Skip to main content
. Author manuscript; available in PMC: 2024 Oct 9.
Published in final edited form as: Demography. 2024 Jun 1;61(3):643–664. doi: 10.1215/00703370-11330227

Table 2.

Bias, precision, and the root mean square error (RMSE) of predicting the average age of infant deaths, a10, and fitting different methods to the Under-5 Mortality Database

Female Male Both Sexes Combined
μ (bias) φ (precision) RMSE μ (bias) φ (precision) RMSE μ (bias) φ (precision) RMSE
A. Log-Quadratic Model, m10 and z(3m) −0.0019
[−0.0046, 0.0009]
432.72
[399.18, 468.14]
0.0481
[0.0463, 0.0501]
−0.0023
[−0.0048, 0.0004]
486.64
[448.92, 526.48]
0.0454
[0.0437, 0.0473]
−0.0016
[−0.0037, 0.0005]
743.57
[685.95, 804.45]
0.0367
[0.0353, 0.0382]
B. Log-Quadratic Model, m10 and z(28d) 0.0006
[−0.0037, 0.0050]
163.43
[150.60, 176.79]
0.0783
[0.0752, 0.0815]
−0.0011
[−0.0054, 0.0032]
169.74
[156.42, 183.63]
0.0768
[0.0738, 0.0800]
−0.0010
[−0.0048, 0.0028]
215.24
[198.35, 232.84]
0.0682
[0.0656, 0.0710]
C. Log-Quadratic Model, q10 and q50 −0.0111
[−0.0248, 0.0025]
17.00
[15.68, 18.38]
0.2429
[0.2336, 0.2529]
−0.0160
[−0.0311, −0.0012]
14.16
[13.06, 15.31]
0.2664
[0.2562, 0.2774]
−0.0119
[−0.0250, 0.0010]
18.74
[17.29, 20.27]
0.2314
[0.2225, 0.2409]
D. Log-Quadratic Model, m10 and m41 −0.0111
[−0.0246, 0.0028]
17.07
[15.74, 18.44]
0.2424
[0.2331, 0.2523]
−0.0161
[−0.0309, −0.0008]
14.22
[13.12, 15.37]
0.2657
[0.2556, 0.2766]
−0.0119
[−0.0248, 0.0013]
18.84
[17.38, 20.36]
0.2308
[0.2220, 0.2402]
E. Alexander and Root (2022), q10 and, q10/q50 −0.0570
[−0.0683, −0.0460]
26.21
[24.18, 28.35]
0.2036
[0.1957, 0.2118]
−0.0492
[−0.0612, −0.0375]
23.03
[21.25, 24.92]
0.2141
[0.2060, 0.2230]
−0.0507
[−0.0617, −0.0400]
27.63
[25.49, 29.89]
0.1969
[0.1894, 0.2050]
F. Linear Regression, z(3m) 0.0007
[−0.0021, 0.0035]
399.25
[368.19, 431.93]
0.0501
[0.0481, 0.0521]
0.0005
[−0.0022, 0.0032]
428.12
[394.82, 463.16]
0.0484
[0.0465, 0.0503]
0.0004
[−0.0019, 0.0026]
622.90
[574.45, 673.89]
0.0401
[0.0385, 0.0417]
G. Linear Regression, z(28d) 0.0020
[−0.0028, 0.0067]
141.63
[130.57, 153.14]
0.0841
[0.0809, 0.0876]
0.0015
[−0.0032, 0.0061]
148.98
[137.34, 161.09]
0.0820
[0.0788, 0.0854]
0.0011
[−0.0032, 0.0052]
178.78
[164.81, 193.31]
0.0748
[0.0720, 0.0780]
H. Log-Quadratic Model, q10 and k=0 0.0278
[0.0161, 0.0395]
22.78
[21.05, 24.64]
0.2115
[0.2034, 0.2200]
0.0307
[0.0185, 0.0428]
21.19
[19.59, 22.92]
0.2195
[0.2111, 0.2283]
0.0271
[0.0157, 0.0385]
23.95
[22.14, 25.91]
0.2062
[0.1983, 0.2145]
I. Log-Quadratic Model, m10 and k=0 0.0278
[0.0161, 0.0394]
22.74
[20.96, 24.56]
0.2116
[0.2036, 0.2203]
0.0306
[0.0186, 0.0427]
21.15
[19.50, 22.85]
0.2197
[0.2113, 0.2287]
0.0271
[0.0157, 0.0384]
23.91
[22.04, 25.83]
0.2064
[0.1986, 0.2149]
J. Log-Quadratic Model, m50 and k=0 0.0274
[0.0158, 0.0393]
22.67
[20.91, 24.50]
0.2119
[0.2040, 0.2207]
0.0302
[0.0182, 0.0426]
21.09
[19.44, 22.78]
0.2200
[0.2118, 0.2291]
0.0267
[0.0154, 0.0383]
23.82
[21.97, 25.74]
0.2067
[0.1991, 0.2153]
K. Andreev and Kingkade (2015), m10 0.0032
[−0.0085, 0.0150]
22.60
[20.87, 24.39]
0.2105
[0.2026, 0.2190]
0.0155
[0.0035, 0.0275]
21.84
[20.18, 23.58]
0.2146
[0.2065, 0.2233]
0.0125
[0.0012, 0.0239]
24.33
[22.48, 26.26]
0.2032
[0.1956, 0.2114]
L. Preston et al. (2001), m10 −0.4828
[−0.5012, −0.4638]
9.30
[8.59, 10.07]
0.5837
[0.5664, 0.6009]
−0.4526
[−0.4757, −0.4287]
5.86
[5.41, 6.35]
0.6128
[0.5919, 0.6340]
0.4646
[−0.4852, −0.4433]
7.39
[6.83, 8.00]
0.5927
[0.5736, 0.6117]
M. Keyfitz (1970), m10 0.4368
[−0.4499, −0.4234]
18.03
[16.62, 19.45]
0.4963
[0.4840, 0.5090]
0.3283
[−0.3439, −0.3126]
12.94
[11.93, 13.96]
0.4303
[0.4170, 0.4445]
−0.3798
[−0.3938, −0.3657]
15.95
[14.71, 17.21]
0.4550
[0.4424, 0.4683]
N. Coale and Demeny (1966), q10 −0.5000
[−0.5188, −0.4811]
8.61
[7.95, 9.33]
0.6052
[0.5880, 0.6230]
−0.4634
[−0.4869, −0.4399]
5.53
[5.11, 5.99]
0.6290
[0.6082, 0.6506]
0.4784
[−0.4994, −0.4573]
6.90
[6.36, 7.47]
0.6115
[0.5927, 0.6313]
O. Coale and Demeny (1966)—East, q10 −1.2131
[−1.2475, −1.1791]
2.68
[2.47, 2.89]
1.3586
[1.3267, 1.3910]
−1.2474
[−1.2928, −1.2026]
1.54
[1.42, 1.66]
1.4855
[1.4443, 1.5271]
1.2220
[−1.2617, −1.1828]
2.01
[1.85, 2.17]
1.4110
[1.3746, 1.4478]

Notes: Values are the median of the posterior probability distribution and the 2.5th and 97.5th percentiles. Andreev and Kingkade (2015), Preston et al. (2001), and Coale and Demeny (1966) did not report equations for both sexes combined. For these entries, average coefficients were calculated for comparability purposes, assuming a sex ratio at birth of 1.05 males per female. Keyfitz (1970) proposed only one general formula for both sexes combined. Resulting values of these approaches are shown in italics.