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Phase transitions in random circuit sampling

Undesired coupling to the surrounding environment destroys long-range correlations 
in quantum processors and hinders coherent evolution in the nominally available 
computational space. This noise is an outstanding challenge when leveraging the 
computation power of near-term quantum processors1. It has been shown that 
benchmarking random circuit sampling with cross-entropy benchmarking can  
provide an estimate of the effective size of the Hilbert space coherently available2–8. 
Nevertheless, quantum algorithms’ outputs can be trivialized by noise, making them 
susceptible to classical computation spoofing. Here, by implementing an algorithm 
for random circuit sampling, we demonstrate experimentally that two phase 
transitions are observable with cross-entropy benchmarking, which we explain 
theoretically with a statistical model. The first is a dynamical transition as a function 
of the number of cycles and is the continuation of the anti-concentration point in  
the noiseless case. The second is a quantum phase transition controlled by the  
error per cycle; to identify it analytically and experimentally, we create a weak-link 
model, which allows us to vary the strength of the noise versus coherent evolution. 
Furthermore, by presenting a random circuit sampling experiment in the weak-noise 
phase with 67 qubits at 32 cycles, we demonstrate that the computational cost of  
our experiment is beyond the capabilities of existing classical supercomputers. Our 
experimental and theoretical work establishes the existence of transitions to a stable, 
computationally complex phase that is reachable with current quantum processors.

The computational complexity of quantum systems arises from the 
exponential growth of the Hilbert space dimension with system size. On 
near-term quantum processors whose practical complexity is limited by 
noise, random circuit sampling (RCS) has emerged as the most suitable 
candidate for a beyond-classical demonstration. The interplay between 
computational complexity and noise is highlighted by recent RCS 
experiments with increasing system sizes and fidelity4–6,9,10, although 
classical algorithms have also advanced substantially11–16. RCS is, argu-
ably, the entry point into the realm of classically intractable problems 
for any experimental quantum processing platform17. The reason is 
that RCS circuits can be optimized to maximize the speed of quantum 
correlations with iSWAP-like gates2,18–20 while preventing potential 
simplifications in the corresponding classical emulations17. This inten-
sifying quantum–classical competition motivates two questions. Are 
there well-defined boundaries for the region where the exponentially 
large Hilbert space is, in fact, leveraged by a noisy quantum processor? 
More importantly, can we establish an experimental observable that 
directly probes these boundaries?

In this work, we provide direct insight to these two questions using 
RCS on a two-dimensional grid of superconducting qubits. We dem-
onstrate that the interplay between quantum dynamics and noise can 
drive the system into distinct phases. The boundary between these 
phases can be resolved using finite-size studies with a fidelity esti
mation technique called cross-entropy benchmarking (XEB)2–4,21. 
Reaching the desired phase of maximized complexity requires a  
noise rate per cycle below a critical threshold whose value is deter
mined by the growth rate of quantum correlations.

The structure of these phases is schematically illustrated in Fig. 1. 
Driven by the circuit number of cycles or depth, the system first goes 
through a dynamical phase transition where the output distribution is 
no longer concentrated in a fraction of bit strings. Anti-concentration 

is a key ingredient of XEB and of mathematical arguments on the com-
plexity of simulating noiseless RCS2,22–25. Nevertheless, we will show 
that this is a necessary but not sufficient condition for global entan-
glement (Supplementary Information section H), which maximizes 
the computational cost.

The second transition is driven by noise, specifically the error rate per 
cycle ϵ × n, where ϵ is the error per gate and n is the number of qubits. 
As illustrated in Fig. 1, the behaviour of quantum correlations falls 
into two regimes: when the error rate per cycle is large, the state of 
the system can be approximately represented by several uncorrelated 
subsystems (equation (3)). This leaves the quantum system open to 
spoofing by classical algorithms that represent only part of the system 
at a time22,26,27. In the regime where the error rate per cycle is sufficiently 
low, correlations eventually span the entire system, thus restoring its 
computational complexity, and the experiment cannot be spoofed 
(Supplementary Information section F). The boundary between these 
two phases is determined by the competition between ϵ × n and the 
convergence of the system to the ergodic state. Reference 28 studied the 
same phase transition for one-dimensional and all-to-all connectivity.

We found that XEB is a proper observable and can be used to resolve 
the aforementioned regimes experimentally, as it is sensitive to  
the nature of the dominant correlations. Specifically, linear XEB is 
measured as

p sXEB = ⟨2 ( ) − 1⟩ , (1)n
sim s

where n is the number of qubits, p s( )sim  is the ideal (simulated) prob-
ability of bit string s and the average is over experimentally observed 
bit strings s. We measured XEB as a function of the number of cycles 
or depth d for different system sizes to resolve the dynamical phase 
transition (Fig. 1). The experimental results are shown in Fig. 2a,b for 
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one- and two-dimensional systems, respectively. We found that XEB 
increased with system size for small d. In this case, the system state was 
concentrated in a fraction of basis states. However, for large d, XEB 
decayed exponentially and approximated the circuit fidelity. At an 
intermediate number of cycles, we observed a single crossing point 
where all the measured XEB curves intersected and where XEB was 
approximately independent of the system size. The detailed theory 
presented in Supplementary Information section E shows that this is 
indeed a phase transition associated with the role of the boundary.

Having identified the minimum number of cycles at which XEB 
approximated the system fidelity, we formulated an experimental 
protocol for locating the transition between the strong- and weak-noise 
regimes (Fig. 1). A conceptually simple set-up that highlights the under-
lying physics for this transition is the so-called weak-link model, where 
two subsystems of size n/2 are coupled through an entangling gate 
applied every T cycles. In the limit where T = ∞ (no weak link is applied), 
the subsystems were uncoupled and the overall system converged to 
a product state ρA ⊗ ρB, where ρA and ρB are the pure ergodic states of 
each subsystem. Adding noise, we assumed the so-called depolarizing 
channel noise model for the density matrix of each subsystem A and 
B (ref. 29): Fd/2ρA/B + (1 − Fd/2)IA/B/2n/2, where IA (IB) is the identity matrix 
and F = e−ϵn is the fidelity. Direct substitution of this density matrix 
into equation (1) gives XEB = e−ϵnd + 2e−ϵnd/2. We use XEB = 1 for ρA/B and 
XEB = 0 for IA/B/2n/2.

At finite yet large T, each subsystem approached the ergodic state in 
less than T cycles. The application of a two-qubit gate between the two 
subsystems built global correlations, which, therefore, decreased the 
XEB term proportional to Fd/2 with some rate λ. This rate λ depends on 
the gate and was λ = 1/4 for the iSWAP-like gates employed in our experi-
ment (Supplementary Information section D). Therefore, a simplified 
model for linear XEB is

λ e eXEB ≈ 2 + . (2)d T nd nd/ −ϵ /2 −ϵ

We justify this equation by formally averaging circuit instances over 
two-replicas, which results in the so-called population dynamics formal-
ism (Supplementary Information section D). We probed this behaviour 
by measuring XEB experimentally as a function of d, as shown in Fig. 2c. 
We employed a noise-injection protocol that effectively changed the 

gate fidelities in our quantum circuits (Supplementary Information 
section C2) and show results corresponding to different noise levels. 
We used the discrete set of single-qubit gates chosen randomly from 
Z pX 1/2Z −p with p ∈ {−1, −3/4, −1/2, …, 3/4} and Z and X the corresponding 
Pauli matrices. We observed that in the weak-noise regime, XEB con-
verged to the expected fidelity of the entire system, Fd. This was because 
F was sufficiently high such that Fd dominated the contribution to XEB. 
On the other hand, XEB was significantly above Fd in the strong-noise 
regime owing to the dominant contribution of 2λd/TF d/2 to XEB. These 
results exemplify the competition between the exponential decay of 
global correlations proportional to ϵn and the entangling rate between 
subsystems (proportional to 1/T in this example).

The transition between the two different noise-induced phases was 
more clearly seen by fixing d to a few values and varying the effective 
noise level (F). We observed that XEB exhibits a non-trivial scaling 
distinct from F d (Fig. 2d). In particular, the rate of decay with respect 
to errors decreased at higher error rates. This is also consistent with 
2λd/TFd/2 being dominant at high errors.

To experimentally locate the critical value of the error per cycle (or 
equivalently, F) where the dynamical exponent of XEB changed, we 
defined a modified order parameter F d/XEB, which is asymptotic to 
a distinct value of 1 (0) in the weak (strong) noise regime. The transi-
tion between the two limits became a discontinuity when d → ∞, indi-
cating a phase transition for finite ϵn ≈ κc, where the critical value κc 
can be a function of λ and T. In the transition region, we observed the 
finite-size critical behaviour where Fd/XEB was approximately a func-
tion of (ϵn − κc)d. This was revealed in the order parameter for different 
numbers of cycles d crossing at a single point, as can be verified from 
equation (2) and numerically for the circuits used in the experiment.  
The experimentally obtained F d/XEB, shown in Fig. 3a–c,e,f, indeed 
manifested the expected critical behaviour. For ϵn ≲ κc, the order 
parameter increased as d was increased, whereas for ϵn ≳ κc, the order 
parameter decreased as d was increased. At the critical point ϵn ≈ κc, 
the datasets crossed and the order parameter was approximately inde-
pendent of d. We attribute the slight drift in the crossing point between 
different depths to potential systematic errors in the experimental 
estimation of F.

We extracted the critical noise rate for different link frequencies 1/T 
experimentally, numerically and analytically (Fig. 3d). When compar-
ing with the functional form ≃ϵn T4/ log2 predicted by the analytical 
weak-link model, we observed appreciable deviations when the link 
frequency approached 1/2, which corresponds to the regular 
one-dimensional chain. The deviation occurred because the weak-link 
model was no longer applicable in this regime. A more accurate descrip-
tion is provided by a generalization of this model in Supplementary 
Information section E1.

To explain the nature of the noise-induced phase transition for two 
and more dimensions, we extended the weak-link model from two 
subsystems to a number of subsystems equal to the number of qubits 
(see Supplementary Information section E2 for details). For depths 
d ≫ 1, the subsystems converge either to an appropriate ergodic state 
or to a state proportional to the identity matrix, as in the weak-link 
model. In the noiseless case, there are two stationary configurations, 
with either all subsystems in the identity matrix or all in the ergodic 
state. We expanded the noisy state around these two configurations 
using the so-called dilute flipped spin expansion. This generalizes 
equation (2) to

∑ ∑k
λ n

k
λ nXEB + 1

1
!

e ( ) +
1

!
e ( ) , (3)

k

ϵkd d k

k

ϵ n k d d k− − ( − )≃

where the first (second) term on the right-hand side corresponds to the 
expansion around the identity matrix (ergodic state). See Supplemen-
tary Information section D for the derivation. The index k describes the 
total number of subsystems not equal to the corresponding global state 
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Fig. 1 | Phase transitions in RCS. One phase transition goes between a 
concentrated output distribution of bit strings from RCS at a low number of 
cycles to a broad or anti-concentrated distribution. There is a second phase 
transition in a noisy system. A strong-enough error per cycle induces a phase 
transition from a regime where correlations extend to the full system to a 
regime where the system may be approximately represented by the product  
of several uncorrelated subsystems.
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and k! is its factorial. The first term on the right-hand side corresponds 
to the low-weight Pauli paths approximation in ref. 27. Finally, λ = 1/4 
for the iSWAP gate, as in the weak-link model.

The noise-induced phase transition appears in the thermodynamical 
limit n → ∞ at fixed ϵn and d n/log  (see Supplementary Information 
section E for details). We found

nXEB + 1 exp( 2 )(1 + e ). (4)d ϵnd−2 −≃

The second factor on the right-hand side corresponds to the global 
fidelity and dominates in the weak-noise regime ≪ϵn ln 4. The first 
factor describes the convergence to anti-concentration (Supplemen-
tary Information section E), in accordance with refs. 22,23, and domi-
nates in the strong-noise regime ϵn ln 4≫ . In this case, the first term 
on the right-hand side of equation (3) prevails, and by taking small k, 
the state can be approximately represented by several uncorrelated 
subsystems. On the one hand, as captured by equation (3), this transi-
tion corresponds to qualitatively different configurations. On the other 
hand, both regimes correspond to an ordered phase. The noise-induced 
phase transition is driven by a control parameter (analogous to a mag-
netic field in an Ising model) that scales with the system size (number 
of qubits). This is loosely like Fréedericksz transitions in liquid crystals30 
and is qualitatively different from the quantum to classical transition 
discussed in ref. 31. The transition discussed here is a competition 
between the finite rate of convergence to the overall ergodic state and 
the fidelity per cycle. The transition in ref. 31 is a competition between 

local interactions and the error rate per qubit and is related to the error 
threshold of quantum error correction codes.

The two-dimensional experimental results are shown in Fig. 3e,f 
for a 4 × 4 square grid of qubits and two different circuit structures, 
whereby the two-qubit gates were applied either in a staggered (Fig. 3e) 
or an unstaggered (Fig. 3f) fashion. As in one dimension, the 16-qubit 
system was divided into two halves connected by a single iSWAP-like 
gate applied every four cycles. For both circuit structures, we observed 
a similar crossing between Fd/XEB measured at three different cycles, 
with a higher value of ϵn observed for the unstaggered patterns.

We numerically evaluated critical noise rates for systems of different 
sizes and circuit structures without weak links, including both the stag-
gered and unstaggered patterns and the ABCD-CDAB pattern used in 
ref. 4. Here, we used Haar random single-qubit gates (Supplementary 
Information section D).

The vertical line in Fig. 3g gives a lower bound for the noise-induced 
phase transition. Furthermore, the noise-induced phase transition for 
the discrete gate set used in the experiment occurred at higher noise 
rates (Supplementary Information section F2). We compared this lower 
bound with the 67-qubit and 70-qubit RCS experiments that we will 
present next. We obtained the error per cycle by fitting the exponential 
decay of the fidelity (Fig. 4). It is evident that these experiments fell 
well within the weak-noise regime, satisfying the requirement to fully 
utilize the computational capacity of the noisy quantum processors.

We demonstrated beyond-classical RCS by performing an experi-
ment on a 67-qubit Sycamore chip (Fig. 4). These random circuits 
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Fig. 2 | Phase transitions in the linear cross-entropy. a–d, At a low number  
of cycles, XEB grows with the size of the system. In a noiseless device, XEB  
will converge to 1 with the number of cycles. In the presence of noise, XEB 
becomes an estimator of the system fidelity. a,b, We experimentally observed  
a dynamical phase transition at a fixed number of cycles between these two 
regimes in one (a) and two dimensions (b). The random circuits have Haar 
random single-qubit gates and an iSWAP-like gate as an entangler. c,d, We 

experimentally probed a noise-induced phase transition using a weak-link 
model (see the main text), where the weak link is applied every 12 cycles (discrete 
gate set; see main text). c, The two different regimes. In the weak-noise regime, 
XEB converges to the fidelity, whereas in the strong-noise regime, XEB remains 
higher than predicted by the digital error model. d, We induced errors to scan 
the transition from one regime to the other.
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followed the same two-dimensional ABCD-CDAB pattern as ref. 4. The 
single-qubit gates were chosen randomly from the discrete set ZpX1/2Z−p 
with p ∈ {−1, −3/4, −1/2, …, 3/4}. We show in Supplementary Informa-
tion section B the fidelity of the elementary operations of the random 
circuit. On average, we achieved a read-out error of 1.3(0.5) × 10−2, a 
dressed two-qubit Pauli error rate of 5.5(1.3) × 10−3 that can be further 
decomposed into a single-qubit Pauli error rate of 1.0(0.5) × 10−3, and 
an intrinsic two-qubit simultaneous error of 3.5(1.4) × 10−3. An intrinsic 
Pauli error rate of 3.5 × 10−3 corresponds to an average fidelity of 99.72%. 
We validated the digital error model by looking at patched variations 
of the random circuit (inset in Fig. 4a), where slices of two-qubit gates 
have been removed to create patched circuits for which each patch XEB 
can be verified for a modest computational cost. The total fidelity was 
then the product of the patch fidelities. Computing XEB over full cir-
cuits is, at present, an intractable classical task. We, thus, estimated the 
fidelity after 32 cycles using the discrete error model, obtaining 0.1%. 
This increased depth was possible thanks to the substantially reduced 
errors compared with previous processors. We collected over 70 million 
sample bit strings for a single circuit at this depth. In Supplementary 
Information section SC1, we report fidelities for another XEB experi-
ment, SYC-70, done on 70 qubits and with 24 cycles. In Fig. 4b, we verify 
these extracted fidelities with the Loschmidt echo, where we use the 
same circuit and its inversion to return to the initial state. We observed 
good agreement with the XEB experiment and the digital error model.

Finally, we estimated the equivalent classical computational cost of 
RCS with the tensor network contraction method7,11–16,18,32–34. With this 

method, ref. 15 classically sampled the RCS experiment performed 
in 20194 in 15 h using 512 GPUs. Reference 16 also performed this task 
with a similar cost. Furthermore, another team computed7 the cor-
responding XEB, which confirmed the predictions of ref. 4, which 
is a harder computational task than noisy sampling. Hence, these 
notable improvements in classical algorithms significantly raised 
the beyond-classical threshold. For completeness, in Supplementary 
Information section H, we also study matrix product states, a popular 
tensor network variational representation of one-dimensional quan-
tum states with limited entanglement35–37. We found that given current 
supercomputer memory constraints, matrix product states failed to 
reach the experimental fidelity and offered worse performance than 
tensor network contraction.

We report improvements in tensor network contraction techniques 
that resulted in lower estimated computational costs for simulated 
RCS (Supplementary Information section G). Figure 4c shows the time 
complexity or number of floating-point operations (FLOPs) (the num-
ber of real multiplications and additions) as a function of the number 
of qubits and cycles required to compute a single amplitude at the 
output of a random circuit without memory constraints, as we are 
optimizing only the contraction ordering of the underlying tensor 
network. The time complexity in this context is rigorously defined as 
the minimum contraction cost achievable in terms of FLOPs per ampli-
tude12, which we approximated by optimizing the contraction ordering. 
This served as a proxy lower bound for the hardness of both sampling 
and verification. For a fixed number of qubits and increasing number 
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as shown in the inset of e. For fixed size, we increased the number of bridges 
(such as the red coupler in e) until all bridges were applied (four and six for  
the 4 × 4 and 4 × 6 systems, respectively), denoted as links per four cycles in g. 
For all the patterns, we delimited a lower bound on the critical error rate  
of 0.47 errors per cycle to separate the region of strong noise where XEB failed 
to characterize the underlying fidelity and where global correlations were 
subdominant. The experimental results shown in Fig. 4 (SYC-67) and in 
Supplementary Information section C1 (SYC-70) are represented by red stars, 
which are well within the weak-noise regime.
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of cycles, there was a notional crossover in the scaling of the time com-
plexity from exponential to linear. Given a noisy experimental set-up, 
this implies an optimal number of cycles for the trade-off between 
computational time complexity and fidelity. Beyond the crossover, 
fidelity decreases faster than the time complexity increases. The cross-
over number of cycles is consistent with a scaling n. A line following 
the functional form d A n= , where n is the number of qubits, has been 
added as a guide to the eye. Note that this is related to the number of 
cycles at which ‘typical’ entanglement is achieved (Supplementary 
Information section H) and is a stronger requirement than the anti- 
concentration of the output distribution. For both 67 and 70 qubits, 
24 cycles was deep enough to saturate the exponential growth of this 
time complexity. Figure 4d shows the growth of the time complexity 
without memory constraints of the largest RCS experiments run over 
the last few years.

A practical estimate of the computational resources to simulate 
RCS needs to take into account the finite FLOPS (FLOPs per second) 
delivery of a supercomputer as well as its memory constraints and 
other limitations such as finite bandwidth. Table 1 shows estimates of 
the runtime for the approximate simulation of the largest instances of 
RCS from refs. 4–6 and the current work when using the state-of-the-art 
methods discussed in Supplementary Information section G. For these 
estimates, we considered sampling 1 million uncorrelated bit strings at 
a fidelity like that of the experiment using the current top-performing 
supercomputer, Frontier, which performs 1.7 × 1018 single-precision 
FLOPS of theoretical peak performance spread across GPUs with 128 GB 
of RAM each. This required the computation of 10 million approxi-
mate probability amplitudes of uncorrelated bit strings to be used 
in rejection sampling18. Despite notable progress in achieving tensor 
contraction algorithms that are embarrassingly parallelizable over 
each GPU14,32, we found that this technique broke down for the much 
deeper SYC-67 circuits with 32 cycles given the tight memory con-
straints. As a result, an estimated lower bound for the sampling cost 
became substantially more prohibitive. Assuming a distributed use of 
all RAM and under the unrealistic assumption of negligible bandwidth 
constraints, the computational cost was around 1 × 104 years (Table 1). 
In the untested case in which we expanded working memory to all 
secondary storage and still ignored the bandwidth, we obtained an 
estimate of 12 years.

In conclusion, our experiment provides direct insights on how quan-
tum dynamics interacts with noise. The observed phase boundaries 
lay out quantitative guidance to the regimes where noisy quantum 
devices can properly leverage their computational power. In addition, 
we present new RCS results with an estimated fidelity of 1.5 × 10−3 at 
67 qubits and 32 cycles or 880 entanglement gates, corresponding to 
more than doubling the circuit volume compared to ref. 4 for the same 
fidelity. Global correlations dominate XEB in the weak-noise phase, 
which protects RCS against ‘spoofing’ attacks, in contrast to boson 
sampling38, where all known metrics for recent experiments39–41 are 
dominated by local correlations42. Looking forward, despite the success 
of RCS in quantifying the available coherent resources, finding practi-
cal applications for near-term noisy quantum processors still remains 
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a, Verification of RCS fidelity with logarithmic XEB. The full device is divided 
into two (green) or three (blue) patches to estimate the XEB fidelity for a 
modest computational cost. We used the discrete gate set of single-qubit gates 
chosen randomly from Z pX 1/2Z −p with p ∈ {−1, −3/4, −1/2, …, 3/4}. For each number 
of cycles, 20 circuit instances were sampled with 100,000 shots each. The solid 
lines indicate the XEB estimated from the digital error model. b, Verification  
of RCS fidelity with Loschmidt echo. The inversion was done by reversing  
the circuit and inserting single-qubit gates. In this case, the Loschmidt echo 

number of cycles doubled. c, Time complexity estimated as a function of the 
number of qubits and the number of cycles for a set of circuits. As a working 
definition of time complexity, we used the number of FLOPs needed to 
compute the probability of a single bit string under no memory constraints. 
The solid line indicates the depth at which correlations spread to the full device 
and the FLOPs with depth go from exponential to polynomial. d, Evolution of 
the time complexity of the RCS experiments. The dashed line represents 
doubly exponential growth as a guide for the eye.

Table 1 | Estimated computational cost of simulation

Experiment d One amplitude 1 million noisy samples

(FLOPs) FLOPs XEB fidelity Time

SYC-53 (ref. 4) 20 5 × 1018 2 × 1018 2 × 10−3 6 s

ZCZ-56 (ref. 5) 20 1 × 1020 7 × 1020 6 × 10−4 20 min

ZCZ-60 (ref. 6) 24 6 × 1021 3 × 1023 3 × 10−4 40 days

SYC-70 24 4 × 1024 5 × 1026 2 × 10−3 50 years

SYC-67 32 1 × 1024 1 × 1038 1 × 10−3 1 × 1013 years

1 × 1029 1 × 104 yearsa

1 × 1026 12 yearsb

aWe include the cost estimated by assuming memory is distributed over all RAM, ignoring 
realistic bandwidth constraints.  
bWe include the cost estimated by assuming memory is distributed over all secondary storage, 
ignoring realistic bandwidth constraints. 
The second column shows the depth d of each experiment. The third column shows the  
FLOP count (number of real multiplications and additions) needed to compute a single output 
amplitude assuming no memory constraints. The last three columns refer to the cost of  
simulating the noisy sampling of 1 million bit strings. We used the specifications of Frontier for  
our estimates. This computer has a theoretical peak performance of 1.685 × 1018 single-precision 
FLOPS. We assumed 20% FLOP efficiency13–15 and accounted for the low target fidelity of 
the simulation in the computational cost13,14,18,33, as explained in Supplementary Information 
section G. SYC-67 refers to the experimental result shown in Fig. 4. All other rows used tensor 
contraction algorithms embarrassingly parallelizable over each GPU14,15,32. SYC-70 refers to the 
experimental results from Supplementary Information section C.
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an outstanding challenge. Certified randomness generation43,44 could 
be a promising candidate for such an application (Supplementary 
Information section I).
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