bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Pangenome-Informed Language Models for Privacy-Preserving
Synthetic Genome Sequence Generation

Pengzhi Huang', Francois Charton*, Jan-Niklas M. Schmelzle?!, Shelby S. Darnell?,
Pjotr Prins?, Erik Garrison?, and G. Edward Suh®!

!Cornell University
2University of Tennessee Health Science Center
SNVIDIA
*FAIR, Meta

Abstract

The public availability of genome datasets, such as
The Human Genome Project (HGP), The 1000 Genomes
Project, The Cancer Genome Atlas, and the International
HapMap Project, has significantly advanced scientific re-
search and medical understanding. Here our goal is to
share such genomic information for downstream analy-
sis while protecting the privacy of individuals through
Differential Privacy (DP). We introduce synthetic DNA
data generation based on pangenomes in combination with
Pretrained-Language Models (PTLMs).

We introduce two novel tokenization schemes based
on pangenome graphs to enhance the modeling of DNA.
We evaluated these tokenization methods, and compared
them with classical single nucleotide and k-mer tokeniza-
tions. We find k-mer tokenization schemes, indicating that
our tokenization schemes boost the model’s performance
consistency with long effective context length (covering
longer sequences with the same number of tokens). Addi-
tionally, we propose a method to utilize the pangenome
graph and make it comply with DP privacy standards.
We assess the performance of DP training on the quality
of generated sequences with discussion of the trade-offs
between privacy and model accuracy. The source code for
our work will be published under a free and open source
license soon.

I. INTRODUCTION

The public availability of genome datasets is a cornerstone
of all data used in collaborative genomics research. Several
notable genome datasets have been made publicly available,
each significantly contributing to the advancement of scientific
research and medical understanding. Notable publicly avail-
able genome datasets, such as the Human Genome Project
(HGP) [1], the 1000 Genomes Project [13], The Cancer
Genome Atlas (TCGA) [70], GenBank [8], the International
HapMap Project [21], and the Human Pangenome Project [40]
have been instrumental in driving scientific and medical ad-
vancements.

The public availability of these datasets is beneficial for
humanity for numerous reasons. Public genome datasets accel-
erate scientific research by providing a wealth of information
that researchers can access and analyze worldwide, can be used
to identify genetic markers associated with certain diseases
leading to the development of preventive strategies and new
treatments, and serve as valuable educational resources for

students and educators, fostering a deeper understanding of
genomics and its implications in various fields.

However, the public release of genomic data raises sig-
nificant privacy concerns. Genomic data is highly sensitive
because it can reveal an individual’s unique genetic makeup;
including disease predispositions and other personal traits.
Despite efforts to anonymize genomic data, studies have
shown that it is possible to re-identify individuals by cross-
referencing with other publicly available information, such
as health records and social media information [61, 71,
48]. For example, Gymrek et al. demonstrated that surnames
could be recovered from personal genomes by combining
genetic data with publicly accessible genealogy databases,
thus re-identifying individuals within supposedly anonymized
datasets [61].

Furthermore, a genome carries familial information, which
means privacy breaches can affect not only individuals but
also their relatives [9]. Moreover, the potential for the misuse
of genomic data extends beyond individual harm to societal
concerns, such as the ethical use of genetic information in
forensic investigations and the broader implications for data
governance and public trust [47, 56]. Ensuring the privacy
of any released dataset while still enabling valuable research
requires innovative solutions that balance data utility and
privacy.

Deep learning models are widely used in different tasks,
even in processing genome sequences and related data [77,
35, 34, 19]. Pre-trained language models have shown their
capability to generate synthetic natural languages that are
almost indistinguishable from real data. The generated text
can be used to train other models [36, 76, 26], including those
in the medical domain [50, 23]. Proven to be extraordinarily
good at processing human language, PTLMs can furthermore
interpret and generate non-language text, such as code for pro-
gramming tasks [10], thereby pushing the boundaries of their
application beyond strictly spoken language-based domains.
Previous works utilizing GANs [7, 24] faced limitations in
context length, since the length of their generation is limited
to hundreds or thousands of base pairs, and the potential of
PTLMs in this task has not been investigated.

To utilize PTLM for DNA sequence generation, the tok-
enization of DNA sequences is a crucial first step. Traditional

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 2

tokenization methods, such as single nucleotide tokenization,
and k-mer tokenization where sequences are segmented into
individual nucleotides or substrings of length &, are commonly
used in prior research [37, 7, 75, 50, 3]. However, k-mer
tokenization can be highly sensitive to mutations or sequencing
errors, as a single nucleotide change can drastically alter
the resulting k-mer, potentially impairing the model’s ability
to learn meaningful patterns. Furthermore, these tokenization
methods diverge from the tokenization strategies typically
employed in natural language processing, which can limit the
model’s capacity to effectively capture the underlying patterns
and structures within DNA sequences. One of the goals of this
study is to investigate how the tokenization scheme (which
may be inspired by natural language processing) of DNA
sequences can help an PTLM learn the patterns and structures
of DNA sequences more effectively.

One of the key advantages of synthetic data is that it reduces
the risk of sensitive information leakage, as the synthetic data
does not correspond to actual people or entities. It allows for
the retention of valuable insights and patterns present in the
original data while mitigating the risk of re-identification. This
is particularly important in fields like genomics, where the data
is highly sensitive and personal, but sharing and working from
common, fully public data (like the 1000 Genomes Project or
HPRC pangenome) is an essential part of standard research
practices. By replacing real genomic sequences with synthetic
ones, researchers can continue to perform meaningful analysis
without compromising the privacy of individuals. However,
while synthetic data is effective in reducing privacy risks,
there are scenarios in which further privacy enhancements
may be desirable. For example, differential privacy (DP) can
be optionally implemented during the generation or training
process. DP adds a layer of noise, making it even more
challenging to trace any synthetic data point back to an
individual, thus providing an additional safeguard for those
looking to bolster their privacy protection strategies.

To build a practical genome sequence generation model to
protect the privacy of the dataset, our approach is synthetic
data generation based on PTLM accompanied by differential
privacy (DP). We propose a pangenome graph-based tokeniza-
tion (Pangenome-based Node Tokenization, PNT) of DNA
sequences that utilizes the nodes in the graph as tokens of
the sequences. We also propose a second tokenization scheme
(Pangenome-based k-mer tokenization, PKMT) that is DP
friendly, using the pangenome graph nodes for sequence seg-
mentation before generating k-mers from the DNA sequences.
Our contribution is as follows.

1) We propose two novel tokenization schemes based on the
pangenome graph, providing more contextual information
to the model and enhancing its ability to learn DNA
sequence patterns and structures.

2) We demonstrate the impact of tokenization on PTLM
performance in learning and generating DNA sequences,
with experiments showing the superiority of our proposed
methods over classical tokenization techniques.

3) We explore the differentially private training of PTLMs
for genome sequence generation, discussing the current
limitations of each tokenization scheme under DP set-

tings.

In this work, we present the first comparative analysis
of classical and pangenome-based tokenization schemes for
PTLMs, specifically GPT-2, in learning DNA sequence pat-
terns and generating long synthetic sequences. Our findings
reveal that the pangenome graph structure embeds significant
information, enhancing neural networks’ comprehension of
DNA sequences. By representing their mutual alignment in
tokenization, the segmentation of DNA sequences through
node division carries critical information that significantly
aids in the comprehension of the sequences. Furthermore, the
inclusion of positional information derived from node identi-
fiers (IDs) substantially enhances the training and predictive
performance of DNA PTLMs. Our results also demonstrate
how pangenome-based tokenization schemes reduce training
time and enhance scalability compared to traditional schemes,
a crucial advantage given the substantial computational re-
sources typically required for training PTLM. Despite the
benefits of generating synthetic data, we also report the results
of the generation of the differential privacy (DP) trained
model, which were sub-optimal. Future work should focus on
increasing sample sizes and developing refined mechanisms to
improve DP training performance.

II. BACKGROUND

A. Pre-trained Language Models

PTLMs are advanced artificial intelligence systems de-
signed to understand and generate language text based on
the data they have been trained. These models, such as Mis-
tral [31], Anthropic’s Claude [5], OpenAI’s GPT series [53,
49], Google’s T5 [54], Lamda [63] and Gemini [62], Meta’s
OPT [79], BLOOM [39] and LLama [65, 64], etc., take
advantage of vast amounts of textual information to learn
patterns, nuances, and complexities of language. PTLMs can
perform a variety of language-related tasks, including an-
swering questions, writing essays, translating languages, and
even participating in casual conversations. Their ability to
process and generate coherent and contextually appropriate
responses makes them invaluable tools across multiple fields,
from customer service and education to creative writing and
technical support.

In this paper, we are more interested in the text generation
tasks. To process language texts and eventually generate
human-like text using the PTLM, the following steps are
needed as illustrated in Figure 1:

1) Tokenization: Tokenization is the first step where the raw
input text is broken down into smaller units called tokens.
These tokens can be words, subwords, or even characters,
depending on the model’s design. This process helps to
standardize the input and prepare it for processing. For
instance, the sentence I love AI” might be tokenized
into [T, "love”, ”AI”] if word-level tokenization is used,
or into subword units like [’I”, “lo”, “ve”, "AI’] in
subword tokenization. Models like BERT use WordPiece
tokenization [15], while GPT models use a byte pair
encoding (BPE) [58] approach. In languages like English,

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 3

. | lovelf cats... Cats love me...
Tokenization Generation
l & Decoding

I love cats |

“\\ —Training-» PTLM

D

Fig. 1: Steps for PTLMs to generate text.

spaces between individual words often provide a natural
way to divide the text into tokens.

2) Training: The tokenized data will be used to train the
PTLM, which often consists of a pre-training phase and
a fine-tuning phase. Pre-training involves self-supervised
training of the model on general language tasks, such
as predicting the next word in a sentence (for models
like GPT) or filling in missing words in a sentence
(as in BERT’s masked language model approach). After
pre-training, PTLMs are fine-tuned on specific datasets
tailored to particular tasks or domains, usually in a
supervised manner.

3) Generation: For generative models like GPT, once
trained and fine-tuned, the model can generate text by
providing an initial prompt to the model. The model uses
it to start generating text token by token, and the decoder
aligned with the tokenizer’s vocabulary and rules will
decode the tokens into readable texts.

B. Pangenome Graph

The pangenome graph [18] is a computational structure used
to represent genetic diversity within a species by integrat-
ing multiple genome sequences into a single comprehensive
graph. In a pangenome graph, nodes represent sequences of
nucleotides, while edges connect these sequences, showing
the possible paths through the graph. The paths through the
pangenome graph represent the genomes of individuals. This
allows the graph to capture alternative sequences found in
different individuals. Figure 2 shows a simple illustration of a
small pangenome graph.

C. Differential Privacy

Differential privacy (DP) [17] is a privacy-preserving frame-
work that ensures that the output of a computation does not
reveal the inclusion of any individual sample in the dataset.
DP achieves this by adding carefully calibrated noise to
the computation, making it difficult to determine whether a
particular individual’s data is included in the dataset. The
key idea behind DP is to provide strong privacy guarantees
while allowing useful information to be extracted from the
data. DP has been widely studied in various fields, including
machine learning, data analysis, and statistics, to protect the
privacy of individuals in large datasets. DP-Stochastic Gradient
Descent (DP-SGD) [2] is a method for training machine

| =T 1

[— P —

i —

I —

— |
o ity Ly i ELT

Fig. 2: The pangenome graph of the human major histocom-
patibility complex (MHC) region of chromosome 6 of the
PGGB graph of HPRC year 1 assemblies, with 2D graph
visualization (above) and matrix view (below).

learning models with differential privacy that is adopted by
many previous researchers [45, 59, 82].

In DP-SGD, the standard deviation of the noise, o, required
to maintain a constant privacy budget e in DP-SGD with the
allowed probability of privacy failure §, scales with the square
root of the number of training epochs, 7' (as one pass on
the full training set). Specifically, o is adjusted according to

the formula o > —VT'lof(l/é) [2]. This scaling ensures that
cumulative privacy loss across multiple epochs remains within
the specified limits of privacy parameters ¢ and §. During the
non-DP training process, more epochs generally lead to better
model performance. However, in the DP training process, the
model may not benefit from additional training epochs, as it
will introduce more noise and degrade the model performance.
Therefore, the number of training epochs in DP-SGD is a
hyperparameter that needs to be carefully tuned to balance the
trade-off between model performance and privacy protection.
If a model can be made to train faster, it will require fewer
epochs to reach the same level of performance, which can be
beneficial for DP training.

III. SYNTHETIC GENOME SEQUENCE GENERATION USING
PTLMs

In this work, we aim to generate synthetic genome se-
quence using PTLMs. In this section, we describe the com-
plete pipeline for synthetic genome sequence generation using
PTLMs, detailing each step from the original data processing
to downstream tasks, as shown in Figure 3.

® Raw Data. The foundation of our approach begins with
the acquisition and preparation of genomic data. These
datasets provide the rich and diverse genetic information
necessary for training PTLMs.

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 4

Optional: Differential Privacy

(DRaw Data [@Tokenization @ Training i@Generation ®Downstream
: : Tasks
Genome R R Synthetic .
Database "“ - RULL Database > £
Tokens Q

Fig. 3: The whole pipeline of synthetic data generation and utilization.

@ Tokenization. Tokenization is a critical step in trans-
forming raw genomic sequences into a format suitable
for PTLM training. Traditional methods, such as single
nucleotide and k-mer tokenizations, break down DNA
sequences into smaller, manageable units.

® Training of PTLM. Once the DNA sequences are to-
kenized, they are used to pre-train the PTLM using a
GPT-style next-token prediction approach. In this self-
supervised learning process, the tokenized sequences are
fed into the PTLM, which learns to predict the next
token in a sequence based on the patterns and structures
inherent in the data. This approach does not require
supervised data, as it relies on the model’s ability to learn
from the sequences themselves.

@ Generation. After training, the PTLM is capable of gen-
erating synthetic genomic sequences by completing the
given prefix (random or non-random). These sequences
are produced by the model based on the learned patterns
from the training data. The generated sequences aim to
preserve the useful patterns of the raw data to keep its
utility for the next step.

® Downstream Tasks. The synthetic genomic sequences
generated by the PTLM can be employed in a variety
of downstream tasks.

Traditional methods of tokenization have been proven to be
useful in various tasks. However, these approaches may strug-
gle with maintaining sequence integrity over long contexts.
We will introduce our novel tokenization schemes in §IV and
comparfe them with the classical schemes with comprehensive
experiments in §V.

IV. TOKENIZATION OF A GENOME SEQUENCE

There are many ways of generating inputs for different
models from genome sequences. For PTLMs, we focus mainly
on the different tokenization schemes of DNA sequences. The
tokenization of genome sequences is the first step in modeling
the DNA sequence. A clever tokenization strategy can help
the model learn the patterns and structures of DNA sequences
more effectively.

The choice of tokenization scheme directly affects the
trade-off between sequence length and vocabulary size. In
transformer models, shorter token units result in a smaller
vocabulary and longer sequences. A smaller vocabulary can be
advantageous because it requires learning fewer unique tokens,
but it can also necessitate a larger and more diverse training
set to capture the complexities of each token. Conversely,
longer sequences can provide more context but make the
learning process more challenging. This is due to the quadratic
complexity of the attention mechanism, which scales with

the length of the sequence in terms of both memory and
computation. As a result, longer sequences can be harder and
slower to learn effectively.

In this section, we first describe the widely used tokenization
schemes and then introduce our tokenization schemes based
on the pangenome graph.

A. Classical tokenizations

In this subsection, we introduce the classical tokenizations
used commonly in previous work without the involvement of
pangenome graph info.

1) Genome-based Single Nucleotide Tokenization (GSNT)

Genome-based Single Nucleotide Tokenization (GSNT) is
the most straightforward way to tokenize a genome sequence
that was used in previous work [46, 55]. In this scheme, each
nucleotide (A, C, G, T) is treated as a separate token. For
example, if we have a genome sequence "ACGTA”, the tokens
are "A”, ”C”, ”G”, "T”, A”.

The advantage of single-nucleotide tokenization comes from
its simplicity and universality. It is easy to implement and can
be used for any genome sequence, regardless of the species or
length of the sequence. However, the GSNT will have a shorter
effective context length (a shorter DNA sequence represented
under the fixed prompt length) compared to other tokenization
schemes with the same number of tokens and be more likely
to cause longer training and inference time due to the large
number of tokens.

2) Genome-based k-mer Tokenization (GKMT)

Another widely used way to tokenize a genome sequence
is to use k-mers as tokens. A k-mer is a substring of length &
in the genome sequence. For example, if we have a genome
sequence "ACGTA”, the 3-mers are "ACG”, "CGT”, and
”GTA”. When the stride is less than k, the k-mers will overlap
with each other, nonoverlapping k-mers are also used in some
cases where the stride is simply k.

The Genome-based k-mer Tokenization (GKMT) scheme is
simple and easy to implement, but it has some limitations.
Although it brings a relatively longer effective context length
compared with GSNT tokens (when the stride is larger than
1), it is also sensitive to mutations or errors in the sequence,
since a single base change can result in & completely different
k-mers when the stride is set to 1, or potentially different k-
mers for all following sequences when the stride is larger.
If the stride is set to one, increasing k also increases the
computation and memory requirements for processing, storing,
and analyzing k-mers, due to the larger vocabulary. Since
minor variation would cause unstable tokenization, the models
trained on k-mer tokenized sequences usually train slow,
which we will discuss in our experiment section.

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 5

To overcome the limitations of the commonly used tokeniza-
tion schemes, we propose two novel tokenization schemes
based on the pangenome graph.

B. Pangenome graph based tokenization

Pangenome graphs are a powerful representation of the
genetic diversity within a certain group of sequences. The
nodes in the pangenome graph represent the genetic sequences
that are shared among the groups, while the edges represent
the genetic variations. Tasks like genome-wide association
(GWA) focus on the genotype matrix of the graph rather than
the DNA sequences themselves. In this sense, it is the graph
structure rather than the actual “AGCT” strings that carries
information. We propose two tokenization schemes based on
the pangenome graph that are illustrated in Figure 4.

1) Pangenome-based Node Tokenization (PNT)

The first scheme, Pangenome-based Node Tokenization
(PNT), is to tokenize the DNA sequences directly based on
the nodes on the pangenome graph. In this scheme, each
node in the pangenome graph is treated as a token. Notice
that each node contains not only the information about the
DNA sequence they represent but also the position of this
sequence in the graph. For example, there can be multiple
different nodes with different node IDs that correspond to
the same DNA sequence because of their different position
in the graph. In practice, a vocabulary of the node IDs can
be much larger (for example, around 400K) compared to a
language vocabulary (e.g., 50K), which can be a challenge
for model training. In our experiment, we simply split the
node IDs into two parts (first half and second half) with an
extra indicator of reversion (a variation that the sequence is in
a reverse direction; e.g., node 123456 representing "AGCT”
with reversion will be tokenized as 123’ and 456 +’, which
will be decoded as "TCGA”) in order to reduce the vocabulary
size.

A limitation of this scheme is that no additional sequence
can be added based on existing pangenome graph. The in-
troduction of new sequences can alter the representation of
previously established sequences within the graph: each time
a new graph has to be rebuilt for the new sequences to
be tokenized using the new generated ID, meaning that the
model’s understanding of the original data may shift as the
new data is incorporated.

2) Pangenome-based k-mer Tokenization (PKMT)

The second scheme, Pangenome-based k-mer Tokenization
(PKMT), is to tokenize the DNA sequences based on the k-
mers that are connected by the nodes in the pangenome graph.
In this scheme, instead of directly using the node IDs as the
tokens, we tokenize the sequences that they represent as non-
overlapping k-mers. We use £ = 6 in our experiment and do
not apply padding to the tails of sequences. For example, if
a node represents the sequence “AGCTAGCTAGCTAGC”, it
will be tokenized as three independent tokens: “AGCTAG”,
“CTAGCT” and “AGC”. As illustrated, the last token can
potentially be shorter than the maximum of k due to the end
of the sequence.

PKMT utilizes the structure of the pangenome graph to
provide a more stable tokenization compared to GKMT. If

ID: 201

TAGGCTAGAT
GGCC ‘

ID: 202
ID: 203
PNT PKMT
... 200|201]204|AGCATG|C|TAGGCT |
AGAT | TATAT| ...

Fig. 4: The pangenome graph based tokenizations. The figure
shows a slice of a pangenome graph with nodes marking
the variations and edges marking possible paths. The two
tokenization methods output two different segmented sequence
of the red path.

any insertions or deletions occur, the pangenome graph would
capture such behavior when aligning the sequences of the
whole dataset, and the tokenization of any nodes following
the insertion or deletion will not be affected, unlike what
happens in the GKMT. However, compared with the PNT, the
tokens generated capture no information on the position of the
sequence in the graph, which can be crucial for the model to
learn the patterns and structures of the DNA sequences. This
drawback might result in worse performance.

C. Privacy-preserving graph-based tokenization

The tokenization schemes that we proposed are designed
to provide more context information to the model and help
the model learn the patterns and structures of DNA sequences
more effectively. However, tokenization schemes can also leak
sensitive information about individual samples. To make a
scheme DP-friendly, the tokenization of each sample should
be independent from the private dataset. Otherwise, certain
mechanisms should be applied to make it protected. When a
pangenome graph is generated, it utilizes all the samples in the
dataset without protection, and the input generated, therefore,
can potentially reveal the genetic information of the individual
samples.

It is hard to make the pangenome-based node tokenization
or the pangenome graph generation DP-friendly, and the ID to
sequence mapping inevitably leaks information. Although the
PKMT does not leak such information during the mapping of
tokens to sequences due to its static vocabulary, the way the k-
mers are generated can still leak information about individual
samples since it utilized the pangenome graph. Our approach
to mitigate the issue is to instead build a “public” pangenome
graph. Assuming there is a publicly accessible dataset of the
same part of the DNA sequences with the private set that we
want to protect, we can build a pangenome graph based on
the public dataset and use it to tokenize the private dataset.
Any nodes that can be identified on the public pangenome
graph will be tokenized as the same node, and any part of
the sequence that cannot be identified by the nodes on the

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 6

public graph will be marked unknown and tokenized as normal
k-mers. In this way, the tokenization scheme will not leak
the genetic information of individual samples in the private
dataset.

In our experiment, we split an existing graph as a pub-
lic graph and the private sequences. We build the public
pangenome graph as shown in Protocol 1 and then complete
the PKMT as shown in Protocol 2.

Algorithm 1 Gpup < Hpupgrapn(G, Pub): Define Public
Pangenome Graph Nodes

1: Input: A pangenome graph G, list of indexes Pub with
public sequences. We use G[i][j] to represent the node j
of the sequence 7 in G and Seq(G[i][j]) to represent the
actual sequence.

2: Output: The way nodes are merged in public pangenome
graph recorded in M.

3: Initialization:

Initialize M, as an empty dictionary to store the public

pangenome graph nodes.

&

5: for each sequence ¢ in Pub do

6: for each node j in GJ[i] do

7: if G[i][j] has fixed previous/next nodes in G then

8: Combine G[i][j] with the fixed previous/next nodes
as a single node.

9: Record the combined node in M.

10: else

11: Record G[¢][j] as an independent node in Mp,y.

12: end if

13: end for

14: end for

15: Return: M,,,;, as the public pangenome graph nodes.

V. EXPERIMENTS
A. Datasets and PTLM choice

Here we introduce our datasets and the parameters we use in
our experiments. We use the human major histocompatibility
complex (MHC) region of chromosome 6 as our dataset that is
cut out of the PGGB graph of HPRC year 1 assemblies [40].
A total of 126 samples are in the dataset, with 80% of the
samples used as training set and 20% as a test set. We tested
the performance of the 90M parameter GPT-2 model [53]
which supports a prompt length of 1024 tokens. GPT-2 is
chosen due to its well-established performance and robustness
as a classical publicly available language model, and the
90M total parameter is chosen to balance performance and
overhead.

B. Evaluating synthetic genome sequence quality

A main challenge of utilizing synthetic genome sequences is
how to evaluate the quality of synthetic genome sequences. For
text generated by PTLMs, quality evaluation typically encom-
passes both automated benchmarks and human assessments to
capture aspects that automated metrics might overlook. Two
common methods include:

o Prediction Accuracy metric: Measures the proportion of
correct predictions made by the model. It assesses how
often the model’s predicted tokens or values match the
actual tokens or values in the data.

o Perplexity metric: Measures how likely the model is
to predict a given sentence. Lower perplexity indicates
that the model is more confident and accurate in its
predictions.

¢ BLEU metric: Measures how well the model’s predic-
tions align with reference sentences based on n-gram
overlap. It evaluates the quality of the model’s output
in terms of similarity to human-generated text.

In our study, we use the prediction accuracy of the model
to measure the quality of the generative model. Furthermore,
we compare the similarity between synthetic and real genome
sequences through sequence alignment.

1) Model prediction accuracy

The next token prediction accuracy measures the percentage
of tokens that the model predicts correctly given the correct
previous tokens. This metric naturally reflects the quality of
the model and is the primary measure of accuracy for the pre-
training task of predicting the next token. In essence, this is
what models like GPT are specifically optimized for during
their training process. However, this accuracy is not a direct
measurement of the accuracy of the predicted sequences when
the tokenization is not single nucleotide-based. For example,
if the model predicts “AAAAAA” when the ground truth is
“AAAAAC”, it can be considered to have predicted 5 out of
6 nucleotides correctly rather than one token incorrectly.

To address this, we introduce the “character accuracy ratio”
which is the percentage of nucleotides that the model predicts
correctly. The prediction will be much more difficult when the
model is required to generate a long sequence rather than a
single token.

2) Sequence alignment

Measuring the similarity between two genome sequences is
done using sequence alignment, which is an essential process
in many bioinformatics and computational biology tasks. The
sequence alignment involves arranging the sequences of DNA,
RNA, or even proteins, usually to identify regions of similarity.
In our case, we use wfmash [22] where the wavefront algo-
rithm [44] is primarily used for pairwise alignment between
real and generated DNA sequences. After the alignment is
done, multiple scores can be used to evaluate the quality of
the alignment.

The scores we use are as follows:

o BLAST identity (BI): Defined as the number of matching

bases over the number of alignment columns.

o Gap-Compressed Identity (GI): Count the consecutive
gaps as one difference.

For example, for a reference sequence AGCTAag-TA and

a query sequence AGCTA--cTA, where the dashed lines
represent a gap and the lowercase letters represent a mismatch,
the BI is 7/10 = 0.7 counting continuous gaps as multiple
mismatches while the GI is 7/9 = 0.78 counting continuous
gaps as one mismatch.

The alignment scores themselves can be considered suf-
ficient as a representation of the utility of the synthetic

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 7

Algorithm 2 Segmented + Il px (G, Pub, Priv): Perform PKMT Based on Public Sequences Only

1: Input: A pangenome graph G, list of indexes Pub with public sequences and Priv with private sequences. We use G[i][/]
to represent the node j of the sequence ¢ in G. We use Seq(G/[i][j]) to represent the actual sequence.

Gpu,b = HPil,bG'l"(lph(G7 PUba P’I"il))
Initialize Segmented = {}
for each sequence i in {Pub, Priv} do
Initialize Chain = []
Initialize UndefinedChain = [|
Initialize Segmented[i] = []
for each node j in GJ[i| do
10: Add Seq(G[i][4]) to Chain
if current node chain ends according to M,p,; then

R A o

—
—_

Output: Segmented DNA sequences recorded in Segmented.

12: Append UndefinedChain to Segmented]|i] as a segment of the sequence G[i]
13: Append Chain to Segmented|i] as a segment of the sequence G[i]

14: Clear UndefinedChain

15: Clear Chain

16: else if current node pattern is not recorded in M,,; then

17: Append Chain to UndefinedChain

18: Clear Chain

19: end if

20: end for

21: Cut each segment in Segmented[i] into non-overlapping 6-mers

22: end for
23: Return: Segmented

sequences by measuring how close they are to the real
data. Previous academic discussions [20, 16] have shown that
alignment score is equivalent to showing sequence similarity.
Therefore, the scores can indicate the potential usefulness of
synthetic data in downstream genomic tasks since high scores
suggest that synthetic data can be a reliable substitute for
real data in various analyses. A higher score of a generated
sequence against real data indicates that synthetic data can
be a reliable substitute for real data, demonstrating that the
synthetic data generated represent genetic diversity well.

C. Results of public training

We train the 90M GPT-2 model on the training dataset
using the four tokenization schemes: Genome-based Single
Nucleotide Tokenization (GSNT), Genome-based k-mer To-
kenization (GKMT), Pangenome-based Node Tokenization
(PNT), and Pangenome-based k-mer Tokenization (PKMT).
The training is done for 90 epochs (each epoch is a pass
on the training data) with a batch size of 16 of 1024 token
sequences for each tokenization method. The dataset contains
124 samples of DNA sequences with a total of 447 million
nucleotides. The training times are listed in Table I, obtained
on 8 NVIDIA A5500 GPUs. The model token prediction
accuracy and character level prediction accuracy are shown
in Figure 5. In the figure, node-based 6-mer tokenization is
represented as two versions: a default version that uses only
20% of the dataset to build the public pangenome graph, which
matches our intuition of using this scheme in a public-private
data scheme under DP training later; and the version in which
all data are used to build the pangenome graph.

TABLE I: The training time of each tokenization schemes on
the 90M GPT-2 model running 90 epochs.

PNT | PKMT
15.2 1.9

GSNT | GKMT
Time(h) | 112 11

The training times and model performance differ signifi-
cantly across tokenization schemes as shwon in Table I and
Figure 5. For instance, PKMT requires the least amount of
training time, whereas GSNT takes the longest. Looking at
the performance per epoch and wall-clock time, the PNT-
tokenized model reaches a certain accuracy faster than others,
in terms of both wall-clock time and training epochs, while
GKMT requires the most time and epochs to reach the same
level of accuracy. In terms of character prediction accuracy,
GSNT tends to train faster than PKMT in the beginning,
but both schemes converge to similar final accuracy levels.
However, GSNT is slightly slower than PKMT when building
the graph with the full dataset and also lags slightly behind in
final accuracy by 0.2%. The significant accuracy gap between
GKMT and PKMT emphasizes the effectiveness of leveraging
graph structure in tokenization. Despite having similar token
tables, the graph-aided segmentation of PKMT provides more
stable and learnable context information, resulting in better
performance. It is also noteworthy that GSNT is approximately
8 to 9 times slower in wall-clock training time than PKMT
or GKMT, and over 20 times slower than PNT, largely due to
the larger number of tokens in GSNT.

We show the alignment results for the generated sequences
of the three tokenization schemes in the above metrics in Fig-
ure 6 (GKMT barely generates matches, so we skipped its
figure), aligned against the reference sequence of the dataset.

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license. 8
1.0 1.00
] 0.95 A ﬁ

[— GKMT o
3 3 0.90 1 —— GKMT
o 0.8 1 GSNT O
< < GSNT
c — PNT c 0.85 - PKMT
2 0.7 4 — PKMT £ —— PKMT full graph
= | — = 0.80 A
@ PKMT full graph | _——" @
+ 0.6 1 * 0.75

0-5 1 1 1 1 1 0-70 T T T T T

0 20 40 60 80
Epoch

(a) Token prediction accuracy of the model across different
training epochs

1.0 7
> 0.9 - r
o
]
S 0.8 -
<
s —— GKMT
g 0.7 GSNT
? —— PNT
& 0.6 1 —— PKMT
- PKMT full graph
05 T T T T

0 20 40 60 80
Time(h)

(c) Token prediction accuracy of the model as training pro-
gresses over time

0 20 40 60 80
Epoch

(b) Character level prediction accuracy of the model across
different training epochs

F—'

1.00

0.95 +

—— GKMT

GSNT

/ = PKMT
/ - PKMT full graph

070 T T T T
0 20 40 60 80

Time(h)

Prediction Accuracy
o o o o
~ [ee] [oF] (e}
w o w o
1 1 1 1

(d) Character level prediction accuracy of the model as training
progresses over time

Fig. 5: Model prediction accuracy of the four tokenization schemes. We did not include the node-ID-based method in character
level accuracy figure because it is vague to define it when the sequence lengths varies too much represented by different tokens.

A clear view is shown in Figure 7 for a single generated
sequence. The X-axis represents the position in the reference
sequence, while the Y-axis represents different generated se-
quences that are aligned to the reference. Each dot / line
represents a specific position in the read that aligns to a specific
position in the reference genome. As we can see, with 90
epochs of training, only the PNT can generate sequences that
are closely aligned with the reference sequence in a long
enough effective context length. Notice that there are some
generated sequences that do not match the reference sequence
at all, which is partially due to the model’s random sampling
for generating diverse outputs, and also due to the fact that
some sequences in the training data do not align well with the
reference sequence, which may be learned by the model.

To demonstrate the quality of generation numerically, we
show the alignment scores of the generated sequences against
the whole dataset (that is, find the best match of a query from
sequences of the entire dataset) in Table II, while also showing
the results for real data as a comparison. In addition to the GI /
BI scores we introduced, we also show the alignment percent-
age indicating the proportion of the generated sequences that
can be found to be of good alignment in the dataset. The PNT

has the highest alignment scores for all segment lengths, while
the GSNT has the lowest scores. The PKMT has a relatively
high alignment score for the 1k segment length, but the
score drops significantly as the segment length increases. This
indicates that while the PKMT method achieves character-level
prediction accuracy on par with GSNT, its longer effective
context length improves generation performance, resulting in
better alignment metrics.

1) Effects of extensive training

In order to perform the DP training later, we split the dataset
into 2: 20% of the data is used as public data that can be
trained without protection to build the public pangenome graph
for PKMT, and the remaining 80% is treated as private data
that needs DP-SGD training for protection. We extensively
train the GPT-2 model on the public dataset for 200 epochs
with other parameters being the same. We observe that the
token prediction accuracy increased by about 0.4% for the
PKMT and 0.3% for the GSNT, which is apparently very
marginal. However, we have observed dramatic improvements
in generation quality. We show the following results in Fig-
ure 8 and Table III

It can be seen that while both tokenizations benefit from

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

*chm2 1%

*chmg 44

*chm8

*chmo

Generated

*chmé
*chml
*chm5

“chm3 :v-‘lro oo l
*chm7

LA« J“~~' >
1000000 2000000 3000000
Reference

(a) GSNT

4000000

Generated

P s
0 1000000 2000000 3000000 4000000

R -‘mb. E

o wee

Reference

(b) PKMT

chm7

*chm2 .

chms |e
chm3

Generated

chmo

chmé

chml
chm4
chm9
chms

0 1000000 2000000 3000000 4000000
Reference

(c) PNT

Fig. 6: The alignment of the batch of generated sequences against the reference sequence. X-axis is the reference and Y-axis

are the multiple generated sequences, where lines and dots mark the position of matches and breaks.

e 7 ., ®°
4000000 |# — N 74
.o Sy o . . \\‘ 2
3500000 |, o . LN
S . o .o ,_ o
3000000 |, ¢ e R & e S
3 e < ‘ . B
£ 2500000 /3 cgie - g
5 e ge . 7/ . 5
S 2000000 | o, %0 e . S
. . . .
o P, . .? ’ .]
1500000 | «*. & S T .
, F 2020 . .
1000000 |+ * s e o
500000 ‘e ‘: %o ce ‘.
¥ ‘.. o el .
. . *
. P o . .
f L3Py

0
0 1000000 2000000 3000000 4000000

5000000
4000000 | -
3000000
2000000 |.

1000000

N

ot s e
LR SRR A

.
.
o

3

0
0 1000000 2000000 3000000 4000000

4500000
4000000
3500000
3000000
2500000
2000000

Generated

1500000
1000000
500000

0
0 1000000 2000000 3000000 4000000

Reference Reference Reference
(a) GSNT (b) PKMT (c) PNT
Fig. 7: The alignment of the single generated sequence.

Alignment Segment 1k Sk 20k 50k

Align % GI BI Align % GI BI Align % GI BI Align % GI BI
GSNT 82.68 0.8664 0.9955 53.52 0.8872 0.9903 12.67 0.8753 0.9889 0.00 0.0000 0.0000
PKMT 63.15 0.9697 0.9937 50.42 0.8955 0.9908 14.91 0.8901 0.9883 4.65 0.7054 0.9848
PNT 95.85 0.9976 0.9998 78.83 0.9977 0.9997 25.94 0.9944 0.9988 32.46 0.9856 0.9981

[Real data [9997 0.9994 0.9999 [97.97 0.9994 0.9999 | 69.23 0.9996 09999 [61.37 0.9991 0.9981 |

TABLE II: Alignment percentages and weighted GI/BI scores for different segment lengths, of the generated sequences against
the original dataset as reference. The real data numbers are generated using 80% samples as references and 20% as queries.

Generated

1000000 2000000 3000000 4000000
Reference

(a) GSNT

—————t
- ey, Tt
chmz2 |, .

- M *
chm8 | , e ; ——
chms | . . ERs L
chmio | *3° . :

5 chm3 | %, . o
< .
& chmi comn—e—? *:._:_:..-—:
L co—s—uent—t
chmé o ’:___w_.’“"_,.:. .
-

M
chm9 — - ——
hm7 = -— -
chm7 | ,

. : .
chm4 *.

0

1000000 2000000 3000000 4000000

Reference

(b) PKMT

Fig. 8: The alignment of the batch of generated sequences from extensively trained data against the training sequences. X-axis
is the reference and Y-axis are the multiple generated sequences, where lines and dots mark the position of matches and breaks.

extensive training of large computational resources, the PKMT GSNT, typically when the alignment segment length is longer.
can achieve a significantly higher alignment score than the

It is also worth noting that the PKMT can generate relatively

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

10
Alignment Segment 1k 5k 20k 50k
20% as public Align % GI BI Align % GI BI Align % GI BI Align % GI BI
GSNT 81.36 0.8720 0.9956 56.58 0.8941 0.9912 17.65 0.8932 0.9901 5.13 0.8625 0.9912
PKMT 63.36 0.9848 0.9978 63.44 0.9016 0.9969 61.06 0.9045 0.9952 55.55 0.9014 0.9948
50% as public Align % GI BI Align % GI BI Align % GI BI Align % GI BI
GSNT 83.23 0.8731 0.9944 60.12 0.8966 0.9923 20.26 0.8941 0.9900 6.75 0.8654 0.9903
PKMT 81.03 0.9810 0.9981 79.53 0.9040 0.9975 73.00 0.9059 0.9956 69.90 0.9025 0.9948

TABLE III: Alignment percentages and weighted GI/BI scores for different segment lengths, of the generated sequences with
extensively trained model using different proportion of public data, against the original dataset as reference. Notice that for
PKMT, the public pangenome graph will change with the public data chosen changed.

longer consistent sequences than the GSNT, showing its ad-
vantage in helping the model in consistency and long context
learning. However, it is easy to see that both methods are still
inferior to PNT with less resources used for training, even
with extensive training.

D. DP-SGD training

Following the training of the public model as outlined
in §V-C1, we used Differentially Private Stochastic Gradient
Descent (DP-SGD) to fine-tune the model in the private data
set. We use the same parameters as the public training, and
the only difference is that we use the DP-SGD training with
€ = 9. Given the nature of differential privacy mechanisms,
which introduce noise throughout the training process, only
marginal improvements were anticipated. Upon evaluation,
the model fine-tuned with DP-SGD in the private data set
exhibited an increase in tokenization evaluation precision of
0. 15%, reaching 92. 45% from an initial 92.3%. However,
the alignment scores of the generated sequences showed a
significant decrease, as we show in Table IV.

We show the results of the generated sequences from the
model trained only with public data as a reference, against both
the public and private datasets. The alignment scores of the
generated sequence, as expected, are generally better with the
public dataset on which they are trained, compared with the
scores against the private dataset. However, DP-SGD training,
while improving the accuracy of the next token evaluation,
significantly decreases the alignment scores of the generated
sequences against the private dataset.

This discrepancy is attributable to the inherent noise added
by the DP-SGD mechanism. As the training noise accumu-
lates, it exacerbates the difficulty of maintaining sequence
consistency, particularly over longer segments. Although tech-
niques like using larger batch sizes can help mitigate some of
the distortions by averaging out noise, they are not entirely
effective. This results in notable distortions in the generated
sequences, thereby diminishing alignment accuracy. Conse-
quently, while DP-SGD confers privacy benefits and slight
improvements in tokenization accuracy, it also imposes a sig-
nificant trade-off in terms of sequence alignment performance.

VI. DISCUSSION

To our knowledge, this work is the first to compare the
effectiveness of pangenome-based tokenization schemes to
classical tokenization schemes when utilizing the PTLMs
(specifically GPT-2 in our experiments) to learn the pattern of
DNA sequences; and also the first to demonstrate the efficacy
of PTLMs in generating long synthetic sequences. Previous

research on generation tasks has not sufficiently addressed the
context length in their outputs.

In our study, we evaluated four tokenization schemes
(PKMT, GSNT, PNT, and GKMT) based on training time,
training speed, and performance accuracy. From the results
in Table I, PNT demonstrated the fastest training time, com-
pleting in 1.9 hours, while GSNT was the slowest at 112 hours
due to its larger token set. Figure 5 indicates that the accuracy
in terms of next token prediction and character accuracy
ratio across tokenization methods in different epoches. PNT
generally performs the best with close to 99% token prediction
accuracy, and GKMT leads the character accuracy ratio close
to 98% excluding PNT. Traditional methods fall short with
GKMT has below 70% accuracy, and GSNT trains signifi-
cantly slower and with a slightly inferior character accuracy
ratio. The performance gap is much larger when comparing the
alignment scores shown in Table II, where PNT tops in both
GI being BI being > 0.999 in almost all segment choice from
1k to 50k, which is the closest to real data performance. These
findings suggest that sequences generated by the PNT scheme
have more potential to be utilized similarly to real data, while
PKMT-generated sequences may require further refinement or
model optimization to reach a comparable level of utility.

Overall, PNT emerged as the best performer for sequence
alignment and training efficiency, while PKMT also excelled
traditional methods in terms of training time and context-
rich sequence generation. GSNT, although slower, performed
competitively in token prediction but lagged in sequence
alignment. These results underscore the trade-offs between
computational cost and model performance, with pangenome
graph based tokenizations showing the more promising per-
formance across tasks. Previous work [40] demonstrates how
improved matching is the key point of the pangenome, which
“aligns” with our use of the pangenome graph here.

Our findings provide valuable insights into the pangenome
graph: the graph structure embeds significant and meaningful
information that enhances neural networks’ understanding of
DNA sequences, and our experiments show how this infor-
mation can be realistically exploited.. Compared to GKMT,
PKMT only differs primarily in whether the segmentation
carried out during tokenization is guided by the pangenome
graph. This graph-informed segmentation alone significantly
improves the model training speed and overall performance.

The strong performance of the extensively trained model
indicates that substantial investment in computational power is
justified. With the generation of the public pangenome graph,
PKMT and PNT significantly reduce training time compared
to GSNT, due to the longer context length represented by

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

11

Alignment Segment 1k S5k 20k 50k
Align % GI BI Align % GI BI Align % GI BI Align % GI BI
Pub trained against pub 63.36 0.9848 0.9978 63.44 0.9016 0.9969 61.06 0.9045 0.9952 55.55 0.9014 0.9948
Pub trained against priv 63.12 0.9823 0.9975 63.31 0.9001 0.9968 60.94 0.9045 0.9952 56.26 0.9016 0.9949
[DP trained against priv._ | 34.04 09472 0.9908 | 13.24 0.8540 0.9887 | 2.02 0.5060 0.9591 [0.00 0.0000 0.0000 |

TABLE IV: Alignment percentages and weighted GI/BI scores for different segment lengths, of the generated sequences from
the public model trained on public data only with PKMT, and the model further trained on private data with DP-SGD, against
different datasets.

Job Type Paper Task Architecture Input
Classification [51, 77, 35] Variant Calling CNN hundreds of base pairs
[41] Variant Calling CNN hundreds of base pairs
[43, 19] Cancer Prediction CNN RNA-seq gene expression data

[3] Protein Binding CNN 10-100 nucleotides & binding
specificities

[78] Protein Binding CNN 10-100 base pairs & binding
specificities

[74] Cell Type Identification CNN cell images

[81] Non-coding DNA function CNN 1k base pairs

prediction

[42] Variant Calling RNN binary alignment map (BAM)

[57] RNA-protein binding preference LSTM embedded k-mers

[52] Non-coding DNA function CNN/BLSTM one hot encoded nucleotides

prediction

[34] Cancer Prediction KNN SNP genotype syntaxes (8-mers)

[25] Cancer Prediction Rao score Mutation Annotation Format
(MAF)

[68] Cancer Prediction SVM Human EDTA plasma samples

[30, 83] Molecular Phenotype Prediction Transformer tokenized k-mers

[14] Molecular Phenotype Prediction Transformer tokenized k-mers

[46] 5-way Species Classification Transformer single nucleotide tokens

[55] Genome Tasks Mamba single nucleotide tokens

Generation [66] De novo peptide sequencing LSTM/CNN tandem mass spectrometry

(MS/MS) Spectrum

[67] De novo peptide sequencing LSTM/CNN data-independent acquisition
(DIA) mass spectrometry data

[73] De novo peptide sequencing learning-to-rank | tandem mass spectrometry data

7] Synthetic Medical Data GAN medical data

[24] Synthetic DNA Sequences GAN DNA sequences

TABLE V: DL models used in genome tasks.

each token in the actual sequences. This demonstrates the
superior scalability potential of the pangenome graph-based
tokenization scheme compared to traditional methods.

While generating synthetic data helps prevent the release of
real data, differential privacy (DP) offers a stronger mathemat-
ical guarantee against potential attacks. However, our results
have not yet achieved satisfactory DP-compatible generation.
This shortfall may be attributed to several challenges in our
current work:

1) Insufficient samples: It is generally easier to hide an
individual in a more populated group. Achieving the
DP guarantee requires adding noise during training. To
reduce the impact of noise on gradient updates, large
batches are often updated at once. The averaging effect
mitigates the noise perturbation, since the noise has a zero
mean. However, if the batch size is too large and there
are not enough samples, training may not have sufficient
steps within the epochs limited by the DP noise budget.

2) Loose bound. DNA sequences exhibit unique patterns,
such as numerous repeated segments across different
samples within the same genomic region of a species.
We have yet to find a clear method to restrict the DP
bounds based on the properties of DNA sequences or
the pangenome graph. Using a general noise mechanism
results in a loose bound with more noise than necessary.

Future efforts should aim to conduct experiments with more
samples or develop a more carefully designed mechanism to
achieve better DP training performance.

VII. RELATED WORK

A very recent paper [80] presents a similar approach to
tokenization. Although there are overlaps in the methodolo-
gies that we both independently develop the idea of using
pangenome graph to help tokenization, our work is different
since we include the node-ID-based tokenization and focus
on the long sequence generation, while the mentioned work
is implemented on relatively short context length (maximum
5000bp), only includes node-aided k-mer tokenization, and
focuses on classification tasks.

We provide Table V to summarize this section.

A. Machine learning in genomics

Machine learning (ML) and Deep Learning (DL) have been
widely used in genomics to analyze and interpret large-scale
biological data. In this section, we introduce two common
tasks:

1) Classification tasks

Classification tasks are one of the most common tasks in
which people use machine learning models in genomics. For

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

the ones involving actual genome sequences, some major tasks
include:

« Variant Calling: ML algorithms can be used to identify
genetic variants, such as single nucleotide polymorphisms
(SNPs) and insertions/deletions (indels), in an individ-
ual’s genome. These variants can be associated with
diseases, traits, or other biological functions. For exam-
ple, DeepVariant [51] is a CNN-based variant caller that
has been shown to outperform traditional variant calling
methods, on which many other variant callers [77, 35]
are based. Clairvoyante [41] employs a CNN multitask
that outperforms DeepVariant in reads of single-molecule
sequencing (SMS), and Clair [42] proposed an RNN
structure with fewer parameters and faster inference speed
than DeepVariant, without a marginal loss of accuracy.

o Gene Expression Analysis: ML models can analyze
gene expression data to identify patterns and relationships
between genes and biological processes/phenotypes. This
information can help researchers understand how genes
are regulated and how they contribute to disease. Unlike
in variant calling, preprocessed data like alignment maps,
mutation tables, gene expression data, etc. are more often
inputs rather than raw gene sequences. Classical ML such
as k-nearest neighbors (KNN) [34], linear regression [25],
logistic regression plus support vector machine [68], can
be used to predict driver genes or the overall risk of
cancer. Deep learning models such as CNN [43, 19] are
also used for cancer prediction and classification using
RNA-seq.

In addition to the two main fields mentioned above, different
networks have shown their capability in numerous tasks.
Working with raw sequences, CNN has also shown its ability
to model the sequence specificity of protein binding [3, 78],
cell type identification [74], and it has been shown to be able
to analyze non-coding variants [81]; RNN can be used for non-
coding DNA function prediction [52] and RNA-protein bind-
ing preference [57]. For recently more popular transformer-
based PTLM, it is shown to be capable of producing strong
contextualized embedding from nucleotide sequences, effec-
tively predicting molecular phenotypes in scenarios with lim-
ited data [30, 83, 14]. However, these models have been
restricted by the limited context sizes due to the quadratic
scaling of Transformers, and attempts are made for sub-
quadratically scaling for a longer context length (Hyena [46]
MambaDNA [55]). MambaDNA is one of the most recent
works that uses language models for genome tasks.

2) Generation tasks

Generative models are used in genomics for various tasks.
Some notable applications include

De Novo Genome Assembly: De novo genome assembly
is the process of reconstructing a genome sequence from short
DNA fragments without the need for a reference genome.
Previous work uses deep learning frameworks to enable the
de novo peptide sequencing [66, 67, 73],

Synthetic data generation: Synthetic data generation cre-
ates artificial data that closely resembles the original data to
avoid directly revealing the real data while sharing. GAN is

12

used to generated synthetic medical data in previous work [7],
synthetic DNA sequences coding for proteins with desired
properties [24], but only tested on very small dataset since
GAN typically generate (limited) fixed-sized outputs. Math-
ematically, it would require differential privacy on top for
a provable guarantee since the generated data can still leak
crucial information of the training dataset.

B. Privacy in genomics

Genomic data are highly sensitive personal information that
can reveal an individual’s unique genetic makeup, predisposi-
tions to diseases, and other personal traits. The public release
or leakage of genomic data can lead to privacy concerns, as
it can be used to re-identify individuals, discriminate against
them based on their genetic information, or expose them to
potential harm. Dealing with sensitive data requires dedicated
methods of privacy protection. Depending on the goal of the
use and sharing of data, different definitions of privacy evolve,
with multiple tools and methods developed to protect the
privacy of the data.

In addition to common access control and law enforcement
methods, crytographic methods provide a mathematical guar-
antee of the confidentiality of the data.

Secure Multiparty Computation (MPC): MPC aims to
allow multiple parties to jointly compute a function over their
inputs while keeping those inputs private, either through an
encrypted circuit or requiring communication during comput-
ing. MPC protocols are typically useful when the data provider
and the evaluator are different entities, and neither party wants
to reveal their data to the other. After the first work that shows
MPC usage in privacy-preserving edit distance and Smith-
Waterman computation [29], it has been used in genomics for
secure GWAS [72, 12], secure disease diagnose [28]. However,
MPC can be computationally and communicationally expen-
sive.

Homomorphic Encryption (HE): HE is a form of encryp-
tion that allows computations to be performed on encrypted
data without decrypting it first. HE has been used in genomics
for secure GWAS [38, 69], secure disease diagnose [6], secure
genome data mining (combined with MPC) [33], and secure
sequence analysis [11]. HE can also be However, HE can also
be computationally expensive.

Differential Privacy (DP): Any analysis results on a
genomic data pool can be potentially used to infer private
information of the participants, even if anonymized (e.g. the
membership inference attacks (MIA) [27]). DP guarantee
ensures that the presence or absence of an individual’s data in
a dataset does not significantly affect the outcome of the analy-
sis. DP is used in protecting genome- wide association studies
(GWAS) [32, 60], but it is shown that large noise will be
needed and membership and MIA can still be conducted [4].

VIII. ACKNOWLEDGEMENT
This material is based upon work supported by the U.S.
National Science Foundation under award No. CCF-2118709
(P.H., JN.S, PP, E.G. and E.S.). Any opinions, findings, and
conclusions or recommendations expressed in this material

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. The authors also
gratefully acknowledge support from National Institutes of
Health/NIDA UO01DA047638 (E.G.), National Institutes of
Health/NIGMS R01GM123489 (P.P. and E.G.).

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

US DOE Joint Genome Institute: Hawkins Trevor 4
Branscomb Elbert 4 Predki Paul 4 Richardson Paul 4
Wenning Sarah 4 Slezak Tom 4 Doggett Norman 4
Cheng Jan-Fang 4 Olsen Anne 4 Lucas Susan 4 Elkin
Christopher 4 Uberbacher Edward 4 Frazier Marvin 4
et al. “Initial sequencing and analysis of the human
genome”. In: nature 409.6822 (2001), pp. 860-921.
Martin Abadi et al. “Deep learning with differential
privacy”. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security.
2016, pp. 308-318.

Babak Alipanahi et al. “Predicting the sequence
specificities of DNA-and RNA-binding proteins by
deep learning”. In: Nature biotechnology 33.8 (2015),
pp- 831-838.

Nour Almadhoun, Erman Ayday, and Ozgiir Ulusoy.
“Inference attacks against differentially private query
results from genomic datasets including dependent
tuples”. In: Bioinformatics 36.Supplement_1 (2020),
pp. 1136-i145.

Anthropic. Claude 2. Anthropic Blog. Accessed: 2024-
09-03. July 2023. URL: https://www.anthropic.com/
index/claude-2.

Erman Ayday et al. “Protecting and evaluating genomic
privacy in medical tests and personalized medicine”. In:
Proceedings of the 12th ACM workshop on Workshop
on privacy in the electronic society. 2013, pp. 95-106.
Ho Bae et al. “AnomiGAN: Generative adversarial net-
works for anonymizing private medical data”. In: Pacific
Symposium on Biocomputing 2020. World Scientific.
2019, pp. 563-574.

Dennis A Benson et al. “GenBank™. In: Nucleic acids
research 41.D1 (2012), pp. D36-D42.

Christopher A Cassa et al. “My sister’s keeper?: ge-
nomic research and the identifiability of siblings”. In:
BMC medical genomics 1 (2008), pp. 1-11.

Mark Chen et al. “Evaluating large language models
trained on code”. In: arXiv preprint arXiv:2107.03374
(2021).

Jung Hee Cheon, Miran Kim, and Kristin Lauter. “Ho-
momorphic computation of edit distance”. In: Financial
Cryptography and Data Security: FC 2015 Interna-
tional Workshops, BITCOIN, WAHC, and Wearable, San
Juan, Puerto Rico, January 30, 2015, Revised Selected
Papers. Springer. 2015, pp. 194-212.

Hyunghoon Cho, David J Wu, and Bonnie Berger. “Se-
cure genome-wide association analysis using multiparty
computation”. In: Nature biotechnology 36.6 (2018),
pp. 547-551.

13

1000 Genomes Project Consortium et al. “An integrated
map of genetic variation from 1,092 human genomes”.
In: Nature 491.7422 (2012), p. 56.

Hugo Dalla-Torre et al. “The nucleotide transformer:
Building and evaluating robust foundation models for
human genomics”. In: bioRxiv (2023), pp. 2023-01.
Jacob Devlin et al. “Bert: Pre-training of deep bidi-
rectional transformers for language understanding”. In:
arXiv preprint arXiv:1810.04805 (2018).

Richard Durbin et al. “Biological sequence analysis:
Probabilistic models of proteins and nucleic acids”. In:
(1998).

Cynthia Dwork et al. “Calibrating noise to sensitivity
in private data analysis”. In: Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006. Proceedings 3.
Springer. 2006, pp. 265-284.

Jordan M Eizenga et al. “Pangenome graphs”. In: An-
nual review of genomics and human genetics 21 (2020),
pp. 139-162.

Murtada K Elbashir et al. “Lightweight convolutional
neural network for breast cancer classification using
RNA-seq gene expression data”. In: IEEE Access 7
(2019), pp. 185338-185348.

Martin C Frith. “How sequence alignment scores cor-
respond to probability models”. In: Bioinformatics 36.2
(2020), pp. 408-415.

Richard A Gibbs et al. “The international HapMap
project”. In: (2003).

Andrea Guarracino et al. wfimash: whole-chromosome
pairwise alignment using the hierarchical wavefront
algorithm. Version 0.7.0. Sept. 2021. URL: https://
github.com/ekg/wfmash.

Marco Guevara et al. “Large language models to iden-
tify social determinants of health in electronic health
records”. In: npj Digital Medicine 7.1 (2024), p. 6.
Anvita Gupta and James Zou. “Feedback GAN (FB-
GAN) for DNA: A novel feedback-loop architecture
for optimizing protein functions”. In: arXiv preprint
arXiv:1804.01694 (2018).

Yi Han et al. “DriverML: a machine learning algorithm
for identifying driver genes in cancer sequencing stud-
ies”. In: Nucleic acids research 47.8 (2019), e45—-e45.
Thomas Hartvigsen et al. “Toxigen: A large-scale
machine-generated dataset for adversarial and im-
plicit hate speech detection”. In: arXiv preprint
arXiv:2203.09509 (2022).

Hongsheng Hu et al. “Membership inference attacks
on machine learning: A survey”. In: ACM Computing
Surveys (CSUR) 54.11s (2022), pp. 1-37.

Karthik A Jagadeesh et al. “Deriving genomic diag-
noses without revealing patient genomes”. In: Science
357.6352 (2017), pp. 692-695.

Somesh Jha, Louis Kruger, and Vitaly Shmatikov. “To-
wards practical privacy for genomic computation”. In:
2008 IEEE Symposium on Security and Privacy (sp
2008). IEEE. 2008, pp. 216-230.

https://www.anthropic.com/index/claude-2
https://www.anthropic.com/index/claude-2
https://github.com/ekg/wfmash
https://github.com/ekg/wfmash
https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

available under aCC-BY-NC-ND 4.0 International license.

Yanrong Ji et al. “DNABERT: pre-trained Bidirectional
Encoder Representations from Transformers model for
DNA-language in genome”. In: Bioinformatics 37.15
(2021), pp. 2112-2120.

Albert Q Jiang et al. “Mistral 7B”. In: arXiv preprint
arXiv:2310.06825 (2023).

Aaron Johnson and Vitaly Shmatikov. “Privacy-
preserving data exploration in genome-wide association
studies”. In: Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and
data mining. 2013, pp. 1079-1087.

Murat Kantarcioglu et al. “A cryptographic approach to
securely share and query genomic sequences”. In: IEEE
Transactions on information technology in biomedicine
12.5 (2008), pp. 606-617.

Byung-Ju Kim and Sung-Hou Kim. “Prediction of in-
herited genomic susceptibility to 20 common cancer
types by a supervised machine-learning method”. In:
Proceedings of the National Academy of Sciences 115.6
(2018), pp. 1322-1327.

Alexey Kolesnikov et al. “DeepTrio: variant calling
in families using deep learning”. In: bioRxiv (2021),
pp. 2021-04.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
“Data augmentation using pre-trained transformer mod-
els”. In: arXiv preprint arXiv:2003.02245 (2020).

Jack Lanchantin et al. “Deep motif dashboard: visual-
izing and understanding genomic sequences using deep
neural networks”. In: Pacific symposium on biocomput-
ing 2017. World Scientific. 2017, pp. 254-265.

Kristin Lauter, Adriana Loépez-Alt, and Michael
Naehrig. “Private computation on encrypted genomic
data”. In: International Conference on Cryptology and
Information Security in Latin America. Springer. 2014,
pp. 3-27.

Teven Le Scao et al. “Bloom: A 176b-parameter open-
access multilingual language model”. In: (2023).
Wen-Wei Liao et al. “A draft human pangenome refer-
ence”. In: Nature 617.7960 (2023), pp. 312-324.
Ruibang Luo et al. “A multi-task convolutional deep
neural network for variant calling in single molecule
sequencing”. In: Nature communications 10.1 (2019),
p. 998.

Ruibang Luo et al. “Exploring the limit of using a
deep neural network on pileup data for germline variant
calling”. In: Nature Machine Intelligence 2.4 (2020),
pp. 220-227.

Boyu Lyu and Anamul Haque. “Deep learning based
tumor type classification using gene expression data”.
In: Proceedings of the 2018 ACM international con-
ference on bioinformatics, computational biology, and
health informatics. 2018, pp. 89-96.

Santiago Marco-Sola et al. “Fast gap-affine pairwise
alignment using the wavefront algorithm”. In: Bioin-
formatics 37.4 (2021), pp. 456-463.

H Brendan McMahan et al. “Learning differentially
private recurrent language models”. In: arXiv preprint
arXiv:1710.06963 (2017).

14

Eric Nguyen et al. “Hyenadna: Long-range genomic
sequence modeling at single nucleotide resolution”. In:
Advances in neural information processing systems 36
(2024).

Kieran C O’Doherty et al. “Toward better governance of
human genomic data”. In: Nature genetics 53.1 (2021),
pp. 2-8.

Paul Ohm. “Broken promises of privacy: Responding
to the surprising failure of anonymization”. In: UCLA
l. Rev. 57 (2009), p. 1701.

OpenAl. GPT-4 Technical Report. 2023. arXiv: 2303.
08774 [cs.CL].

Cheng Peng et al. “A Study of Generative Large Lan-
guage Model for Medical Research and Healthcare”. In:
arXiv preprint arXiv:2305.13523 (2023).

Ryan Poplin et al. “A universal SNP and small-indel
variant caller using deep neural networks”. In: Nature
biotechnology 36.10 (2018), pp. 983-987.

Daniel Quang and Xiaohui Xie. “DanQ: a hybrid convo-
lutional and recurrent deep neural network for quantify-
ing the function of DNA sequences”. In: Nucleic acids
research 44.11 (2016), e107—-107.

Alec Radford et al. “Language Models are Unsuper-
vised Multitask Learners”. In: (2019).

Colin Raffel et al. “Exploring the limits of transfer
learning with a unified text-to-text transformer”. In:
Journal of machine learning research 21.140 (2020),
pp. 1-67.

Yair Schiff et al. “Caduceus: Bi-directional equivariant
long-range dna sequence modeling”. In: arXiv preprint
arXiv:2403.03234 (2024).

Mahsa Shabani and Luca Marelli. “Re-identifiability
of genomic data and the GDPR: Assessing the re-
identifiability of genomic data in light of the EU Gen-
eral Data Protection Regulation”. In: EMBO reports
20.6 (2019), e48316.

Zhen Shen et al. “A deep learning model for RNA-
protein binding preference prediction based on hierar-
chical LSTM and attention network”. In: IEEE/ACM
Transactions on Computational Biology and Bioinfor-
matics 19.2 (2020), pp. 753-762.

Yusuxke Shibata et al. “Byte pair encoding: A text
compression scheme that accelerates pattern matching”.
In: (1999).

Reza Shokri and Vitaly Shmatikov. “Privacy-preserving
deep learning”. In: Proceedings of the 22nd ACM
SIGSAC conference on computer and communications
security. 2015, pp. 1310-1321.

Sean Simmons, Cenk Sahinalp, and Bonnie Berger.
“Enabling privacy-preserving GWASs in heterogeneous
human populations”. In: Cell systems 3.1 (2016),
pp. 54-61.

Latanya Sweeney, Akua Abu, and Julia Winn. “Iden-
tifying participants in the personal genome project
by name (a re-identification experiment)”. In: arXiv
preprint arXiv:1304.7605 (2013).

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted September 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

available under aCC-BY-NC-ND 4.0 International license.

Gemini Team et al. “Gemini: a family of highly
capable multimodal models”. In: arXiv preprint
arXiv:2312.11805 (2023).

Romal Thoppilan et al. “Lamda: Language mod-
els for dialog applications”. In: arXiv preprint
arXiv:2201.08239 (2022).

Hugo Touvron et al. “Llama 2: Open foundation
and fine-tuned chat models”. In: arXiv preprint
arXiv:2307.09288 (2023).

Hugo Touvron et al. “Llama: Open and efficient
foundation language models”. In: arXiv preprint
arXiv:2302.13971 (2023).

Ngoc Hieu Tran et al. “De novo peptide sequencing
by deep learning”. In: Proceedings of the National
Academy of Sciences 114.31 (2017), pp. 8247-8252.
Ngoc Hieu Tran et al. “Deep learning enables de novo
peptide sequencing from data-independent-acquisition
mass spectrometry”. In: Nature methods 16.1 (2019),
pp. 63-66.

Nathan Wan et al. “Machine learning enables detection
of early-stage colorectal cancer by whole-genome se-
quencing of plasma cell-free DNA”. In: BMC cancer
19 (2019), pp. 1-10.

Shuang Wang et al. “HEALER: homomorphic compu-
tation of ExAct Logistic rEgRession for secure rare
disease variants analysis in GWAS”. In: Bioinformatics
32.2 (2016), pp. 211-218.

John N Weinstein et al. “The cancer genome atlas
pan-cancer analysis project”. In: Nature genetics 45.10
(2013), pp. 1113-1120.

Matthias Wjst. “Caught you: threats to confidentiality
due to the public release of large-scale genetic data
sets”. In: BMC medical ethics 11 (2010), pp. 1-4.

Wei Xie et al. “SecureMA: protecting participant pri-
vacy in genetic association meta-analysis”. In: Bioin-
Sformatics 30.23 (2014), pp. 3334-3341.

Hao Yang et al. “pNovo 3: precise de novo peptide
sequencing using a learning-to-rank framework”. In:
Bioinformatics 35.14 (2019), pp. 1183-i190.

Kai Yao, Nash D Rochman, and Sean X Sun. “Cell
type classification and unsupervised morphological phe-
notyping from low-resolution images using deep learn-
ing”. In: Scientific reports 9.1 (2019), p. 13467.

Burak Yelmen et al. “Creating artificial human genomes
using generative neural networks”. In: PLoS genetics
17.2 (2021), e1009303.

Kang Min Yoo et al. “GPT3Mix: Leveraging large-
scale language models for text augmentation”. In: arXiv
preprint arXiv:2104.08826 (2021).

Taedong Yun et al. “Accurate, scalable cohort variant
calls using DeepVariant and GLnexus”. In: Bioinfor-
matics 36.24 (2020), pp. 5582-5589.

Haoyang Zeng et al. “Convolutional neural network
architectures for predicting DNA—protein binding”. In:
Bioinformatics 32.12 (2016), pp. i121-i127.

Susan Zhang et al. “Opt: Open pre-trained transformer
language models”. In: arXiv preprint arXiv:2205.01068
(2022).

15

Xiang Zhang et al. “DeepGene: An Efficient Founda-
tion Model for Genomics based on Pan-genome Graph
Transformer”. In: bioRxiv (2024), pp. 2024-04.

Jian Zhou and Olga G Troyanskaya. “Predicting ef-
fects of noncoding variants with deep learning—based
sequence model”. In: Nature methods 12.10 (2015),
pp. 931-934.

Yingxue Zhou, Zhiwei Steven Wu, and Arindam Baner-
jee. “Bypassing the ambient dimension: Private sgd with
gradient subspace identification”. In: arXiv preprint
arXiv:2007.03813 (2020).

Zhihan Zhou et al. “Dnabert-2: Efficient foundation
model and benchmark for multi-species genome”. In:
arXiv preprint arXiv:2306.15006 (2023).

https://doi.org/10.1101/2024.09.18.612131
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Background
	Pre-trained Language Models
	Pangenome Graph
	Differential Privacy

	Synthetic Genome Sequence Generation using PTLMs
	Tokenization of a genome sequence
	Classical tokenizations
	Genome-based Single Nucleotide Tokenization (GSNT)
	Genome-based k-mer Tokenization (GKMT)

	Pangenome graph based tokenization
	Pangenome-based Node Tokenization (PNT)
	Pangenome-based k-mer Tokenization (PKMT)

	Privacy-preserving graph-based tokenization

	Experiments
	Datasets and PTLM choice
	Evaluating synthetic genome sequence quality
	Model prediction accuracy
	Sequence alignment

	Results of public training
	Effects of extensive training

	DP-SGD training

	Discussion
	Related work
	Machine learning in genomics
	Classification tasks
	Generation tasks

	Privacy in genomics

	Acknowledgement

