecture trained from

scratch on the bootstrapped bounding box dataset might perform better at this task. Accordingly,

we trained a standalone YOLOv8 model with the sole task of object detection using the ground

truth bounding boxes constructed for the object detection metric baseline. The YOLOv8 model

performed comparably but no better than the repurposed segmentation model, achieving an

ROI-level F1 of 0.53 (CI: [0.46, 0.60], Fig. 7b) and an aggregate object-level mAP50 (equivalent

to AUPRC for the NFT class) of 0.485 (Fig. 7a). The model also displayed similar effectiveness

in categorizing slides into "CERAD-like" NFT semi-quantitative grades (ρ = 0.513, Fig. 7c).

Visual inspection revealed that FPs were predominantly NFT-like objects failing to meet our

particular annotation criteria. At the same time, FNs likely resulted from this specificity (Fig.

7d).

Performance did not vary by AT8 stain burden or CERAD-like category

We noticed that the point-to-mask pipeline generated larger masks from dark AT8

staining around cropped NFTs, so we posited that some ground truth masks could be lower

quality in tissue regions with higher overall AT8 stain burden. To assess this, we analyzed

whether the model performed differently in images with higher AT8 stain burden, using

semi-quantitative scores and quantified diaminobenzidine (DAB) signals as correlative variables.

We found the model exhibited consistent performance (mIOU) across images despite varying
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AT8 staining intensities (R2 = 0.109, Supp. Fig. 5c) and semi-quantitative grades (ρ = 0.026;

Supp. Fig. 5c). Furthermore, the model effectively differentiated slide-level semi-quantitative

grades assigned by an expert, outperforming grades assigned using DAB signal alone,

particularly between the Moderate and Severe CERAD-like categories (Supp. Fig. 5b).

Models identify NFT objects down to the pixel on one GPU an order of

magnitude faster than humans can roughly point-annotate them

The conversion from the .czi file type to the .zarr file type averaged 7.7 minutes per WSI

and required enough random-access memory (RAM) to load the entire uncompressed WSI (50.2

± 21.4 GB). A user with RAM limits could use the aicspylibczi library instead to load regions of

.czi files into memory rather than the entire image and build the Zarr files in successive chunks.

Generating a WSI-level segmentation takes approximately 32 minutes per WSI per GPU

on a dataset with WSIs that average roughly 160,000 by 220,000px. This was 2.5x faster than

reported by Wurts et al. 2020, who segmented WSIs of size 120,000 x 120,000 pixels at 20

minutes using four Volta V100 GPUs, which are comparable to the NVIDIA RTX 3090s we

used. Further reduction in time could be achieved by generating a tissue mask via a

lower-resolution image and running inference solely on the masked region. Generating WSI

segmentations for the entire cohort (48 WSIs) took 12.8 hours across two NVIDIA RTX 3090s.

The object detection model’s inference speed was approximately 60% faster, taking about 20

minutes per WSI per GPU; the entire cohort of 48 WSIs took 8.1 hours with 2 NVIDIA RTX

3090s.

To calculate the NFTDetector score, we loaded each segmented WSI at 1/64 of the

original resolution and post-processed it through the blob and tissue detection pipelines

(Methods). On average, this took 4 minutes and 1.5 minutes per WSI, respectively. The YOLOv8

model’s WSI-level score required a post-processing non-maximum suppression procedure to

eliminate overlapping bounding boxes, averaging 5.2 seconds per WSI and totaling 4 minutes

across the dataset.

The version-1 annotation files the trainee (KN) generated did not have timestamps per

point annotation. However, through personal communications, we determined that the average

ROI that contained NFTs took approximately 30 minutes to annotate. We estimate that

generating the initial point annotations for this dataset took 33 hours (n = 1476 NFT annotations,
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or 44.7 annotations/hour). For the version-2 reannotation study, we directly parsed the image

metadata from SuperAnnotate to assess the time it took for our expert annotator to add new point

annotations to the dataset. Reannotating the entire dataset, which consisted of 975 “super-tiles,”

took 82 minutes (11.9 super-tiles/minute). This reannotation process, which ultimately rescued

280 new annotations (or 204.9 annotations/hour), was completed in one sitting.

As the WSIs in the study had a mean of 1028 ± 957 detected NFTs, the model’s 1927.5

annotations/hour rate can automatically process entire slides at a ratio of 9.4x-43x faster than

human annotators per single GPU.

Slide-level neuropathologic burden scores from the NFT model correlated

with separate expert semiquantitative assessments

While pixel-level identification of NFTs enables deep neuropathological phenotyping,

many studies rely instead on WSI-level CERAD-like semiquantitative assessments of

neuropathology burden. To calculate an automated per-slide single score for NFTs, we generated

area-normalized scores from WSI-wide segmentations by counting the number of detected NFTs

and normalizing the count by the tissue area (Fig. 5a). We then compared these calculated scores

versus previously expert-assigned semi-quantitative scores and subjected them to statistical

analysis using Spearman’s rho, ρ = 0.654 (Fig. 5b). The model accurately discriminated

semi-quantitative categories, particularly in distinguishing Mild versus Moderate categories (Fig.

5b). As all cases had an intermediate/high AD neuropathologic diagnosis, few cases had none or

very few NFTs; despite this, we qualitatively observed that the model discriminated between the

None and Mild categories (i.e., very few detections in slides assigned None or Mild (Fig. 5c)).

For comparison, we also constructed an area-normalized WSI-score benchmark directly

from the NFT point annotations provided by the novice using the same methodology as the

model’s WSI-level scores. We used mixed effect models to characterize the difference in scoring

between the model and annotator at each CERAD level while accounting appropriately for the

strong similarity of samples from the same decedent. We found that both the model and the

annotator scored the Mild-or-Less category significantly lower than the Moderate category, with

a mean 38% lower for the novice (95% CI (0.15, 0.98)) and a somewhat greater drop for the

model (24% vs. 38%, but not significantly different from the novice). Neither model nor novice

showed statistically significant differences between samples from the Frequent and Moderate
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CERAD categories after accounting for repeated measurements from decedents. The model and

novice did not score significantly differently from each other within the Moderate or

Mild-or-Less categories; the estimated scores for the model were 63% higher in the Frequent

category than for the novice, a near-significant difference (p = 0.061, 95% CI 2% less to 2.7-fold

greater.)

Lastly, we performed a correlation analysis between demographic features,

semi-quantitative scores, and WSI-level predictions. Categorical differences were not significant,

except for the relationship between maximal educational attainment and whether the individual

identified as Hispanic (p < 0.01, Supp. Fig. 10a). We observed strong positive correlations

between the annotator’s tissue area-normalized score and both models’ tissue area-normalized

scores per WSI (ρCNNv2 = 0.704, ρYOLOv8 = 0.773) and notable negative correlations between both

models’ area-normalized scores and the age at death (ρCNNv2= -0.375, ρYOLOv8 = -0.405). We also

observed a notable positive correlation between the annotator’s tissue area-normalized score and

years of education but did not see the same results when comparing against either model’s scores

(Supp. Fig. 10b).

Discussion

We present a scalable deep-learning pipeline to detect the location and precise boundaries

of mature neurofibrillary tangles (NFTs) in immunohistochemically stained whole slide images

despite only using rapid single-point human annotations as training data. The models performed

comparably to expert semi-quantitative slide-level scoring despite not being explicitly trained at

this task and equivalently to the trainee annotations it learned on (Fig. 3b). The models also

outperform both the trainee and the expert in NFT detection speed with pixel-level specificity

and visually include only tangle-like objects in their predictions (i.e., other tau lesions such as

tufted astrocytes, astrocytic plaques, or neuritic plaques are not predicted as mature tangles).

Further, they demonstrate similar performance even as distinguishing pathologies from

background signal becomes more difficult; more specifically, model performance remains strong

as the AT8 burden in the images increases. We achieve this performance with a framework that is

easily extended to other datasets and enables rapid integration and conversion of point

annotations into either ground truth masks or bounding boxes. This pipeline exhibits stability in a
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cohort sampled across three different ADRCs and is likely to perform similarly on slides sourced

from other institutions. Additionally, we publish the data, annotations, model weights, and easily

extensible code along with the study if others wish to fine-tune the model or modify the pipeline

to suit their dataset.

Studies using deep learning methods to detect NFTs predominantly omit segmentation

models due to the massive annotator investment required to collect manual ground truth training

masks at the pixel level[9,10,48] despite the reported research advantages of object- and

pixel-based NFT counts over typical IHC positive pixel count methods[49]. Indeed,

segmentation models unlock deeper neuropathological phenotyping than the standard

pathological analyses that compress pathological information into a single category or

semi-quantitative grade — examples include nuclei and tissue segmentation as tools to improve

cancer grading schemes such as Gleason and C-Path scores[50–52]. Object detection models

address some concerns, but the predicted bounding boxes they output do not directly capture

morphological patterns in the detected NFTs. Although substantial morphological differences are

well-documented between pretangles and mature tangles, NFTs may have undiscovered

morphological nuances, particularly those characterized by distinct fibril structures, which are

only unveiled through cryo-EM imaging[1,53]. Our study releases open-source NFT

segmentation models trained solely from point annotations, requiring less annotator investment,

delivering comparable object detection performance to published models, and exhibiting strong

correlation with expert-assigned whole-slide image semi-quantitative grades[6,8,10,54,55].

Unlike other studies, we narrowed the focus to cells containing a nucleolus and mature

tangles instead of annotating pre-tangles, ghost tangles, or cells that may appear neuronal but for

which a nucleolus was not apparent. This likely decreased numerical model performance, as the

decision boundary between mature tangles and other tau tangle categories is more complex than

deciding between a tangle phenotype versus other objects or backgrounds in the slide. In

addition, all annotations in this study are point annotations curated by a single trainee, then

refined in an iteration by a single expert. By contrast, Signaevsky et al. perform NFT

segmentation but report object-level F1 in their test set at 0.81. However, unlike our mature

tangle annotation criteria, they include NFTs of various morphologies as valid annotations. The

dataset included 22 cases of tauopathy sampled from the hippocampal formation and dorsolateral

prefrontal cortex stained with AT8; ground truth mask annotations were manually generated
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across 178 ROIs by three expert neuropathologists (ntrain= 14 WSIs). In Vizcarra et al. 2023, a

study involving various brain regions and multiple annotators (nexpert = 5, nnovice= 3), the best

object-detection macro F1 performance in the temporal region was 0.44 ± 0.06. This average

considered pre-NFT and iNFT performance (F1pre-tangle = 0.20, F1iNFT = 0.71). Since we did not

annotate and subcategorize pre-NFTs, they may be lumped into the model’s predictions for

mature tangles; this may numerically penalize apparent model performance. Also, Vizcarra et al.

note that there are generally more pre-NFTs predicted in the UC Davis cohort than iNFTs

compared to Emory. In contrast, in their cohort, the opposite is true (albeit the model performed

poorly in the UC Davis cohort overall). They proposed site-specific differences, such as differing

tau antibodies. This lends evidence that our model suffers from the lack of pre-NFT labels. Their

dataset, curated by five experts and three novices, underwent eight iterations of manual

adjustment, removal, and addition of bounding boxes, whereas our study underwent a single

iteration, collecting additional point annotations only.

Moving to object detection, Ramaswamy et al. 2023 report an amyloid plaque object

detection average precision (AP) averaged over IOUs thresholds from 0.5 to 0.95 (AP@50:95) of

42.2. Wong et al. 2023 report 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored

plaques and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold (AP@50). We report an object

detection AP@50:95 of 32.2 and AP@50 of 0.49 for mature NFTs programmatically

bootstrapped from point annotations. In a third case, Koga et al. 2022 performed tau neuronal

inclusion object detection in 2,522 CP13-stained images from 10 cases each of AD, PSP, or CBD

across a range of brain regions; they achieved an average precision of 0.827. Koga et al. appear

to use a more inclusive definition of tau neuronal inclusion by inspecting a representative

lesion[55,56]. If we were to apply a similarly inclusive definition of NFT and hypothesize that

50% of our false positives were pre-NFTs or mature tangles outside of our annotation criteria, it

would have a marked impact on the F1 score (from 0.58 to 0.74), but this is speculation.

We noted several caveats, which more typically arose from data than model architecture

limitations. We could not assess whether the model can distinguish “None” versus “Mild”

semi-quantitative categories due to the sample size (n=1 “None” test WSIs), although the model

scored the “None” slide perfectly with an NFTDetector score of 0. Performance may vary by

factors such as tissue staining variations due to overfixation or differences in scoring

methodologies — semi-quantitative scoring analyzes the densest 1mm2 region of pathology, in
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contrast to the NFTDetector, which gives a WSI-level quantification. The standalone object

detection model trained using bounding boxes derived from the ground truth segmentation masks

likewise correlated with semi-quantitative grades to the same extent as the segmentation model.

This suggested that both model strategies – segmentation and object detection – learned

approximately equally well and possibly to their limit from the training data. Additionally, we

focused on samples from individuals with pathologically defined AD, specifically from the

temporal lobe, which may limit generalizability to other brain regions and disease presentations.

Notably, we release the first publicly available expert annotated dataset, trained model

weights, and segmentation model codebase for NFT detection to support reproducibility and

broad real-world use (https://github.com/keiserlab/tangle-tracer). These models can be used as-is,

or the reader may wish to fine-tune or retrain them for institution- or goal-specific tasks. Instead

of working directly with Python code, researchers and pathologists can use the platform without

programming via its command line interface to convert new point annotations to segmentation

ground truth masks (see the README.md in the code repository for details). We hope to

integrate this pipeline and model with other pathology tools, such as the HistomicsUI[39] and

active learning frameworks. Future studies may benefit from performing deeper morphological

and correlative analyses between NFT features and clinical or genetic features using methods

such as spatial transcriptomics.

Conclusion

We introduce a robust and scalable deep learning approach to generate and detect ground

truth masks for mature neurofibrillary tangles (NFTs). The segmentation model precisely detects

and delineates mature tangles, enabling deeper morphological neuropathological analyses that

may ultimately relate to subtle clinical and genetic factors. The model generates assessments

comparable to expert semi-quantitative scoring when aggregated across an entire slide into a

single score. Where speed is a concern, object detection models trained on bounding boxes

calculated from the same data achieve similar but more rapid detection performance while giving

up pixel-accurate NFT boundaries. Unlike other segmentation pipelines, the platform scales

readily to new institutions because it “bootstraps” high-resolution NFT boundary training data

automatically from simple and comparatively rapid human NFT single-point annotations. This
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tool reveals detailed maps of NFT distribution and morphology within tissue samples. We hope

the open-source annotated dataset, trained model weights, and codebase we release here will

facilitate diverse research directions, new uses, and collaborations in digital neuropathology.
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Figure Legends

Figure 1. Neurofibrillary tangle model annotation and training pipeline

A) Representative slide with three regions of interest and their point-annotated NFTs.

Processing steps are as follows: B) Isolate rotated ROIs and transform global NFT coordinates to

local coordinates. C) Zoom to point annotation (right), isolate the DAB channel (middle), and

apply morphological operations and Otsu thresholding to segment large “blobs” (left). D) Apply

a center bias to remove off-center NFT candidates, retaining a single blob per tile. E) Stitch tiles

into a single large ground truth mask for each ROI, replacing point annotations. F) Generate

class-balanced batches for training via random NFT and tile sampling from the ROI using an

input tile size of 1024x1024 pixels. G) Slice WSIs in a structured format with a stride equal to

tile size. H) Feed tiles into UNet with ResNet50 backbone to generate prediction masks. I) Stitch

tile predictions and overlay them onto the WSI to visualize the heatmap.

Figure 2. NFT point-to-mask pipeline detail

A) We convert ROIs with human NFT point annotations to detailed segmentation masks.

We do so by B) generating 400x400 pixel tiles centered on the label, C) applying color

deconvolution, otsu thresholding, and morphological cleaning operations, and D) performing

blob detection with center-biasing and size filtering to obtain a mask. E) We then stitch each

mask into its corresponding location in the ROI via union operations.

Figure 3. Agreement maps display how NFT predictions compare to human labels

Agreement maps from four different ROIs in order of increasing semi-quantitative

severity. As the slide-level severity score increases, the model detects more NFTs. However,

False Positives (FPs, yellow) and False Negatives (FNs, magenta) increasingly appear as the

severity increases. (A) None, (B) Mild, (C) Moderate, and (D) Severe CERAD-like NFT burden

scoring by expert assessment. Notably, True Positive (TP, cyan) predictions display high

pixel-wise boundary fidelity, and disagreement between human labels and model predictions

more typically applies to whether the entire object qualifies as a mature NFT.
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Figure 4. Expert reannotation rescues putative predicted NFTs

(A) ROI-level agreement map comparing trainee-annotated ground truth NFT labels

versus “version 1” model-predicted segmentation masks. (B) Agreement map of the same ROI

using expert-reannotated ground truth NFT labels versus “version 2” model-predicted masks. C)

Zoomed view highlighting initial trainee-vs-model agreement maps. D) Zoomed view

highlighting annotated expert-vs-model agreement maps. Multiple newly expert-annotated

(“rescued”) NFTs that were previously labeled FPs or TNs become TPs after integrating the

reannotated data and retraining the model.

Figure 5. Model-derived NFTDetector scores correlated with expert CERAD-like scores

A) Representative WSIs spanning the four semi-quantitative stages of increasing NFT

burden severity, ordered by CERAD-like scoring. Model NFT detections overlaid in green. B)

Area-normalized NFTDetector scores on test set WSIs correlate with semi-quantitative ordinal

categories. C) Area-normalized NFTDetector scores calculated on the full WSI dataset versus

area-normalized counts for the same WSIs derived from the annotator labels. **: 0.001 < p <=

0.01 by Welch’s t-test. We used different assessment datasets in B) vs C) because the external

test set lacks human NFT point annotations.

Figure 6. Segmentation numerical performance metrics were not always visually intuitive

(A) Progressing in order of decreasing performance (left to right): Four 1024x1024 pixel

tile-level agreement maps with corresponding numerical performance metrics for segmentation

performance at the NFT object level from two different ROIs (rows). The F1, mean, and positive

IOU scores are specific to each 1024x1024 tile. IOU and F1 scores suffer the most from false

negatives, even when the model predicts other NFT pixels correctly. (B) At the ROI level, model

performance on the test set, assessed by F1 and mean IOU, improved after reannotation, with

substantial qualitative improvement evident by visualization.

Figure 7. Repurposing the NFT dataset for object-detection models yields similar overall

performance to the segmentation approach

A) The precision-recall curve plots the tradeoff between the YOLO model’s

object-detection precision and recall across all potential confidence thresholds aggregated across

all objects in the test dataset. B) Plot of aggregated object-wise F1 versus confidence threshold;
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low (permissive) thresholds yielded the highest F1 scores. C) WSI-level NFT counts from the

YOLO model correlated with CERAD-like semi-quantitative scoring, similar to the

segmentation-derived NFTDetector scores in Figure 5b. **: 0.001 < p <= 0.01 by Welch’s t-test.

D) Example tiles from different ROIs overlaid with ground truth (cyan) and predicted (yellow)

bounding boxes. The values highlighted in yellow are confidence scores for the predictions.

Reference B) to determine which NFTs would be detected.
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Figures

Figure 1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.05.15.594372doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.15.594372
http://creativecommons.org/licenses/by/4.0/


Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Tables

Table 1: Demographics grouped by dataset split.

Grouped by Dataset Split
Missing Overall Test Set Training Set Validation Batch P-Value

n 45 7 15 23

Sex, n (%) Female 0 26 (57.8) 3 (42.9) 9 (60.0) 14 (60.9) 0.684Male 19 (42.2) 4 (57.1) 6 (40.0) 9 (39.1)
Age at Death, Yrs
median [Q1,Q3] 0 83.0

[77.0,88.0] 83.0 [78.0,86.0] 84.0 [78.0,90.0] 82.0 [78.0,86.5] 0.574

Hispanic ethnicity,
n (%)

Yes 0 13 (28.9) 1 (14.3) 4 (26.7) 8 (34.8) 0.562No 32 (71.1) 6 (85.7) 11 (73.3) 15 (65.2)

Hispanic origins,
n (%)

Cuban 32 1 (7.7) 1 (12.5)

0.785
Dominican 2 (15.4) 1 (25.0) 1 (12.5)
Mexican 4 (30.8) 1 (25.0) 3 (37.5)

Puerto Rican 3 (23.1) 1 (25.0) 2 (25.0)
Unknown 3 (23.1) 1 (100.0) 1 (25.0) 1 (12.5)

Race, n (%)

African
American 0 1 (2.2) 1 (6.7)

0.496Other 4 (8.9) 2 (13.3) 2 (8.7)
Unknown 3 (6.7) 2 (13.3) 1 (4.3)
White 37 (82.2) 7 (100.0) 10 (66.7) 20 (87.0)

Years of Education,
median [Q1,Q3] 0 15.0

[12.0,16.0] 14.0 [12.5,15.5] 16.0 [10.5,16.0] 14.0 [12.0,16.0] 0.902

CERAD-like* NFT
Score,
n (%)

0 0 1 (2.2) 1 (14.3)

0.0441 8 (17.8) 1 (14.3) 5 (33.3) 2 (8.7)
2 16 (35.6) 4 (57.1) 5 (33.3) 7 (30.4)
3 20 (44.4) 1 (14.3) 5 (33.3) 14 (60.9)

PMI, median [Q1,Q3] 34 6.0 [2.8,21.9] 24.0 [22.4,36.0] 6.0 [3.1,14.5] 5.2 [0.0,6.0] 0.057

Primary Clinical
Diagnosis,
n (%)

AD 2 20 (46.5) 4 (57.1) 4 (30.8) 12 (52.2)

0.169

CERAD
Definite AD 2 (4.7) 1 (14.3) 1 (7.7)

CERAD
Probable AD 1 (2.3) 1 (7.7)

Definite AD 11 (25.6) 5 (38.5) 6 (26.1)
LB variant AD 8 (18.6) 1 (14.3) 2 (15.4) 5 (21.7)
Probable AD 1 (2.3) 1 (14.3)

ADRC Origin,
n (%)

Columbia 2 20 (46.5) 2 (28.6) 7 (53.8) 11 (47.8)
0.642UC Davis 9 (20.9) 1 (14.3) 3 (23.1) 5 (21.7)

UC San Diego 14 (32.6) 4 (57.1) 3 (23.1) 7 (30.4)

Braak NFT Stage,
n (%)

III 15 1 (3.3) 1 (14.3)

0.323IV 4 (13.3) 1 (14.3) 2 (25.0) 1 (6.7)
V 6 (20.0) 2 (28.6) 4 (26.7)
VI 19 (63.3) 3 (42.9) 6 (75.0) 10 (66.7)

CERAD,
n (%)

Sparse 12 2 (6.1) 1 (10.0) 1 (5.9)

0.496Moderate 4 (12.1) 2 (33.3) 1 (10.0) 1 (5.9)
Frequent 20 (60.6) 4 (66.7) 5 (50.0) 11 (64.7)

Not assessed 7 (21.2) 3 (30.0) 4 (23.5)

Thal,
n (%)

4 31 1 (7.1) 1 (25.0)
0.5595 10 (71.4) 2 (50.0) 3 (75.0) 5 (83.3)

Not assessed 3 (21.4) 1 (25.0) 1 (25.0) 1 (16.7)
Demographics, neuropathologic variables, and clinical diagnoses. P-values were calculated between datasets using appropriate

statistical tests; continuous and normally distributed variables were tested using one-way ANOVA, continuous and non-normal

variables were tested using Kruskal-Wallis, and categorical variables were tested via Chi-squared test. PMI: Post-mortem

interval; LB: Lewy body.
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List of abbreviations

ML: machine learning

DL: deep learning

NFT: neurofibrillary tangle

WSI: whole slide image

Pre-NFT: pre-tangle stage of NFT

AD: Alzheimer's Disease

PMI: Post-mortem interval

aβ: amyloid beta

DAB: diaminobenzidine

IHC: immuno-histochemical

NIA-AA: National Institute on Aging - Alzheimer's Association

CERAD: Consortium to Establish a Registry for Alzheimer’s Disease

YOLO: You Only Look Once model

ADRC: Alzheimer's Disease Research Center

ROI: region of interest

GPU: graphical processing unit

IOU: intersection over union

CLI: command line interface

TP/FP: true positive/false positive

ρ: Spearman’s rho

Additional information

Additional File 1 (.pdf): Supplementary Material. Supplementary Figures and Tables.

Additional File 2 (.xlsx): Dataset 1. Spreadsheet containing Supplementary Tables 2-9.

Additional File 1 contains descriptive captions for these Supplementary Tables.

Additional File 3 (.pdf): Reannotation protocol. Defines the reannotation procedure scope and

provides instructions for using the SuperAnnotate platform.
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