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�
 ABSTRACT 

High-grade serous ovarian cancer remains a poorly understood disease 
with a high mortality rate. Although most patients respond to cytotoxic 
therapies, a majority will experience recurrence. This may be due to a 
minority of drug-resistant cancer stem-like cells (CSC) that survive 
chemotherapy and are capable of repopulating heterogeneous tumors. It 
remains unclear how CSCs are supported in the tumor microenviron-
ment (TME) particularly during chemotherapy exposure. Tumor- 
associated macrophages (TAM) make up half of the immune pop-
ulation of the ovarian TME and are known to support CSCs and con-
tribute to cancer progression. TAMs are plastic cells that alter their 
phenotype in response to environmental stimuli and thus may influence 
CSC maintenance during chemotherapy. Given the plasticity of TAMs, 
we studied the effects of carboplatin on macrophage phenotypes using 
both THP1- and peripheral blood mononuclear cell (PBMC)–derived 
macrophages and whether this supports CSCs and ovarian cancer pro-
gression following treatment. We found that carboplatin exposure in-
duces an M1-like proinflammatory phenotype that promotes SOX2 

expression, spheroid formation, and CD117+ ovarian CSCs, and that 
macrophage-secreted CCL2/MCP-1 is at least partially responsible for 
this effect. Depletion of TAMs during carboplatin exposure results in 
fewer CSCs and prolonged survival in a xenograft model of ovarian 
cancer. This study supports a role for platinum-based chemotherapies 
in promoting a transient proinflammatory M1-like TAM that enriches 
for CSCs during treatment. Improving our understanding of TME 
responses to cytotoxic drugs and identifying novel mechanisms of CSC 
maintenance will enable the development of better therapeutic strate-
gies for high-grade serous ovarian cancer. 

Significance: We show that chemotherapy enhances proinflammatory 
macrophage phenotypes that correlate with ovarian cancer progression. 
Given that macrophages are the most prominent immune cell within 
these tumors, this work provides the foundation for future translational 
studies targeting specific macrophage populations during chemotherapy, 
a promising approach to prevent relapse in ovarian cancer. 

Introduction 
Ovarian cancer is the most lethal gynecologic malignancy in the 
United States and the second most lethal gynecologic malignancy worldwide 
(1, 2). Nonspecific early symptoms and ineffective screening methods are 
largely responsible for the late-stage diagnosis occurring in more than 70% of 
ovarian cancer cases (3). Following diagnosis, debulking surgery and a 

combination of platinum- and taxane-based chemotherapies are the current 
standard of care. Although most patients show no evidence of disease after 
initial chemotherapy treatment, a majority of these patients relapse and 
develop chemotherapy-resistant disease within 2 years (4). Furthermore, 
more than half of patients diagnosed with advanced stage disease will die 
within 5 years following diagnosis (2). Mechanisms of acquired resistance 
following chemotherapy in recurrent ovarian cancer remain unclear and 
must be clarified to improve morbidity and mortality. 

Studies suggest a minority subset of tumor cells, termed cancer stem-like 
cells (CSC), can evade cytotoxic chemotherapy and facilitate cancer re-
currence (5–8). It is possible that the chemotherapy-resistant CSCs are 
pre-existing or, alternatively, cells with this phenotype may develop 
during disease progression. Ovarian cancer is a heterogeneous peritoneal 
disease, characterized by a dynamic tumor microenvironment (TME) 
rich with stromal and immune cells, and an abundance of cytokines, 
chemokines, and other secretory factors (9). Among the various immune 
cell populations within ovarian tumors, macrophages are the most 
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abundant, exhibiting diverse morphologic and physiologic functions 
(10). Macrophages are known to be the most plastic cells of the hema-
topoietic system (11–15), playing important roles in development, ho-
meostasis, tissue repair, and immunity. Their plasticity enables either 
proinflammatory, anti-tumorigenic functions commonly observed in 
early-stage tumors, or anti-inflammatory, pro-tumorigenic functions, 
commonly observed in late-stage tumors. 

Chemokines, cytokines, and other secreted factors within tumors can 
facilitate the recruitment of circulating monocytic cells into tumors to 
become tumor-associated macrophages (TAM; ref. 16). Generally, 
TAMs are tissue-resident or bone marrow–derived macrophages that 
participate in the formation of the TME to facilitate tumor growth, 
invasion, metastasis, and drug resistance (17, 18). TAMs in ovarian 
tumors are predominantly associated with the M2-polarized anti- 
inflammatory phenotype, whereas the proinflammatory, anti-tumori-
genic M1-polarized phenotype is less frequently observed in late-stage 
disease (19). Due to their inherent plasticity, TAM phenotypes can 
change in response to the TME, and the polarization of infiltrating 
monocytes might be altered in a chemotherapy-treated tumor. Given 
that ovarian cancer is highly responsive to cytotoxic chemotherapy, we 
sought to determine if chemotherapy directly modifies TAM pheno-
types to support the maintenance of CSCs and ovarian cancer pro-
gression. We show that carboplatin treatment of macrophages elicits an 
M1-like proinflammatory phenotype in vitro and in vivo, and sup-
pression of TAMs during carboplatin treatment inhibits expansion of 
CSCs and prolongs survival in a xenograft model of ovarian cancer. 
These studies highlight the dynamic responses of TAMs to cytotoxic 
drugs and suggest new mechanisms of CSC maintenance and ovarian 
cancer relapse. 

Materials and Methods 
General cell culture conditions 
CAOV4 (RRID: CVCL_0202) and OVCAR8 (RRID: CVCL_1629) cells 
were obtained and authenticated from NCI-Frederick DCTD tumor/cell 
line repository. OV90 (RRID: CVCL_3768) cells were obtained and au-
thenticated by ATCC. THP1 (RRID: CVCL_0006) cells were obtained 
from Dr. Angelica Riestra at San Diego State University. Peripheral 
blood mononuclear cells (PBMC) were isolated from human buffy coat 
obtained from the San Diego Blood Bank. All cancer cells were main-
tained in RPMI (Gibco) supplemented with 10% FBS (Gibco) and 1% 
10,000 U/mL penicillin/streptomycin (Gibco). THP1 cells were main-
tained in RPMI media supplemented with 10% heat inactive FBS (Gibco), 
10 mmol/L HEPES (Gibco), 1 mmol/L sodium pyruvate (Gibco), 4.5 g/L 
glucose stock (Gibco), and 0.05 mmol/L β-mercaptoethanol (Thermo 
Fisher Scientific). PB-macrophages were maintained in RPMI supple-
mented with 10% FBS and 2 mmol/L GlutaMAX (Gibco). Cells are tested 
for mycoplasma annually. Cells were maintained in culture for a maxi-
mum of 15 passages. For in vitro experiments with carboplatin treatment, 
all cells were exposed to 100 or 275 µmol/L carboplatin (Tocris Biosci-
ence; Cat. # 2626) or vehicle in respective cell culture medium for 
48 hours. For in vitro experiments with CCL2/MCP-1 treatment, all cells 
were exposed to 10 ng/mL (R&D; Cat. # 279-MC) or vehicle in respective 
cell culture medium for 48 hours. 

Isolation of peripheral blood monocyte and 
differentiation to macrophage 
Adult human blood was obtained from anonymous female donors through 
the San Diego Blood Bank. PBMCs were isolated by Ficoll-Paque Plus 
(GE Healthcare) density-gradient centrifugation from heparinized buffy 
coats. Monocytes (PB-monocyte) were then isolated by CD14 positive se-
lection using CD14 MicroBeads (Miltenyi Biotech; Cat. # 130-020-201) or 
straight from Buffy Coat CD14 MicroBead Kit (Miltenyi Biotech; Cat. # 130- 
114-976) according to manufacturer’s instructions and then further differ-
entiated to macrophages (PB-macrophages) in PB-macrophage media sup-
plemented with 100 ng/mL macrophage colony-stimulating factor (M-CSF, 
PeproTech; Cat. # 300-25) for 7 days. 

Macrophage polarization 
Human THP1 cells were differentiated to M0 macrophages for 48 hours in 
the presence of 100 nmol/L phorbol 12-myristate 13-acetate (PMA, Sigma- 
Aldrich; Cat. # P1585) whereas PB-monocytes were differentiated to M0 
macrophage for 7 days in the presence of 100 ng/mL M-CSF (PeproTech; 
Cat. # 300-25). M0 macrophages were then polarized to either M1 or M2 
macrophages for 48 hours with different stimuli: 50 ng/mL LPS for THP1 
and 100 ng/mL LPS for PB-derived and 20 ng/mL IFNγ (PeproTech; Cat. # 
300-02) for M1 polarization or 20 ng/mL IL4 (PeproTech; Cat. # 200-04) and 
20 ng/mL IL13 (PeproTech; Cat. # 200-13) for M2 polarization. The effect of 
activation was evaluated by quantifying changes in different phenotypic 
markers by flow cytometry for M0: hCD68-APC-cy7 (1:16, BioLegend; Cat. # 
333822, RRID: AB_2571965), for M1: hCD80-APC (1:20, BioLegend; Cat. # 
305220, RRID: AB_2076147), and for M2: hCD206-PE (1:20, BioLegend; 
Cat. # 321106, RRID: AB_571911); qRT-PCR; and ELISA. 

Macrophage viability, pyroptosis, and apoptosis 
Macrophages were plated at approximately 40,000 cells/well on 96-well 
plates and differentiated to M0 and then polarized to M1 and M2 pop-
ulations described above. Macrophages were then treated with or without 
carboplatin (275 µmol/L) for 48 hours and analyzed for viability through 
ATP activity using CellTiter-Glo 2.0 Cell Viability Assay (Promega; Cat. # 
G9241) following manufacturer’s protocol. Pyroptosis activity was 
assessed through caspase-1 activity using Caspase-Glo 1 Inflammasome 
Assay (Promega; Cat. # G9951) following manufacturer’s protocol. Apo-
ptosis was evaluated through caspase-3/7 activity using Caspase-Glo 3/7 
Assay (Promega; Cat. # G8091) following manufacturer’s instructions. All 
samples were analyzed for luciferase activity using Thermo Fisher Sci-
entific Varioskan. 

Co-culture experiments 
Transwell inserts with a 0.4 μm porous membrane (Thermo Fisher Scientific; 
Cat. # 141078) were used for indirect co-culture of THP1- or PB-derived 
macrophages with CAOV4 cells. Macrophages were seeded at 750,000 cells/ 
mL into the bottom well of a transwell plate and subsequently differentiated 
and polarized into M1 and M2 phenotypes as described above. Simulta-
neously, CAOV4 or OVCAR8 cells were seeded at 150,000 cells/mL into 
transwell inserts and incubated overnight to adhere to insert membranes. 
Following polarization, transwell inserts containing adherent CAOV4 or 
OVCAR8 cells were carefully transferred to transwell plates containing either 
M0, M1, or M2 macrophages yielding an ovarian cancer:macrophage 
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co-culture ratio of 1:5. Cocultures were allowed to rest for 6 hours prior to 
treatments. After 48 hours, macrophages were collected for flow cytometry 
as described below for M1: hCD80-APC (1:20, BioLegend; Cat. # 305220, 
RRID: AB_2076147), and for M2: hCD206-PE (1:20, BioLegend; Cat. # 
321106, RRID: AB_571911), and ovarian cancer cells were collected for RNA 
as described below. Conditioned media were collected from all samples and 
stored in →80°C for downstream experiments. 

Spheroid formation assay 
Cells were plated at 500 cells/well in ultra-low attachment, flat bottom 
96-well plates using media as described in the figure legends. Spheroids were 
allowed to grow for 5 to 6 days, followed by staining with Hoechst 33342. 
Spheroid size 30 to 500 μm were counted using ImageXpress Pico and Cell-
ReporterXpress software. Spheroid formation is defined as (# of spheroids)/(# 
of cells per well). 

In vivo studies 
All animal studies were approved by the SDSU Animal Care and Use 
Committee (protocol approval number 21-05-003H). For subcutaneous xe-
nografts, 500,000 OV90 cells in 1:1 Matrigel in PBS were subcutaneously 
injected into the left flank of 8-week-old female immunodeficient nude mice 
(NU/J, The Jackson Laboratory; RRID: IMSR_JAX:002019). Mice weight and 
tumor measurements were performed in a blind fashion twice weekly. Once 
tumors reached a size of 150 mm3, mice were treated with intraperitoneal 
(i.p.) injections of either vehicle or carboplatin (50 mg/kg) once per week for 
3 weeks. Mice were sacrificed either (i) on average 5 days after the third dose 
of carboplatin or (ii) at full growth of tumors reaching a volume of 
3000 mm3 to evaluate progressive changes. 

For macrophage depletion studies, we used 6-week-old female immu-
nodeficient nude mice (NU/J, The Jackson Laboratory; RRID: 
IMSR_JAX:002019) and intraperitoneal injected CAOV4 human ovarian 
cancer cells at a concentration of 2 million cells per mice. Tumors were 
allowed to develop for 4 days before starting treatment with either: (i) 
vehicle + BLZ945 vehicle (by oral gavage 5 days per week), (ii) carbo-
platin (50 mg/kg, four doses, 1 day per week) + BLZ945 vehicle (by oral 
gavage 5 days per week), or (iii) carboplatin (50 mg/kg, four doses, 1 day 
per week) + BLZ945 inhibitor (200 mg/kg oral gavage 5 days per week). 
To ensure macrophage depletion, BLZ945 inhibitor (MedChemExpress; 
Cat. # HY-12768) or BLZ945 vehicle was administered 24 hours before 
chemotherapy and again every day following chemotherapy for 5 days. 
Mice were monitored every week for clinical signs of disease progression. 
The residual tumor group was collected 3 days following last carboplatin 
treatment, and the regrown tumor group was collected 120 days fol-
lowing the last carboplatin treatment or at humane endpoints. Macro-
phage depletion was verified from single-cell dissociation of excised 
omental tumors and analyzed via flow cytometry. Mice tumor tissues 
were also collected and analyzed for secretome using LEGENDplex and 
for CSC expression by flow cytometry or Sox2 expression by IHC as 
described below. 

Flow cytometry 
In vivo omental tumor tissue was excised and mechanically dissociated to 
prepare for flow cytometry analysis. Briefly, tumor samples were cut into 
small pieces of 2 to 4 mm then transferred into a gentleMACS C Tube 

containing the enzyme mix attached to gentleMACS Dissociator using a 
Human Tumor Dissociation Kit (Miltenyi Biotech; Cat. # 130-095-929) as 
per manufacturer’s protocol. After dissociation, large particles were removed 
by 70 μm mesh strainer, and cells were treated with ammonium–chloride– 
potassium (ACK) lysing buffer to lyse red blood cells. Cells were then treated 
with Fc receptor blocker (Miltenyi Biotech; Cat. # 130-059-901) for 
10 minutes in 2°C to 8°C followed by flow cytometry antibody staining for two 
subsequent panels TAM-M1 and TAM-M2: for total TAMs, the antibodies 
included mCD45-PerCP-Cy5.5 (1:160, BioLegend; Cat. # 103132, RRID: 
AB_893340), mCD11b-PE/Dazzle594 (1:666, BioLegend; Cat. # 101256, RRID: 
AB_2563648), and mF4/80-APC-Cy7 (1:20, BioLegend; Cat. # 123118, RRID: 
AB_893477); and for M1, the antibodies included mMHC-II-PE (1:160, BioL-
egend; Cat. # 107608, RRID: AB_313323), mCD80-APC (1:40, BioLegend; Cat. 
# 104714, RRID: AB_313135), and mCD86-AlexaFluor488 (1:50, BioLegend; 
Cat. # 105018, RRID: AB_493462) and for M2, the antibodies included 
mCD206-AlexaFluor488 (1:100, BioLegend; Cat. # 141710, RRID: 
AB_10900445), mCD273-APC (1:40, BioLegend; Cat. # 107210, RRID: 
AB_2566345), and mCD163-PE (1:80, BioLegend; Cat. # 155308, RRID: 
AB_2814062). Samples were stained for 20 minutes and incubated at 4°C prior 
to fixing following manufacturer’s protocol (Cyto-Fast Fix/Perm Buffer Set, 
BioLegend; Cat. # 426803). Flow cytometry analysis of CSCs was performed 
using the same dissociated tumor samples. Briefly, cells were stained for human 
CD117 (1:50, Miltenyi Biotec; Cat. # 130-111-593, RRID: AB_2654579) and 
human CD133 (1:50, Miltenyi Biotec; Cat. # 130-110-962, RRID: AB_2654888), 
and ALDH activity was analyzed via ALDEFLUOR Kit following manufac-
turer’s instructions (STEMCELL Technologies; Cat. # 01700). 

Cells were collected from in vitro samples and treated with Fc receptor 
blocker (Miltenyi Biotec; Cat# 130-059-901, RRID: AB_2892112) for 
10 minutes in 2°C to 8°C followed by antibody staining for M1: hCD80- 
APC (1:20, BioLegend; Cat. # 305220, RRID: AB_2076147), for M2: 
hCD206-AlexaFluor488 (1:20, BioLegend; Cat. # 321114, RRID: 
AB_571875), and for viability SYTOX Blue (Thermo Fisher Scientific; Cat. 
# S34857). Samples were fixed and permeabilized using Cyto-Fast Fix/ 
Perm Buffer Set following manufacturer’s protocol (BioLegend; Cat. # 
426803) prior to analysis. All flow cytometry was performed using BD 
FACSMelody and analyzed via FlowJo 10.9.0 or an Amnis ImageStream 
MkII and analyzed via IDEAS 6.2. 

RNA extraction and qRT-PCR 
Total RNA was isolated using the NucleoSpin RNA Plus kit (MACHEREY- 
NAGEL, Inc.; Cat. # 740984) or Direct-zol RNA Miniprep Plus Kits (ZYMO 
RESEARCH; Cat. # R2072) or E.Z.N.A. MicroElute Total RNA Kit (Omega Bio- 
tek; Cat. # R6831) as per the manufacturer’s instructions. cDNA synthesis was 
carried out using the High-Capacity cDNA Reverse Transcription kit (Applied 
Biosystems; Cat. # 4368814) as per the manufacturer’s protocol. Quantification 
and normalization of gene expression were performed using TaqMan Fast Ad-
vanced Master Mix and TaqMan probes. Gene probes were purchased from 
Thermo Fisher Scientific (TNFα, Cat. # Hs00174128_m1; IL1β, Cat. # 
Hs01555410_m1; IL10, Cat. # Hs00961622_m1; TGFβ1, Cat. # Hs00998133_m1; 
CCL22, Cat. # Hs01574247_m1; SOX2, Cat. # Hs01053049_s1; OCT4, Cat. # 
Hs04260367_gH; NANOG, Cat. # Hs02387400_g1; GAPDH, Cat. # 
Hs02786624_g1). Experiments were run on a QuantStudio 3 instrument and 
analyzed with the QuantStudio Design and Analysis software using the delta- 
delta Ct method with GAPDH endogenous control. 
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ELISA and LEGENDplex 
Macrophage secreted factors were analyzed by ELISA for TNFα (R&D; Cat. # 
DY210-05), IL1β (R&D; Cat. # DY201-05), IL10 (R&D; Cat. # DY217B-05), 
and TGFβ1 (R&D; Cat. # DY240-05) using supernatant from M0, M1, and 
M2 macrophage according manufacturer’s instructions. Supernatants were 
also used to evaluate an extended panel of secreted factors via multiplex 
assays for human essential immune response (BioLegend; Cat. # 740929) and 
human TNFSF family proteins (BioLegend; Cat. # 741309) following man-
ufacturer’s protocol. Tumor samples resected from mice were homogenized 
and proteins collected for mouse inflammation panel (BioLegend; Cat. # 
740446) following manufacturer’s protocol. Briefly, tumor tissues were 
weighed, and appropriate volume of NP-40 Lysis Buffer (supplemented with 
HALT Protease and Phosphatase inhibitor cocktail) was added, followed by 
dissociation using gentleMACS M Tube on gentleMACS dissociator as di-
rected by the manufacturer. Supernatants were collected after centrifugation 
and evaluated for secreted factors on the LEGENDplex Mouse Immune 
Response panel (BioLegend; Cat. # 740150). 

Immunohistochemistry (IHC) 
Tumors were resected, fixed in 10% neutral buffered formalin, and stored in 
70% ethanol before processing. Tumors were embedded in paraffin and 
sectioned at 5 μm. Antigen retrieval was performed in citrate buffer and 
quenched with hydrogen peroxide. Slides were incubated with a primary 
antibody for Sox2 (1:300, Cell Signaling Technology; Cat. # 3579, RRID: 
AB_2195767) overnight at 4°C followed by a horseradish peroxidase (HRP)– 
linked secondary (Cell Signaling Technology; Cat. # 8114, RRID: 
AB_10544930) for 1 hour at room temperature and processed using 3,30- 
diaminobenzidine (DAB) kit from Vector Laboratories. Four randomly se-
lected images per slide were acquired with a ZEISS Primo Star HAL/LED 
Microscope and imaged using ToupView. A digital quantification of DAB 
staining was performed using ImageJ with a FIJI deconvolution package as 
described previously (20). 

Statistical analysis 
Statistics were generated using Prism 10.0.3 with data acquired from at least 
three independent biological replicates. Results are presented as mean ± 
SEM. Significance was calculated using either unpaired t test for two means 
or either a one-way ANOVA or two-way ANOVA for comparisons of three 
or more means with a post hoc test to identify differences between groups as 
described in figure legends. Differences between means are considered sta-
tistically significant at the 95% level (P < 0.05). Dose response was assessed 
using a least squares nonlinear regression to calculate the curve and IC50 

values. Statistics were completed as described here or as otherwise noted in 
the figure legends. 

Data availability 
The data generated in this study are available within the article and its 
Supplementary Materials. Raw data files are available upon request from the 
corresponding author. 

Results 
Given the pivotal role that macrophages play in supporting ovarian cancer 
progression, we sought to characterize the phenotypic changes of 

macrophages in response to cytotoxic treatment with carboplatin and dis-
tinguish how these changes influence CSC maintenance. We first differen-
tiated THP1- and primary PBMC-derived monocytes to M0 macrophage 
and subsequently polarized to M1-like or M2-like macrophage phenotypes 
(Supplementary Fig. S1A and S1B) and compared all populations. Quanti-
fication of the M1 marker CD80 and the M2 marker CD206 indicated that all 
populations express both markers; however, the M1-like macrophages ex-
press a significantly higher level of CD80, whereas M2-like macrophages 
express a higher level of CD206 (Supplementary Fig. S1A and S1B). Inter-
estingly, the M0 population had an expression pattern similar to M2-like 
cells in THP1 cells. The shared expression of these M1 and M2 markers 
following polarization is observed in many studies (16, 21) and may reflect 
the spectrum of phenotypes associated with macrophage subpopulations. To 
further distinguish the respective phenotypes resulting from our polarization 
protocol, we assessed gene expression and secreted proteins commonly as-
sociated with M1-like or M2-like macrophages. As expected, expression and/ 
or production of TNFα and IL1β was highest in the M1-like population from 
both THP1- and PBMC-derived macrophages (Supplementary Fig. S1C and 
S1D). Similarly, expression and/or production of TGFβ1 and CCL22 was 
highest in the M2-like population (Supplementary Fig. S1C and S1D). IL10 
production, a phenotype associated with M1 or M2 macrophages (22, 23), 
was detected in both M1-like and M2-like THP1-derived macrophages, but 
primarily from M1-like PBMC-derived macrophages. These data indicate 
that our differentiation and polarization procedures enrich for the pheno-
types we are seeking to investigate; henceforth, we will refer to the M1-like 
polarization as “M1” and the M2-like polarization as “M2” as a simplification 
of macrophage subtypes within a spectrum of phenotypes (24, 25). 

We have previously shown that SOX2 is a marker of chemoresistance and 
recurrence in ovarian cancer (26); thus, we next sought to characterize 
changes in SOX2, OCT4, and NANOG expression in ovarian cancer cells 
indirectly co-cultured with differentially polarized macrophage populations 
(Fig. 1A). Briefly, we first seeded THP1- or PBMC-derived macrophages 
(MΦ) in the bottom well of a transwell plate and then polarized to M1 or M2 
phenotypes. We subsequently seeded CAOV4 or OVCAR8 ovarian cancer 
(OC) cells on the top well and allowed for acclimation of the co-culture for 
6 hours before carboplatin treatment. We found that exposure to M0, M1, or 
M2 macrophages for 48 hours did not significantly affect SOX2, OCT4, and 
NANOG expression in CAOV4 (Fig. 1B) or OVCAR8 ovarian cancer cells 
(Supplementary Fig. S2A). However, treatment with an IC50 dose of car-
boplatin led to enhanced expression of SOX2, OCT4, and NANOG in cancer 
cells seeded alone, in agreement with our previous work (Fig. 1C; Supple-
mentary Fig. S2B; ref. 26). SOX2 expression was significantly increased in the 
presence of M0, M1, or M2-like macrophages and carboplatin compared 
with their same condition vehicle and in presence of M0 (PBMC-derived) or 
M1 (THP1) compared with cancer cells alone with carboplatin (Fig. 1C; 
Supplementary Fig. S2B). We also found that cancer cells treated with 
conditioned media from the cocultures (CCM) had no consistent enhance-
ment of spheroid formation using vehicle CCM (Supplementary Fig. S2C), 
but had significantly enhanced spheroid formation using carboplatin CCM 
compared with same treatment vehicle and in some cases compared with 
cancer cells alone with carboplatin (Fig. 1D). 

We next assessed changes in the M1 (CD80) or M2 (CD206) markers in 
M0, M1-like, or M2-like macrophages collected from the co-culture con-
ditions. Exposure to cancer cells for 48 hours in vehicle conditions 
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maintained THP1-derived macrophages with traditional marker expres-
sion, with 30% M0 cells expressing CD80 and 10% expressing CD206, 60% 
M1 cells expressing CD80, and 26% M2 cells expressing CD206 (Fig. 1E; 
Supplementary Fig. S2D). Relative to monoculture (Supplementary Fig. 
S1B), a majority of the PBMC-derived macrophages displayed CD80 
marker upon co-culture with ovarian cancer cells (Fig. 1F; Supplementary 
Fig. S2E). Carboplatin exposure led to an increase or maintenance of CD80 
expression in M0 and M2 THP1-derived macrophage populations and a 
decrease in CD206 expression in all populations derived from PBMC- 

derived macrophages (Fig. 1E and F; Supplementary Fig. S2D and S2E). 
Both scenarios ultimately led to a higher or consistent M1/M2 ratio in 
either cell type (Fig. 1G and H). These data suggest that chemotherapy 
potentially alters macrophage phenotypes and enhances expression of 
stemness pathways in ovarian cancer cells. 

To better understand the effect of cytotoxic chemotherapy on macrophage 
phenotypes, we calculated the carboplatin IC50 values of the different mac-
rophage populations and discovered that M2 macrophages were most 
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sensitive to carboplatin relative to M1 macrophages (Fig. 2A). We proceeded 
by treating the different macrophage populations with carboplatin concen-
tration corresponding to the CAOV4 ovarian cancer cell IC50 for 48 hours in 
monoculture conditions and assessed viability and changes in M1 and/or M2 
marker expression. Cancer cells have a carboplatin IC50 concentration of 
275 µmol/L, which is far greater than that measured for the macrophages; 
therefore, we desired to understand how a higher carboplatin concentration 
potentially impacts macrophage phenotypes. As expected, CellTiter-Glo vi-
ability assays for both THP1- and PBMC-derived macrophages revealed that 
M1-polarized cells had the greatest resistance to carboplatin (Fig. 2B). In-
terestingly, THP1 populations treated with carboplatin maintained or in-
creased expression of the M1 marker, CD80, relative to vehicle (Fig. 2C), 
whereas expression of the M2 marker, CD206, remained relatively un-
changed or decreased (Fig. 2C). Conversely, M1 marker expression for 
PBMC-derived macrophage populations remains relatively unchanged 
(Fig. 2D) and M2 marker expression significantly decreases when treated 
with carboplatin (Fig. 2D). Similar to what we found in the co-culture sys-
tem, upon 48 hours of carboplatin exposure, there was an overall increase 
in the M1/M2 ratio (Fig. 2E). We repeated this experiment at a physi-
ologic carboplatin concentration of 100 µmol/L and saw a similar effect, 

with an overall increase in the M1/M2 ratio for M0 and M2 macrophages 
and a persistently high M1/M2 ratio for M1 macrophages (Supplemen-
tary Fig. S2F and S2G). 

For a comprehensive visualization of macrophage phenotypes following car-
boplatin exposure, we performed imaging flow cytometry of PBMC-derived 
macrophages and quantified both viability and, M1 and M2 cell surface 
stains (Fig. 3A). We found that live cells, identified by SYTOX Blue and 
brightfield imaging of cell structure integrity, confirmed expression of M1 
and M2 markers seen by standard flow cytometry (Fig. 2D). SYTOX Blue 
staining and loss of cell structure integrity by brightfield suggest regulated 
cell death such as apoptosis or pyroptosis. We next investigated whether 
macrophages were undergoing pyroptosis or apoptosis in response to car-
boplatin using either a caspase-1 or a caspase- 3/7 activity assay, respectively. 
Pyroptosis is triggered by proinflammatory signals and, in contrast to apo-
ptosis, often leads to cell rupture and spilling of intracellular contents. We 
found that THP1-derived M1 macrophages had significantly higher levels of 
caspase-1 than M0 or M2 macrophage, indicating increased pyroptosis rel-
ative to vehicle-treated cells (Fig. 3B). The PBMC-derived macrophage 
populations, however, had comparable levels of caspase-1 activity which 
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were not significantly different from vehicle (Fig. 3B). Cleaved caspase-3/7 
levels (Fig. 3C) were significantly lower in M1 macrophage populations from 
both cell types, indicating a higher resistance to carboplatin-induced apo-
ptosis, in agreement with viability studies in Fig. 2B. Notably, the THP1 cells 
are overall more resistant to carboplatin, which may be due to their malig-
nant properties relative to PBMC-derived macrophages from healthy donors. 

To better assess phenotypic changes induced by carboplatin, we investigated 
alterations in factors secreted from the different macrophage populations in 
response to 48 hours of carboplatin exposure. We first confirmed gene ex-
pression changes associated with M1 or M2 that we showed in Supple-
mentary Fig. S1 when validating polarization. TNFα and IL1β were 
consistently upregulated in M1 macrophages derived from both THP1 and 
PBMC cell types in response to carboplatin (Fig. 4A). Whereas there was 
little effect on IL10 or TGFβ in THP1 cells treated with carboplatin, these 
genes were significantly downregulated in PBMC-derived macrophages 

relative to vehicle (Fig. 4A). Finally, CCL22 expression was upregulated in 
THP1-derived macrophages but downregulated in PBMC-derived macro-
phages treated with carboplatin relative to vehicle. Although THP1 cells 
showed a general increase in expression of all genes interrogated, the fold 
changes were highest for IL1β, an established M1 marker. Collectively, these 
data indicate an upregulation of M1 factors in carboplatin-treated macro-
phages relative to vehicle. 

To gain a more comprehensive understanding of the phenotypic changes 
endured by macrophages treated with carboplatin, we used human immune 
response and TNF family cytokine protein panels to perform multiplex 
analyses of supernatants from vehicle- or carboplatin-treated macrophages. 
We first confirmed the baseline secretory profiles of macrophages immedi-
ately following differentiation and/or polarization (Supplementary Fig. S3). 
We then assessed changes in secreted factors after 48 hours of exposure to 
carboplatin relative to vehicle. Overall, the THP1-derived macrophages 
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showed increased secretion of immune response cytokines in both the M1 
and M2 macrophages. However, there was little change in the TNF family of 
cytokines, with the exception of decreased OPG and APRIL and increased 
CD30L in the M1 population, and increased TNFα in the M2 population 
(Fig. 4B; Supplementary Fig. S4A and S4B). The PBMC-derived macro-
phages had an increased secretion of both immune response and TNF family 
cytokines which were mostly observed in the M0 and M2 populations and 
involved in the upregulation of proinflammatory cytokines (Fig. 4B; Sup-
plementary Fig. S4A and S4B). Interestingly, both THP1 and PBMC cell 
types displayed significant changes in secretion profiles primarily associated 
with the M0 or M2 macrophages, populations that we found were altered 
during chemotherapy (Fig. 2E). These data suggest that M1 macrophages 
may be relatively stable in their phenotype, and carboplatin chemotherapy 
elicits a proinflammatory response from M0 and/or M2 macrophages. 

To better appreciate the impact of carboplatin on macrophage phenotypes 
and their contribution to CSC maintenance, we investigated these phe-
notypes in human xenograft models of ovarian cancer. Using a subcu-
taneous mouse model, we analyzed changes in M1 (CD80) or M2 
(CD163) markers in tumors resected either three days following three 
cycles of intraperitoneal carboplatin treatment, called "residual", or after 
tumors reformed following chemotherapy administration and reached 
endpoint criteria, called "regrown" (Fig. 5A and B). Interestingly, there 
was no significant difference in the levels of M1 or M2 macrophages 
immediately following three cycles of carboplatin relative to vehicle 
(Fig. 5B and C). M1 macrophages remained at comparable levels 
throughout the study in both vehicle- and carboplatin-treated mice. M2 
macrophages increased over time in the vehicle-treated groups but 
remained at comparable levels in the carboplatin-treated mice (Fig. 5C). 
The ratio of M1 marker expressing macrophages relative to M2 marker 
expressing macrophages significantly decreased over time in the vehicle- 
treated groups as a result of M2 expansion. However, the ratio of M1 to 
M2 macrophages was equal in the carboplatin-treated group in residual 
tumors and remained unchanged in regrown tumors (Fig. 5D). These 
findings suggest that chemotherapy limits the expansion of M2 macro-
phages over time, which may be due to their enhanced sensitivity to 
carboplatin relative to M1 (Fig. 3B). We used this model to quantitate 
single M1 and M2 surface markers as we wanted to assess the feasibility 
of detecting differences in a simplified subcutaneous model that provides 
easily resectable tumors for analysis (27). This model, however, does not 
take into account the role of tissue resident macrophages which have 
been linked to the spread of ovarian cancer and the promotion of CSC 
phenotypes (28). 

We expanded these studies in an intraperitoneal xenograft mouse model of 
ovarian cancer which has been shown to appropriately recapitulate both 
resident and infiltrating macrophages in metastatic cancer (27). We 
inhibited macrophage recruitment with administration of a CSF-R1 in-
hibitor, BLZ945. Briefly, mice were intraperitoneal injected with CAOV4 
cancer cells and 4 days later received weekly intraperitoneal administration 
of either vehicle, carboplatin, or carboplatin plus BLZ945 by gavage, for 4 
weeks. As expected, mice receiving carboplatin had improved survival 
relative to vehicle. Interestingly inclusion of BLZ945 significantly im-
proved survival over carboplatin alone (Fig. 6A) suggesting that macro-
phages contribute to disease progression in the presence of carboplatin. 

Three days following the last carboplatin treatment, a cohort of mice was 
sacrificed, and peritoneal tissues were resected and analyzed to assess 
changes in CSCs and two subsequent panels of TAM populations 
(CD45+CD11b+F4/80+): M1-like (MHC-II+, CD80+, CD86+) and M2-like 
(CD206+, CD273+, CD163+) populations. Similar to the subcutaneous 
model, we found that the M1/M2 ratio in residual tumors was comparable 
between the two treatment groups; however, in contrast to the subcuta-
neous model, the M1/M2 ratio increased in regrown tumors (Fig. 6B). 
Carboplatin treatment alone led to a loss of both M1-like triple-positive 
(MHC-II+/CD80+/CD86+) and M2-like triple-positive (CD206+/CD273+/ 
CD163+) phenotypes (Fig. 6C; for individual markers see Supplementary 
Fig. S5). We confirmed that the loss of TAMs with carboplatin was further 
reduced with BLZ945 treatment in the residual tumor group (Fig. 6D). In 
the regrown tumor group (which represents tumors collected at least 40 to 
60 days following the last carboplatin treatment), the TAM population in 
carboplatin-treated mice was restored to the same level as vehicle-treated 
mice, whereas mice with continued BLZ945 administration maintained 
significantly reduced TAMs (Fig. 6D). These results indicate that carbo-
platin decreases both M1-like and M2-like TAM populations, and sup-
pression of TAMs during chemotherapy administration improves 
probability of survival. 

To understand whether macrophages are influencing CSCs and SOX2 
expression, as our in vitro models would suggest, we profiled CD117+, 
CD133+, and ALDH+ ovarian cancer cells and changes in SOX2 protein 
expression in the resected tumors from the different treatment groups 
(Fig. 7A; Supplementary Fig. S6A and S6B). CD117+ cells increased with 
carboplatin treatment in the residual tumor group but became less 
enriched over time with the regrown tumor group (Fig. 7A). This was 
expected, as the more proliferative non-CSCs that make up the bulk of the 
tumor begin to outnumber the more quiescent CSCs. Interestingly, the 
percentage of CD133+ cells remained high in the regrown tumors, sug-
gesting CD133+ cells may represent a more proliferative CSC population 
(Supplementary Fig. S6A and S6B). In both cases however, BLZ945 
treatment resulted in a lower percentage of CSCs in both residual tumor 
and regrown tumor timepoints (Fig. 7A; Supplementary Fig. S6A and S6B). 
There was no significant effect on ALDH+ cells (Supplementary Fig. S6B). 
We also note that carboplatin treatment led to an increase in SOX2 protein 
expression in the residual tumors, and this expression was significantly 
decreased when BLZ945 was also given (Fig. 7B). These findings support 
the notion that carboplatin enriches for ovarian CSCs, and this is at least 
partially mediated by TAMs. 

We additionally used a mouse-specific cytokine panel for multiplex 
analysis of changes in immune response cytokines that occurred in the 
different treatment groups. Interestingly, CCL2/MCP-1 and IL1β were 
enriched in the carboplatin-treated regrown tumors, and this enrich-
ment was suppressed when BLZ945 was also administered (Fig. 7C). 
Although CCL2/MCP-1 induces recruitment of monocytes, which may 
support CSCs in currently unidentified ways, IL1β is a known inducer of 
stemness in other cancers and may also be important in ovarian cancer. 
Given these data, we assessed if CCL2/MCP-1 influenced ovarian cancer 
cell stemness pathways and spheroid formation (Fig. 7D; Supplementary 
Fig. S6C and S6D). We found that ovarian cancer cells treated with 
carboplatin in combination with CCL2/MCP-1 for 48 hours had in-
creased SOX2, OCT4, and NANOG gene expression (Supplementary Fig. 
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S6C and S6D) and greater spheroid formation ability relative to car-
boplatin or CCL2/MCP-1 treatment alone (Fig. 7D). Although there 
were relatively few changes in the concentrations of cytokines in the 
residual tumor group, several cytokines were increased in tumors col-
lected from regrown tumors, including IL23, IL6, IL12p70, and IFNγ; 
however, these were not necessarily changed with BLZ945 relative to 
carboplatin alone (Supplementary Fig. S7). Taken together, these find-
ings suggest that although carboplatin leads to a modulated secretome 
and an overall reduction in TAMs, it leads to an enrichment of M1-like 
TAMs relative to M2-like TAMs that may support CSCs and disease 
progression (Fig. 7E). 

Discussion 
In this study, we sought to characterize changes in macrophage phe-
notypes in response to carboplatin to elucidate potential mechanisms 
by which TAMs support CSC maintenance. TAMs comprise almost half 
of ovarian tumors, and previous studies suggest that they support 
ovarian CSCs (29). However, the mechanisms of TAM-mediated CSC 
maintenance are unclear, especially in the context of chemotherapy, in 
which TAMs are responsive to changes in the tumor. Moreover, this is a 

relevant time point for monocyte infiltration into tumors in which 
carboplatin may directly or indirectly influence their phenotypic 
responses. 

We previously showed that SOX2, relative to OCT4 or NANOG, is a 
better marker of drug-resistant CSCs in ovarian cancer (26). In our 
current study, we found that THP1-and PBMC-derived macrophages 
did not promote expression of SOX2 in ovarian cancer cells when co- 
cultured for 48 hours without cytotoxic drugs. However, in the pres-
ence of carboplatin, there was a significant increase in SOX2 expression 
relative to carboplatin-treated cancer cells cultured alone. As we pre-
viously found, OCT4 and NANOG expression followed a similar trend 
to SOX2 but were not consistently increased across all cell lines. It has 
been shown that co-culture of THP1-derived macrophages with ovar-
ian CSCs could promote M2-TAM polarization, and this increased 
stemness of the cancer cells through IL8 mediated STAT3 signaling 
(30). In breast cancer, an increase in IL6 secretion from TAMs pro-
moted expression of SOX2, OCT4, and NANOG (31, 32). Similarly, 
coculturing lung cancer cells with THP1-derived macrophages resulted 
in significant increases in SOX2, OCT4, and NANOG expression in 
cancer cells and M2-like polarization of TAMs (33). These studies, 
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however, were completed in the absence of chemotherapy, and it is un-
clear whether this would reflect early- or late-stage disease in which the 
number of M2-like macrophages is limited or expansive, respectively. 
Moreover, it is likely that whereas both M1-like and M2-like macro-
phages support CSCs features, the CSCs may induce the expansion of 

M2-like TAMs important for disease progression. Importantly, these 
findings indicate that macrophages support stem cell transcription factor 
expression in several models, and our findings suggest that this is rele-
vant during chemotherapy exposure and involves a proinflammatory 
response from macrophages. 
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Recent co-culture studies show that cisplatin or carboplatin can promote M2 
polarization through the secretion of proinflammatory IL6 from ovarian 
cancer cells (34, 35), whereas in other studies, cisplatin was found to promote 
migration of ovarian cancer cells via M1-like macrophage activity (36). Al-
though there was no change in M1 marker expression in both THP1 and 
PBMCs, there was an increase in the production of CCL20 and IL1β that 
subsequently enhanced ovarian cancer cell migration (36). The discrepancies 
in M1- versus M2-driven cancer cell features may be explained by the inherent 
plasticity of macrophages and the heterogeneity of TAMs, which express both 
M1 and M2 markers. Activated TAMs were previously described as being M2- 
like based on a Th-1 or Th-2 inflammatory response (37, 38); however, more 
recent studies demonstrate that TAMs share M1 and M2 signatures, both of 
which can serve protumorigenic functions supporting tumor growth, metas-
tasis, and immune suppression (16, 21). In our intraperitoneal mouse model, 
we found that TAMs express a variety of M1 and M2 markers, which is 
corroborated in other studies showing macrophages exist in a continuum of 
various functional states, leading to a variety of phenotypic responses (38). 
Although much of this plasticity has been studied in co-culture models with 
cancer cells, there is limited evaluation of this plasticity in response to che-
motherapeutic drugs, which may have a more significant influence on 
recurrence. 

Our findings that M1-like macrophages were more resistant to apoptosis in 
response to carboplatin and that the M1/M2 ratio increased are in agreement 
with previous studies showing that M2-like macrophages are more susceptible to 
platinum drugs relative to M1-like macrophages (34). In response to carboplatin, 
we found that THP1-derived macrophages increased expression of the M1 
surface marker CD80 on M0 or M2-like macrophages, whereas PBMC-derived 
macrophage decreased expression of the M2 surface marker CD206 on M0, M1- 
like, and M2-like macrophages. Moreover, both THP1-derived and PBMC- 
derived macrophages increased M1-like gene expression and secreted factors in 
response to carboplatin treatment, including TNFα and IL1β, whereas PBMC- 
derived macrophages simultaneously decreased M2-like secreted factors in re-
sponse to carboplatin treatment, including IL10 and TGFβ1. A similar study in 
breast cancer showed that PBMC-derived macrophages treated with cancer cell 
conditioned media and cisplatin had increased IFNγ, IL6, and TNFα signaling, 
pathways typically associated with M1-like phenotypes (39). This supports the 
notion that chemotherapy has the potential to re-educate macrophages toward a 
proinflammatory phenotype, as our findings also suggest. These data corroborate 
previous work in patient samples showing reduced expression of markers as-
sociated with M2 macrophages and increased expression of proinflammatory 
pathways and inflammasome activation following paclitaxel and carboplatin 
treatment (40). Clinical data show that an enrichment of M1-like TAMs and a 
higher M1/M2 ratio correlates with better overall and progression-free survival in 
high-grade serous ovarian cancer (41, 42), and this ratio decreases with advanced 
stage. Our study provides novel insight into phenotypic changes endured by M0, 
M1-like, or M2-like macrophages immediately following chemotherapy and 
proposes that proinflammatory cytokines, although effective at eliminating bulk 
tumor cells, may activate stemness pathways in drug-resistant CSCs to enhance 
their survival and maintenance during chemotherapy exposure. 

In this study, we investigated changes in TAMs, their secreted factors, and 
corresponding CSC markers using an in vivo human xenograft model of 
ovarian cancer. A total of nine different TAM markers and a panel of 
secreted factors were evaluated to better assess the complexity of TAM 
subtypes now identified by single-cell sequencing experiments (24, 25). 

Analysis of regrown tumors showed that chemotherapy increased M1/M2 
ratio and some proinflammatory secreted factors, including CCL2/MCP-1 
and IL1β, while decreasing other proinflammatory secreted factors, in-
cluding IFNγ and IL12p70. It remains unknown how long the high M1/ 
M2 ratio persists clinically relevant scenarios. Nevertheless, our data 
suggest TAM plasticity in response to chemotherapy, possibly indicat-
ing a switch from more interferon enriched TAMs to more inflamma-
tory enriched TAMs as suggested by other studies (25). Although 
chemotherapy alone significantly depleted the TAM population, it 
enriched for CD117+ and/or CD133+ expressing ovarian cancer cells, 
with a similar trend in ALDH+ cells, and this effect was lost when TAMs 
were depleted. Moreover, depletion of TAMs during chemotherapy 
prolonged survival relative to chemotherapy alone, suggesting a role for 
infiltrating TAMs in disease progression during treatment. We also 
found that chemotherapy-induced increase in proinflammatory cyto-
kines CCL2/MCP-1 and IL1β is lost when TAMs are depleted. Studies in 
breast cancer suggest blockade of CSF-1 limits macrophage infiltration 
and improves response to chemotherapy (43–45), and another group 
(46) found that targeting TAMs by CSF-1R inhibition in a transgenic 
breast cancer mice model stimulated an intratumoral type I IFN re-
sponse, enhancing the efficacy of platinum-based chemotherapy. It has 
also been reported that CCL2/MCP-1 is increased after paclitaxel– 
carboplatin combination treatment, resulting in macrophage recruit-
ment into ovarian tumors and inhibition of CCL2/MCP-1 increases 
response to chemotherapy (47, 48). Our data suggest that this may be 
due to an enrichment of CSCs during chemotherapy, perhaps mediated 
by CCL2/MCP-1. Ovarian cancer cells treated in vitro with CCL2/MCP- 
1 and carboplatin significantly increased spheroid formation ability and 
increased SOX2 expression, suggesting that CCL2/MCP-1 could be one 
of the secreted factors from macrophages during chemotherapy that 
supports CSC features. The impact of chemotherapy-induced infiltra-
tion of monocytes into the tumor is not fully understood, but it likely 
facilitates removal of dying tumor cells, which is beneficial; however, the 
secretory activities involved may enrich for CSCs, which in the long run 
may facilitate recurrence. As discussed above, several proinflammatory 
cytokines have been shown to enrich for CSCs that support disease 
progression following chemotherapy (32, 49, 50). A better under-
standing of the effects of different TAM populations on CSCs relative to 
bulk tumor cells may help clarify ovarian cancer biology and disease 
progression. 

The use of immunodeficient mice is both a strength and a limitation of 
our study. We sought to understand changes in macrophage phenotypes 
induced directly by chemotherapy, and the immunodeficient model most 
closely resembled the design of our in vitro studies. This model excluded 
other features of the TME, such as adaptive immune cells; however, 
macrophages remain the predominant immune cell type in ovarian tu-
mors (51–53), especially during late-stage disease when chemotherapy is 
essential. Another consideration is the role of tissue-resident versus 
tumor-infiltrating macrophages, which are not differentiated in this 
study. Recent studies have highlighted the complex interactions between 
these populations and how they contribute to CSC features and ovarian 
cancer progression; nonetheless, marker distinction between tissue-res-
ident and tumor-infiltrating macrophages remains challenging (28, 54). 
Future work could investigate the impact of each of these macrophage 
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populations and their role in CSC promotion. Our findings provide in-
sight into chemotherapy-mediated changes in M1-like TAMs which, to 
the best of our knowledge, has not been investigated in relapse models 
studying ovarian CSCs. In summary, our work demonstrates a role for 
TAMs in supporting CSCs and disease progression, and our findings 
suggest that this is due to an increase in M1 polarization in response to 
carboplatin. Further research into the immediate and long-term effects 
of cytotoxic therapies on TAM phenotypes will improve our under-
standing of CSC maintenance and identify novel targets for preventing 
ovarian cancer recurrence. 
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