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Individualized decision making in on-
scene resuscitation time for out-of-
hospital cardiac arrest using
reinforcement learning
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Dong Hyun Choi 1,8, Min Hyuk Lim 2,3,8, Ki Jeong Hong 4,5 , Young Gyun Kim 6, Jeong Ho Park4,5,
Kyoung Jun Song5,7, Sang Do Shin4,5 & Sungwan Kim 1

On-scene resuscitation time is associated with out-of-hospital cardiac arrest (OHCA) outcomes. We
developed and validated reinforcement learning models for individualized on-scene resuscitation
times, leveraging nationwide Korean data. Adult OHCA patients with a medical cause of arrest were
included (N = 73,905). The optimal policy was derived from conservative Q-learning to maximize
survival. The on-scene return of spontaneous circulation hazard rates estimated from the Random
Survival Forest were used as intermediate rewards to handle sparse rewards, while patients’ historical
survival was reflected in the terminal rewards. The optimal policy increased the survival to hospital
discharge rate from 9.6% to 12.5% (95%CI: 12.2–12.8) and the good neurological recovery rate from
5.4% to 7.5% (95% CI: 7.3–7.7). The recommended maximum on-scene resuscitation times for
patients demonstrated a bimodal distribution, varying with patient, emergency medical services, and
OHCA characteristics. Our survival analysis-based approach generates explainable rewards,
reducing subjectivity in reinforcement learning.

Out-of-hospital cardiac arrest (OHCA) is a global leading cause of death
characterized by a high incidence (62.3 per 100,000 person-years) and low
survival rate (<10%)1,2. The outcomes of patients with OHCA depend on
multiple factors, including patient characteristics, bystander cardio-
pulmonary resuscitation (CPR), andprehospital resuscitationby emergency
medical services (EMS)3–5. The duration of prehospital resuscitation efforts
on the scene, known as on-scene resuscitation time, is also associated with
the outcomes of OHCA patients, albeit with mixed results6. Although some
studies suggested that the “scoop-and-run” strategy, advocating for early
intra-arrest transport, leads to better survival7,8, others indicated that
extended on-scene resuscitation until return of spontaneous circulation
(ROSC), known as “stay-and-play,” increases survival chances compared to
intra-arrest transport9.

The rationale behind determining the optimal on-scene resuscitation
time encompasses several considerations. On one hand, the quality of on-

scene chest compressions is higher compared to that of compressions
performed in a moving ambulance during intra-arrest transport10. Per-
forming extendedon-scene resuscitation is also associatedwith ahigher rate
of prehospital ROSC9,11. On the other hand, early intra-arrest transport to
the emergency department (ED) facilitates earlier provision of high-quality
advanced life support (ALS), which is particularly important in areas where
EMS is limited to providing basic life support (BLS)12. Additionally, early
intra-arrest transport can enable timely access to hospital resources,
including extracorporeal cardiopulmonary resuscitation (ECPR),which can
potentially improve patient outcomes7,13,14.

The EMS guidelines for initiating transport for patients with OHCA
vary by country, reflecting differences in EMS capabilities. In many Asian
countries, the “scoop-and-run” strategy is advocated because the ALS sys-
tem is less established12. For instance, Korean guidelines recommend con-
sidering transportation if ROSC is not achieved after 6min for BLS teams
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and 10min for ALS teams during on-scene resuscitation15. In contrast, the
“stay-and-play” strategy is predominantly adopted in Western countries
with ALS EMS systems6. Additionally, while termination of resuscitation
(TOR) is typically not performed in Korea unless there are signs of irre-
versible death, suchas rigormortis, it is oftenperformed after prolonged on-
scene resuscitation in ALS systems with dispatched physicians. Despite
these differences, both EMS strategies are fundamentally population-based
approaches.

While previous studies have identified a “one-size-fits-all” optimal on-
scene resuscitation time, few have attempted to develop personalized
approaches. One study developed models for predicting on-scene ROSC
and conducted a simulation analysis to explore how these models could be
used to enhance survival13. However, the simulationwas based on simplistic
assumptions, positing that the probability of survival decreases linearly over
time at an empirically set rate. Another study employed deep learning to
predict the outcomes of patients with OHCA, discovering that shorter on-
scene times correlatedwith favorable outcomes16. Nevertheless, the research
did not address “resuscitation time bias”, a phenomenon where extended
durations of resuscitation, suggestive of unsuccessful initial resuscitative
efforts, are linked to inferior outcomes9,17.

With recent advances in reinforcement learning techniques, efforts to
develop personalized treatment strategies have emerged within the medical
domain. Reinforcement learning was utilized to optimize the dose of
intravenous fluids and vasopressors for treatment of sepsis18. Deep Q-
learning,where a neural network learns the value of actions in specific states,
was used to develop a model to reduce cardiorespiratory instability by
choosing actions between mechanical and manual ventilation19. These
studies demonstrated that sequential decisions can be optimized using
reinforcement learning to improve patient outcomes.

Sparse actions and rewards are common challenges in reinforcement
learning within the medical domain, potentially leading to convergence
issues20,21. While reward-shaping methods like curiosity-driven exploration
havebeen introduced, a clearer definitionof rewards is often required froman
offline reinforcement learning perspective22. Previous studies have mainly

relied on empirically designed rewards for reinforcement learning, which
may introduce subjectivity andbias in assigning reward values23. If the reward
shaping process could be grounded in data-driven evidence from domain
knowledge, it would lead to more explainable and less biased policies.

Therefore, we aimed to develop and validate a reinforcement learning
model that uses knowledge-based, data-driven rewards to enable indivi-
dualized decision-making in determining on-scene resuscitation times for
patients with OHCA (Fig. 1). We hypothesized that the optimal on-scene
resuscitation time varies among individuals and that employing a tailored
decision-making approach would improve survival outcomes.

Results
Descriptive analysis
Among the 114,505 EMS-treated OHCA patients in the nationwide Korean
OHCA registry (KOHCAR) during the study period, 73,905 patients (63.2%
male), with a median age of 73 (interquartile range [IQR]: 60–82), were
included in the analysis (Fig. 2). The training, validation, and test sets com-
prised 43,576, 10,894, and 19,435patients, respectively. Themedian on-scene
resuscitation time was 13 (IQR: 9–17) minutes in the training and validation
sets, and 14 (IQR: 10–17) minutes in the test set. The proportion of patients
with on-scene ROSC ranged from 9.0% to 10.1%. Survival to hospital dis-
charge rates ranged from 9.5% to 9.6%, and the proportion of patients with
favorable neurological outcomes ranged from 4.9% to 5.4% (Table 1).

In the training set, the number of patients whowere transported intra-
arrest peaked at 10–14min after EMS on-scene resuscitation began. The
survival rate for patients transported intra-arrest peaked at 12%, showing a
decrease with prolonged on-scene resuscitation times. The survival to
hospital discharge rate forpatients achievingon-sceneROSCpeakedat 78%,
subsequently declining with extended on-scene durations (Fig. 3).

Thehistoricalon-sceneresuscitation timeswere longerwhen theOHCA
occurred in an urban region or a non-public place, during night hours, when
the initial rhythmwas non-shockable, and the EMS team level was advanced.
Patients who stayed on-scene for less than 15min received less prehospital
advanced airway management (63.9% vs. 85.0%) and prehospital

Fig. 1 | Overall study concept diagram.The development and evaluation process of
the reinforcement learning models is outlined. A patient’s status at each time step
(every 2 min) was modeled as the state, and the decision to continue on-scene
resuscitation or initiate transport was considered the action. The on-scene ROSC
hazard rate of each individual at each time step was used to derive the intermediate

rewards and the actual survival to hospital discharge result of each patient was
reflected in the terminal reward. The policies were evaluated using fitted
Q-evaluation. s state, a action, ROSC return of spontaneous circulation, EMS
emergency medical services, OHCA out-of-hospital cardiac arrest, FAMD Factor
Analysis of Mixed Data.
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epinephrine (5.9% vs. 27.5%) compared to those who stayed 15min ormore.
Among patients in the training set, 238 (0.5%) and 1155 (2.7%) patients
received ECPR and immediate percutaneous coronary intervention (PCI),
respectively. The time from call to ECPR pump-on was significantly shorter
for those with on-scene resuscitation times under 15min (median [IQR]: 75
[60–94]minutes) compared to thosewith 15min ormore (median [IQR]: 84
[68–96]minutes). The time fromcall to immediate PCIwas also significantly
reduced for patientswith on-scene resuscitation times under 15min (median
[IQR]: 118 [95–151] minutes) compared to those with 15min or more
(median [IQR]: 135 [110–176] minutes; Table 2).

Reinforcement learning model development and evaluation
Figure 1 illustrates the overall flow of the reinforcement learning model
development and evaluation process in this study. A patient’s status at each
time step (2-min CPR cycle) was modeled as the state, and the decision to
continue on-scene resuscitation or initiate transport was considered the
action. The on-scene ROSC hazard rate of each individual at each time step
was used to derive the intermediate rewards and the actual survival to
hospital discharge result of eachpatientwas reflected in the terminal reward.
The Random Survival Forest (RSF) model, used to estimate the hazard rate
for on-scene ROSC, demonstrated a C-index of 0.882 and an integrated
Brier score of 0.067 in the validation set. The average on-sceneROSChazard
rates per time step showed higher rates for patients who actually achieved
ROSC compared to those who did not (Supplementary Fig. 1).

The policy value of the historical policy was 0.096 (95% confidence
interval [CI]: 0.093–0.098). The expected cumulative reward for each
patient under the historical policy was well-calibrated with the actual sur-
vival to hospital discharge rate (Fig. 4). The policy value of the optimal
policy, the Conservative Q-Learning (CQL) model with the highest 95%
lower bound, was 0.127 (95% CI: 0.124–0.129). For patients whom the
optimal policy recommended either a shorter or longer on-scene resusci-
tation duration, adherence to the policy increased the expected cumulative
rewards compared to those in the historical policy (Fig. 5). The optimal
policy’s expected survival to hospital discharge rate was 12.5% (95% CI:
12.2–12.8), significantly higher than those of the historical (9.6%), 10-min
(9.6%; 95% CI: 9.3–9.8) and 30-min (10.0%; 95% CI: 9.8–10.3) policies.
Additionally, its expected rate of good neurological recovery was 7.5% (95%
CI: 7.3–7.7), surpassing that of the historical (5.4%), 10-min (5.6%; 95%CI:
5.4–5.7) and 30-min (5.8%; 95% CI: 5.6–6.0) policies (Fig. 4).

The recommended maximum on-scene resuscitation time exhibited a
bimodal distribution, with a median of 26min and peaks at 2 and 28min
(Fig. 6). The proportion of patients with a recommended maximum on-
scene resuscitation time of less than 6min was greater among those with
younger age, male sex, comorbidities, an urban or ECPR-capable location,
application of bystander automated external defibrillator (AED), and initial
shockable rhythm (Supplementary Table 1).Witnessed by EMS, basic EMS
team level, application of mechanical CPR in the prehospital, and shorter
response time interval (RTI), were also associated with a shorter median
recommended maximum on-scene resuscitation time (Fig. 6).

Ablation study
The optimal policy using only CoreUtstein variables increased the expected
survival tohospital discharge rate to11.9%(95%CI: 11.7–12.2) and thegood
neurological recovery rate to 7.1% (95% CI: 6.9–7.3). The optimal policy
including ED level as a variable increased the expected survival to hospital
discharge rate to 13.1% (95% CI: 12.8–13.4) and the good neurological
recovery rate to 7.9% (95% CI: 7.6–8.1). Overall, the recommended max-
imum on-scene resuscitation time displayed a similar trend with the main
study.When the receivingEDwasofhigherquality (level1–2), patientswere
recommended shorter maximum on-scene resuscitation times (Supple-
mentary Fig. 2).

Implications for settings with termination of resuscitation
Weexplored the potential implications of the optimal policy for EMS settings
whereTOR is permitted.Whenhypothesizing that patients in the training set
withQ-values below0.003 at the timeof intra-arrest transportwere subject to
TOR, the specificity of this TOR rule for predicting death was 0.992 (Sup-
plementary Fig. 3). We then evaluated the performance of a TOR rule based
on this criterion in the test set. The sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) were 0.081 (0.077–0.085),
0.984 (0.978–0.989), 0.980 (0.971–0.986), and 0.102 (0.097–0.106), respec-
tively. For the ALS-TOR rule, these values were 0.133 (0.128–0.138), 0.984
(0.978–0.989), 0.988 (0.982–0.991), and 0.107 (0.103–0.112), respectively24.

Discussion
In this nationwide retrospective cohort study, we utilized reinforcement
learning to develop models for individualized decision-making in on-scene
resuscitation time to optimize the survival outcome for OHCA patients.

Fig. 2 | Study data flowchart. Adult EMS-treated
OHCA patients with a medical cause of arrest who
did not meet any exclusion criteria were included in
this study. A total of 73,905 patients were divided
into training (N = 43,576), validation (N = 10,894),
and test (N = 19,435) sets. EMS emergency medical
services, OHCA out-of-hospital cardiac arrest,
ROSC return of spontaneous circulation.
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Table 1 | Characteristics of patients in the training, validation and test sets

Total Training set Validation set Test set

Total 73,905 43,576 10,894 19,435

Age, years 73 (60–82) 73 (59–81) 73 (60–82) 74 (60–82)

Sex, male 46,720 (63.2) 27,524 (63.2) 6846 (62.8) 12,350 (63.5)

Diabetes mellitus 16,850 (22.8) 9765 (22.4) 2442 (22.4) 4643 (23.9)

Hypertension 25,804 (34.9) 14,924 (34.2) 3725 (34.2) 7155 (36.8)

Heart disease 13,147 (17.8) 7478 (17.2) 1869 (17.2) 3800 (19.6)

Time of day, daytime (6AM-6PM) 46,694 (63.2) 27,489 (63.1) 6815 (62.6) 12,390 (63.8)

Region, urban 63,892 (86.5) 37,697 (86.5) 9407 (86.4) 16,788 (86.4)

ECPR-capable district 38,615 (52.2) 22,803 (52.3) 5723 (52.5) 10,089 (51.9)

Presumed cardiac cause 70,288 (95.1) 41,408 (95.0) 10,379 (95.3) 18,501 (95.2)

Place of arrest

Public 12,390 (16.8) 7330 (16.8) 1793 (16.5) 3267 (16.8)

Non-public 61,507 (83.2) 36,239 (83.2) 9100 (83.5) 16,168 (83.2)

Missing 8 (0.0) 7 (0.0) 1 (0.0) 0 (0.0)

Witnessed status

EMS witnessed 1754 (2.4) 917 (2.1) 218 (2.0) 619 (3.2)

Bystander witnessed 44,075 (59.6) 26,512 (60.8) 6604 (60.6) 10,959 (56.4)

Unwitnessed 27,727 (37.5) 15,892 (36.5) 4015 (36.9) 7820 (40.2)

Missing 349 (0.5) 255 (0.6) 57 (0.5) 37 (0.2)

Bystander CPR

Dispatcher-assisted 33,569 (45.4) 19,506 (44.8) 4818 (44.2) 9245 (47.6)

Unassisted 15,437 (20.9) 9295 (21.3) 2343 (21.5) 3799 (19.5)

No CPR 23,764 (32.2) 14,037 (32.2) 3565 (32.7) 6162 (31.7)

Missing 1135 (1.5) 738 (1.7) 168 (1.5) 229 (1.2)

Bystander AED use

Yes 3191 (4.3) 1938 (4.4) 465 (4.3) 788 (4.1)

No 70,160 (94.9) 41,341 (94.9) 10,347 (95.0) 18,472 (95.0)

Missing 554 (0.7) 297 (0.7) 82 (0.8) 175 (0.9)

Initial rhythm

Shockable 12,524 (16.9) 7512 (17.2) 1838 (16.9) 3174 (16.3)

Non-shockable 61,123 (82.7) 35,882 (82.3) 9007 (82.7) 16,234 (83.5)

Missing 258 (0.3) 182 (0.4) 49 (0.4) 27 (0.1)

EMS team level

Advanced 70,855 (95.9) 41,405 (95.0) 10,347 (95.0) 19,103 (98.3)

Basic 3050 (4.1) 2171 (5.0) 547 (5.0) 332 (1.7)

Prehospital mechanical CPR 10,330 (14.0) 4589 (10.5) 1188 (10.9) 4553 (23.4)

RTI, min 7 (5–9) 7 (5–9) 7 (5–9) 7 (5–9)

On-scene resuscitation time, min 13 (10–17) 13 (9–17) 13 (9–17) 14 (10–17)

TTI, min 6 (4–10) 6 (4–10) 6 (4–10) 6 (4–10)

Prehospital airway

Endotracheal intubation 5989 (8.1) 3742 (8.6) 906 (8.3) 1341 (6.9)

Supraglottic airway 48,994 (66.3) 27,585 (63.3) 6836 (62.8) 14,573 (75.0)

No 18,922 (25.6) 12,249 (28.1) 3152 (28.9) 3521 (18.1)

Prehospital epinephrine 11,725 (15.9) 6136 (14.1) 1495 (13.7) 4094 (21.1)

On-scene ROSC 6962 (9.4) 4022 (9.2) 985 (9.0) 1955 (10.1)

ED level

Level 1–2 49,440 (66.9) 28,879 (66.3) 7130 (65.4) 13,431 (69.1)

Level 3 24,465 (33.1) 14,697 (33.7) 3764 (34.6) 6004 (30.9)

ECPR 422 (0.6) 238 (0.5) 50 (0.5) 134 (0.7)

Time from call to ECPR pump-on, min 79 (64–97) 78 (62–95) 84 (58–109) 83 (67–97)

Immediate PCI 2042 (2.8) 1155 (2.7) 301 (2.8) 586 (3.0)

Time from call to immediate PCI, min 123 (98–162) 120 (98–158) 121 (97–163) 125 (100–168)

Survived to hospital discharge 7039 (9.5) 4136 (9.5) 1043 (9.6) 1860 (9.6)

Good neurological recovery 3709 (5.0) 2125 (4.9) 543 (5.0) 1041 (5.4)

Categorical variables are presented as numbers (percentages) and continuous variables are presented as medians (interquartile ranges). Immediate PCI is defined as PCI within 6 h from emergency call.
ECPR extracorporeal cardiopulmonary resuscitation,EMS emergencymedical services,CPR cardiopulmonary resuscitation,AED automated external defibrillator,RTI response time interval,TTI transport
time interval, ROSC return of spontaneous circulation, ED emergency department, PCI percutaneous coronary intervention.
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Data-driven intermediate rewards derived from survival analysis method
were incorporated based on domain knowledge to handle the convergence
issue of sparse rewards.Ourfindings indicate that the learnedoptimal policy
is expected to increase the survival to hospital discharge rate from 9.6% to
12.5% and the good neurological recovery rate from 5.4% to 7.5%. The
recommended maximum on-scene resuscitation duration varied for dif-
ferent patients, EMS, and OHCA characteristics. During the implementa-
tion phase, the recommendedmaximumon-scene resuscitation time can be
determined early using information gathered by the dispatcher or EMS
personnel immediately upon arrival at the scene. If a patient achieves on-
scene ROSC, transport to the hospital can be initiated; otherwise, the patient
can be resuscitated on-scene until the recommended maximum on-scene
resuscitation time.

The main contributions of our study are threefold in clinical and
methodological aspects. First, to the best of our knowledge, this is the first
study to utilize reinforcement learning for individualized decision-making
within the context of OHCA research. This approach has the potential to
address resuscitation time bias through sequential modeling of changing
patientROSC status. Second,wepropose a survival analysis-based anddata-
driven approach to generating personalized rewards in reinforcement
learning, thereby reducing subjectivity in shaping reward values. Third, the
reward system we established directly mirrors clinical outcomes, allowing
the cumulative reward within our reinforcement learning framework to not

merely be proportional to, but also be interpreted as, the probability of
survival itself.

Most EMS systems adopt population-based strategies, either the stay-
and-play or scoop-and-run policy. While easy to implement, these
approaches fail to account for variations in patient characteristics, EMS
capability, and circumstances of the OHCA event. This study showed that
the 10- and 30-min policies, representing these uniform strategies, were
inferior to an individualized optimal on-scene resuscitation time strategy. A
previous study employing time-dependent propensity score matching
advocated for continued on-scene resuscitation over intra-arrest transport.
However, in its subgroup analysis, longer durations of on-scene resuscita-
tion, basic level of EMS, and witness by EMS shifted the preference toward
intra-arrest transport9. Another study proposed that patients with a higher
chance of on-scene ROSC could benefit from a longer on-scene resuscita-
tion time13. The evidence from these studies corroborates our hypothesis
that an optimal on-scene resuscitation duration exists, varying with specific
patient, EMS, and OHCA characteristics.

The recommended maximum on-scene resuscitation time showed a
bimodal pattern, with fewer recommendations for durations under 6min
and more recommendations for durations of 24min or longer. This result
alignswith recent evidence suggesting that prolongedon-scene resuscitation
benefits the general population, while early intra-arrest transport is
advantageous for specific groups that require early in-hospital

Fig. 3 | Frequency and survival to hospital dis-
charge rate of patients in the training set whowere
transported intra-arrest or achieved on-scene
ROSC at different on-scene resuscitation times.
a The number of patients who were transported
intra-arrest or achieved on-scene ROSC at a specific
time point is displayed. b The survival to hospital
discharge rate of patients who were transported
intra-arrest or achieved on-scene ROSC at a specific
time point is displayed. EMS emergency medical
services, ROSC return of spontaneous circulation.
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interventions9,25. The divergence of our finding from previous studies
advocating a shorter on-scene time might be attributed to the lack of con-
sideration for resuscitation time bias in those studies8,16. One approach to
mitigate resuscitation time bias involves employing time-dependent pro-
pensity scores tomatch patients with similar risks of intra-arrest transport9.
In our research utilizing offline reinforcement learning, we addressed
resuscitation time bias through the framework’s dynamic and sequential
decision-making capabilities. By incorporating changes in patient state
(such as ROSC) and decisions (whether to transport) at eachCPR cycle, our
approach mitigates resuscitation time bias while allowing individualized
decision-making.

In this study, on-scene resuscitation times shorter than 6min were
advocated for patients who were younger, male, diagnosed with heart dis-
ease, andwith an initial shockable rhythm.Previous researchhas shown that
these characteristics are associated with a cardiac etiology, provision of PCI,
and ECPR, suggesting that these patients could benefit more from early
hospital transport to receive timely interventions25,26. This is further sup-
ported by theobservation that a large proportionof patientswhohistorically
received ECPR or immediate PCI were recommended on-scene resuscita-
tion times of less than 6min (Supplementary Table 1). Since urban and
ECPR-capable areas can usually provide more extensive in-hospital treat-
ments, a shorter on-scene resuscitation time may be preferred. In urban
locations, the transport time to a hospital is typically shorter, and a short
EMSresponse timemay further imply a short transport duration.Given that
the period of low-quality compressions delivered in a moving ambulance
would be reduced under these circumstances, early intra-arrest transport
may be advisable as observed in our study. Furthermore, a basic-level EMS
team, limited inperforming intubation andadministering epinephrine,may
benefit from earlier hospital transport to access ALS services.

Interestingly, themajority of patients whomay be potential candidates
forECPR, according toprevious studies,were recommended short on-scene
resuscitation times (Supplementary Fig. 4)14,25. This result aligns with pre-
vious studies that emphasized the importance of shorter time to ECPR for
favorable outcomes in patients with OHCA27,28. It also implies that while
only a portion of these patients would have refractory ventricular arrhyth-
mias or be able to receive ECPR due to hospital circumstances, early intra-
arrest transport without delay may still be beneficial.

Table 2 | Characteristics of patients in the training set
according to on-scene resuscitation time

On-scene resuscitation time p-value

<15min ≥15min

Total 27,049 16,527

Age, years 73 (59–82) 73 (59–81) 0.35

Sex, male 17,011 (62.9) 10,513 (63.6) 0.13

Diabetes mellitus 5814 (21.5) 3951 (23.9) <0.001

Hypertension 9140 (33.8) 5784 (35.0) 0.01

Heart disease 4680 (17.3) 2798 (16.9) 0.32

Time of day, daytime
(6AM-6PM)

17,353 (64.2) 10,136 (61.3) <0.001

Region, urban 22,815 (84.3) 14,882 (90.0) <0.001

ECPR-capable district 12,940 (47.8) 9863 (59.7) <0.001

Presumed cardiac cause 25,678 (94.9) 15,730 (95.2) 0.25

Place of arrest <0.001

Public 5203 (19.2) 2127 (12.9)

Non-public 21,840 (80.7) 14,399 (87.1)

Missing 6 (0.0) 1 (0.0)

Witnessed status <0.001

EMS witnessed 735 (2.7) 182 (1.1)

Bystander witnessed 16,599 (61.4) 9913 (60.0)

Unwitnessed 9524 (35.2) 6368 (38.5)

Missing 191 (0.7) 64 (0.4)

Bystander CPR <0.001

Dispatcher-assisted 12,048 (44.5) 7458 (45.1)

Unassisted 6267 (23.2) 3028 (18.3)

No CPR 8251 (30.5) 5786 (35.0)

Missing 483 (1.8) 255 (1.5)

Bystander AED use <0.001

Yes 1518 (5.6) 420 (2.5)

No 25,322 (93.6) 16,019 (96.9)

Missing 209 (0.8) 88 (0.5)

Initial rhythm <0.001

Shockable 5095 (18.8) 2417 (14.6)

Non-shockable 21,802 (80.6) 14,080 (85.2)

Missing 152 (0.6) 30 (0.2)

EMS team level <0.001

Advanced 25,426 (94.0) 15,979 (96.7)

Basic 1623 (6.0) 548 (3.3)

Prehospital
mechanical CPR

2462 (9.1) 2127 (12.9) <0.001

RTI, min 7 (5–10) 7 (5–9) <0.001

On-scene resuscitation
time, min

10 (8–12) 18 (16–22) <0.001

TTI, min 7 (4–11) 6 (4–10) <0.001

Prehospital airway <0.001

Endotracheal
intubation

1772 (6.6) 1970 (11.9)

Supraglottic airway 15,499 (57.3) 12,086 (73.1)

No 9778 (36.1) 2471 (15.0)

Prehospital epinephrine 1593 (5.9) 4543 (27.5) <0.001

On-scene ROSC 3340 (12.3) 682 (4.1) <0.001

ED level <0.001

Table 2 (continued) | Characteristics of patients in the training
set according to on-scene resuscitation time

On-scene resuscitation time p-value

<15min ≥15min

Level 1–2 17,613 (65.1) 11,266 (68.2)

Level 3 9436 (34.9) 5261 (31.8)

ECPR 150 (0.6) 88 (0.5) 0.76

Time from call to ECPR
pump-on, min

75 (60–94) 84 (68–96) 0.04

Immediate PCI 937 (3.5) 218 (1.3) <0.001

Time from call to
immediate PCI, min

118 (95–151) 135 (110–176) <0.001

Survived to hospital
discharge

3555 (13.1) 581 (3.5) <0.001

Good neurological
recovery

1926 (7.1) 199 (1.2) <0.001

Categorical variables are presented as numbers (percentages) and continuous variables are
presented as medians (interquartile ranges). Immediate PCI is defined as PCI within 6 h from
emergency call.
ECPR extracorporeal cardiopulmonary resuscitation, EMS emergency medical services, CPR
cardiopulmonary resuscitation,AEDautomatedexternal defibrillator,RTI response time interval,TTI
transport time interval, ROSC return of spontaneous circulation, ED emergency department, PCI
percutaneous coronary intervention.
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Fig. 4 | Off-policy evaluation results of different policies in the test set. a Policy
value distribution of 30CQLmodels and the optimal, historical, 10-min, and 30-min
policies. The policy values of the 30 CQLmodels are shown as a yellow box plot. The
optimal policy is the CQLmodel that maximized the 95% lower bound of the policy
value. The 10-min policy was defined as a policy with 10 min of on-scene resusci-
tation if ROSC is not achieved on-scene. The 30-min policy was defined as the
approach with 30 min of on-scene resuscitation if ROSC is not achieved on-scene.

b The distribution of expected cumulative rewards for patients under each policy is
shown. The mean expected cumulative rewards under each policy are shown as “x”.
Relationship between expected cumulative rewards under historical policy and (c)
survival to hospital discharge rate and (d) good neurological recovery rate. e Policy
values, expected survival to hospital discharge rate, and expected good neurological
recovery rate of each policy. CQL conservative Q-learning, CI confidence interval,
ROSC return of spontaneous circulation.
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To address the issue of sparse rewards and enhance learning efficiency,
we introduced data-driven intermediate rewards based on knowledge of
survival analysis. The empirical design of these rewards could lead to sub-
jectivity in determining optimal outcome of mathematically formulated
clinical problems because coefficients and values in rewards of reinforce-
ment learningmay be arbitrarily determined and optimal outcome can also
be affected by values of rewards. Thus, we adopted the hazard function,
which can be viewed as a discrete version of the time-derivative of the
probability of an event (e.g., on-sceneROSC inour study), to provide a clear,
data-driven, and knowledge-based method for reward shaping. This
approach enables themodel to balance the survival benefits of achieving on-
scene ROSC against the potential decrease in survival rate due to delayed
transport during intra-arrest. Moreover, considering that the primary eva-
luationmetric of our study is survival probability, using the hazard function
as the basis for designing rewards is both logical and intuitive in terms of
explainability. When reinforcement learning problems are defined in clin-
ical settings, the values of rewards for establishing value functions and
Q-functions are sometimes vague and subjective even though experts’ views
are reflected19,29,30. Our approachwas able to relieve this issue by considering
that rewards can also be designed by data and knowledge of methods of
survival analysis.

Another approachwe adopted to improve the learning efficiency of the
reinforcement learning model was employing Factor Analysis of Mixed
Data (FAMD) to reduce the state space dimensions31. FAMD outputs
effectively captured the essential information of the original data: the first
axis predominantly captured data regarding witness and bystander resus-
citation; the second and fourth focused on patient characteristics and initial
rhythm; while the third axis concentrated on information pertinent to the

EMS (Supplementary Fig. 5). Since patient and EMS characteristics remain
constant over time, reducing the dimensions for these features can help the
reinforcement learningmodel concentrate on learning the changes inROSC
status over time.

The expected cumulative rewards for patientswerewell calibratedwith
the actual survival to hospital discharge rates (Fig. 4). This suggests that the
reward system we designed is effectively structured for a reinforcement
learning task aimed at optimizing survival to hospital discharge in patients
with OHCA. Moreover, the expected cumulative reward for each patient
can be directly considered as the probability of survival to hospital discharge
for that specific patient, with a one-to-one ratio. The advantages of this
approach include the intuitive interpretability of the expected cumulative
reward and the simplified performance evaluation of various policies within
this reward framework.

Given that TOR is frequently performed in ALS-based EMS systems,
we explored the potential integration of the developed optimal policy with a
TOR rule. The specificity of applying TOR for patients who did not achieve
on-sceneROSCandhadQ-values below 0.003was 0.984, comparable to the
ALS-TOR rule (0.984), though both were slightly below the recommended
0.99 specificity for TOR rules32. TheQ-value-based TOR rule can be applied
alongside the optimal policy at every 2-minCPRcycle to determinewhether
to remainon-scene, initiate intra-arrest transport, or terminate resuscitation
(Supplementary Fig. 3).While the optimal policy was developed in a setting
without TOR, it can be adapted for use with Q-value-based or conventional
TOR rules in other systems.

The shift towards personalizedmedicine marks a significant evolution
in healthcare, promising more effective treatments tailored to individual
characteristics33. However, the integration of personalized medicine into

Fig. 5 | Changes in expected cumulative rewards
according to the difference in on-scene resuscita-
tion time between the optimal and historical
policy. a The difference in expected cumulative
rewards becomes greater as the divergence in on-
scene resuscitation times increases. b The numbers
of patients according to the difference in on-scene
resuscitation times are shown.
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OHCA research is limited, with studies mainly focused on predicting
individual patient outcomes or analyzing treatment responses by clustering
different patient groups34. Reinforcement learning is effective for indivi-
dualized decision-making, particularly in scenarios where patients’ statuses
change over time, necessitating sequential, time-sensitive decisions to
optimize outcomes.

This study has several limitations that warrant attention. First, the
retrospective design may introduce the potential for unmeasured biases.
Second, inaccuracies in recording on-scene resuscitation times cannot be
ruled out, as EMS personnel record these times post-event. Third, our
approach involved offline reinforcement learning and off-policy evaluation
formodel development and validation. The datamay have some limitations
in sufficiently covering the entire state and action space, possibly leading to

suboptimal model performance or biases in estimated outcomes. Fourth,
our findings may not be universally applicable across different EMS and
hospital settings. The advantage of earlier intra-arrest transport may vary
depending on the capabilities of the EMS and the receiving hospital. Since
advanced emergency medical technicians (EMTs) are only permitted to
perform ALS under direct medical oversight in Korea, the frequency of
advanced airway management and epinephrine administration is lower
than in Western countries. Additionally, ECPR is not yet widely imple-
mented in Korea, and patients in the defined ECPR-capable districts may
not have been actually capable of receiving ECPR. Fifth, we did not consider
on-scene rearrests afterROSCbecausewehypothesized that transport to the
hospital would have been immediately initiated for most patients who
achieved on-scene ROSC, assuming that the incidence of rearrests on-scene

Fig. 6 | Violin plots of recommended maximum on-scene resuscitation times for
patients in the test set according to different characteristics. The recommended
maximum on-scene resuscitation time is defined as the recommended duration of
on-scene resuscitation in cases where a patient fails to achieve on-scene return of

spontaneous circulation. The widths of the violin plots are proportional to the
number of patients and are normalized across violins. ECPR extracorporeal cardi-
opulmonary resuscitation, EMS emergencymedical services, CPR cardiopulmonary
resuscitation, AED automated external defibrillator.
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would be infrequent. Sixth, due to our exclusion criteria, we were unable to
identify patients who might benefit from on-scene resuscitation times
exceeding 30min. Finally, the real-world implementation of the optimal
policy might be hindered by practical challenges in adhering to the
recommended on-scene resuscitation times under varying circumstances.
For example, OHCAs occurring in confined or dark spaces, private houses
with many stairs, or involving patients who are too obese to move, can all
present significant challenges.

Further research is planned to implement the developed model in the
clinicalfield.Wewill investigate not only the timing of transport but also the
choice of hospital destination, incorporating geospatial information to
optimize individualized transport strategies for OHCA patients. Addi-
tionally, we plan to conduct a pragmatic clinical trial to investigate the
integration of this model into EMS and assess its effectiveness in improving
patient outcomes.

In conclusion, this study utilized reinforcement learning to establish
individualized optimal on-scene resuscitation times. Our findings suggest
that implementing an individualized policy could significantly improve the
survival to hospital discharge and good neurological recovery rates in
patients with OHCA. In the engineering aspects, we proposed a survival
analysis-based, data-driven approach to generate explainable rewards. This
approach aims to minimize the subjectivity of optimality and address the
issue of sparse rewards in reinforcement learning. We believe that our
approach holds potential for intuitively designing reinforcement learning-
based formulationswith reduced ambiguity in various healthcare problems.

Methods
Study design and setting
This retrospective cohort studyutilizeddata from thenationwideKOHCAR
during theperiod fromJanuary2016 toDecember201935.Data from2016 to
2018were randomly divided in an 8:2 ratio into training and validation sets,
respectively. Thedata from2019were usedas the test set. The study received
ethical approval from the institutional review boards of Seoul National
University Hospital (IRB No. 1103-153-357), and the requirement for
informed consent was waived owing to the study’s retrospective design and
the anonymization of patient data.

Korea’s public EMS system is exclusively operated by theNational Fire
Agency, encompassing 18 provincial fire departments and dispatch centers,
covering the entire population of approximately 50 million across
100,210 km2. The EMS is a multi-tiered system that offers basic to inter-
mediate levels of care. EMS providers in Korea include nurses and EMTs at
both basic and advanced levels. Nurses and advanced EMTs are authorized
to provide ALS, including advanced airway management and fluid
administration, under direct medical oversight. In contrast, basic EMTs are
limited to BLS services, such as CPR and the use of AEDs36. Prehospital
mechanical CPR can be initiated before departure from the scene if the
device is available in the ambulance37. Prehospital ECPR is currently not
implemented and ECPR is only possible in a limited number of hospitals38.
Physicians are not dispatched on scene and EMS personnel are not
authorized to declare death at the scene unless signs of irreversible death are
evident; thus, all patients with OHCA are transported to the nearest ED
without TOR. EDs are categorized into three levels: level 1 (38 facilities) and
level 2 (119 facilities) handle thehighest patient volumes and are staffedwith
emergency physicians at all times, while level 3 (261 facilities) can be staffed
by general physicians39.

Data source
The KOHCAR, initiated in 2008, captures all EMS-treated OHCA patients
in Korea. This comprehensive registry merges information from EMS run
sheets, the EMS OHCA registry, and hospital medical records. Data
recorded by EMS professionals on the EMS run sheets and OHCA registry
include patient demographics, OHCA event circumstances, and EMS
interventions. Trained medical record reviewers extract details on in-
hospital care and clinical outcomes of patients with OHCA. The KOHCAR
undergoes monthly quality control checks, with feedback provided to both

EMS providers and medical record reviewers to ensure data accuracy and
reliability35,39.

Study population
This study included adult (aged ≥18 years), EMS-treated OHCA patients
with amedical cause of arrest. Exclusions were applied to patients with (1) a
non-medical etiology such as trauma, asphyxia, drowning, poisoning, or
burns; (2) do-not-resuscitate orders; (3) transport initiated prior to cardiac
arrest; and (4) lacking information on on-scene resuscitation time or the
status or timing of on-scene ROSC. Additionally, cases with an on-scene
resuscitation time exceeding 30min were excluded due to their small
number, which could lead to unreliable analysis results. The inclusion cri-
teria were determined based on previous research and aimed to develop an
individualized policy for a broad range of patients, encompassing thosewith
shockable and non-shockable rhythms9,16.

Study outcomes
The primary outcome of this study was survival to hospital discharge. The
secondary outcome was good neurological recovery, defined as a cerebral
performance category score of 1 (good cerebral performance) or 2 (mod-
erate cerebral disability) at hospital discharge40.

Variables and measurements
The exact times, up to theminute, of when the dispatchers received the call,
when the EMS arrived at the scene, when the EMS started on-scene
resuscitation, when a patient achieved ROSC, and when the ambulance
departed from the scene were obtained from the KOHCAR. RTI was
defined as the duration fromwhen dispatchers received the call to when the
EMS arrived at the scene.

Binary variables included sex, history of diabetesmellitus, hypertension,
and heart disease, time of day (daytime [6AM-6PM] vs. nighttime [6PM-
6AM]), region (urbanvs. rural), ECPR-capable district (yes vs. no), presumed
cause of arrest (cardiac vs. others), place of arrest (public vs. non-public),
bystanderAEDuse (yes vs. no), initial rhythm(shockable vs. non-shockable),
EMSteamlevel (advancedvs. basic), prehospitalmechanicalCPR(yes vs. no),
and ED level (levels 1–2 vs. level 3). Witnessed status was categorized into
EMSwitnessed, bystander witnessed, and not witnessed. Bystander CPRwas
classified as dispatcher-assisted, unassisted, and no bystander CPR.

The region was classified based on Korea’s administrative districts,
which comprises 250 administrative districts designated as cities (Si),
counties (Gun), or districts (Gu)41. Counties (Gun), typically with popula-
tions under 100,000, were considered rural areas, while cities (Si) and dis-
tricts (Gu) were considered urban areas. ECPR-capable district was defined
as a district with at least one ECPR case in the training set38. The presumed
cause of arrest was considered cardiac if there were no other evident causes,
including traumatic, respiratory, bleeding, anaphylaxis, or terminal cancer.
Apublic place includedpublic or commercial buildings, streets or highways,
industrial areas, transport terminals, and recreational areas. The EMS team
level was categorized as advanced if there was at least one nurse or an
advanced EMT present in the team; otherwise, it was considered basic.
Immediate PCI was defined as PCI which was performed within 6 h from
emergency call42.

Continuous variables, including age and RTI, were normalized to have
a zero mean and unit variance in the training set. Categorical variables with
multiple categories were one-hot encoded.

Markov decision process design
Determining the optimal duration of on-scene resuscitation for each patient
can be regarded as a sequential decision-making process of deciding whe-
ther to continue resuscitation on the scene or to initiate patient transport at
each time step. The unit time steps were two-minute intervals reflecting the
fact that the duration of one CPR cycle is twominutes. The initial time step
(t = 0) corresponds to themoment when EMS arrives at the scene, while the
final time step is when a patient is transported intra-arrest or has achieved
on-scene ROSC.
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This decision-making process can be formulated as aMarkov decision
process43,44. With the state st 2 Rm, action at 2 ½0; 1� (0: on-scene resus-
citation, 1: transport), discount factor γ, and trajectory length T, the policy
πθ at jst
� �

should be determined tomaximize the expectation values of value
functionVπ in reinforcement learning. In addition, theQ-functionQπ with
actions and states can be calculated by the expectation values under the
policy. Thus, the goal is to find an optimal policy π� ðat j stÞ to maximize V
and Q-functions and to investigate the optimal decisions based on the
optimal policy.

Vπ st
� � ¼ Eπ

XT

k¼t

γk�trkjst
 !

ð1Þ

Qπ st ; at
� � ¼ Eπ

XT

k¼t

γk�trkjst ; at
 !

ð2Þ

The state construction was achieved through the following methods.
Initially, features that could be acquired during the prehospital on-scene
phase were identified. These features encompassed age, sex, history of
diabetes mellitus, hypertension, heart disease, time of day, region, ECPR-
capable district, presumed cause of arrest, place of arrest, EMS witnessed,
bystander witnessed, dispatcher-assisted CPR, unassisted CPR, bystander
AED use, initial rhythm, EMS team level, prehospital mechanical CPR, and
RTI. FAMD was employed to reduce the dimensions from 19 to 11,
explaining 82% of the variance31. The final state space spanned 13 dimen-
sions, integrating the 11-dimensional output from the FAMD,ROSC status,
and normalized time step. Normalization of the time step involved sub-
tracting the mean on-scene resuscitation time from the training set then
dividing the difference by the standard deviation of the on-scene resusci-
tation time in the training set.

The possible actions consisted of on-scene resuscitation (action = 0) or
transport (action = 1). For instance, for a patient transported after 10 cycles
(20min) of on-scene resuscitation without achieving ROSC, the actions
from t = 0 (EMS arrival at scene) to t = 9 would be 0, indicating on-scene
resuscitation, and the action at t = 10 would switch to 1, indicating the
decision to transport. The successive sequences of states and actions for a
patient were termed a patient’s trajectory. A change from one state to the
next as a result of taking an action is referred as a transition.

Data-driven rewards from survival analysis
In our study, designing the proper reward function is important to achieve
unbiased results and clinical interpretability. Initially, we designed the reward
system to assign a positive reward of +1 at the end of the trajectory for
patients who survived to hospital discharge, while no reward was given to
patients who did not survive. However, the CQL model failed to identify an
optimal strategy due to the sparsity of rewards; the rewards for training the
Q-function only existed for the terminal transitions (action = 1)45. To over-
come this challenge,we introduced intermediate rewards basedon thehazard
rate from a survival analysis of on-scene ROSC for intermediate transitions
(where action = 0). The underlying rationale was that on-scene resuscitation
efforts could be rewarded based on the expected survival benefit associated
with achieving on-sceneROSCat the time step.Wefirstfitted aRSFmodel in
the training set with on-scene ROSC as the event, treating intra-arrest
transport as censoreddata46.Hyperparametersweredetermined throughgrid
search using the validation set for evaluation. Subsequently, we determined
the hazard rate function for each individual at time step t using the RSF
model, which refers to the proportion of patients who will achieve on-scene
ROSC, per unit time, relative to thosewho remain at the scenewithout ROSC
at a given timestamp t. In addition, to link on-scene ROSC and final survival
outcomes, the average survival to hospital discharge rate for patients who
experience on-scene ROSC at a certain time t was also introduced. Thus, the
intermediate reward rt for a transition was defined as the product of the
hazard rate (ht) and the average survival to hospital discharge rate SðtÞ of
patients who achieved ROSC at the corresponding time step t. Terminal

rewards (rT Þ were given at the terminal transitions so that the cumulative
rewardswould be 1 for a patient who survived to hospital discharge (δT ¼ 1Þ
and 0 for a patient who did not survive (δT ¼ 0Þ, where δT is an indicator
variable for final survival of a patient.

The discount factor (γ) was set to 1, indicating that future rewards are
considered equally important as intermediate rewards. With the trajectory
length T , state at time t (st), hazard rate (ht) of on-scene ROSC, average
survival rate in case of on-scene ROSC at time t (SðtÞÞ, and terminal reward
(rT Þ, the cumulative reward RT ðδT Þ is represented as below.

rt ¼
ht st
� �

S tð Þ if 0≤ t ≤T � 1ðintermediate rewardÞ

RT ðδT Þ �
PðT�1Þ

ðt¼0Þ
htðstÞSðtÞ if t ¼ Tðterminal rewardÞ

8
><

>:
ð3Þ

RT ðδT Þ ¼
XT�1

t¼0

htðstÞSðtÞ þ rT ¼ 1; if the patient survives to hospital discharge

0; otherwise

�

ð4Þ

Reinforcement learning model development
Offline reinforcement learning optimizes decision-making using pre-
collected data without further environment interaction. It offers a valuable
approach for the medical field where interactions with patients during
training may pose risks44. We employed CQL, a reinforcement learning
algorithm designed to learn a conservative Q-function47. The Q-function
quantifies the expected future rewards for taking a given action in a specific
state, guiding the selection of optimal actions by estimating the total reward
attainable fromthatpoint onwards.CQLensures that the expected valueof a
policy under the Q-function is a lower bound to its true value, thereby
minimizing the overestimation of out-of-distribution actions. CQL has
demonstrated good performance in offline reinforcement learning pro-
blems, including tasks within the medical domain19. The CQL model uti-
lized theDoubleDeepQNetwork frameworkwith two hidden layers of 128
units each48. A replay buffer containing all transitions from the training set
was constructed, and the model was trained using transitions randomly
sampled from the buffer until the validation set loss stabilized. Adam
optimizer was used, the learning rate was set to 0.0001, the conservatism
parameter (α) to 0.00149, and batch size was 32. Thirty models were built
using different random seeds, and themodel thatmaximized the 95% lower
bound of the policy value was chosen as the optimal policy (Table 3)19.

Off-policy evaluation
Off-policy evaluation assesses a learned policy using historical data50. We
employed fitted Q-evaluation (FQE), a model-free approach that utilizes
function approximation, with bootstrapping to acquire the CIs51. This
technique enables amore accurate estimation of a given policy’s Q-function
compared to the Q-function learned during training52. FQE was applied to
the test set to estimate the policy value, defined as the average of cumulative
rewards for each patient.

We compared four distinct policies: optimal, historical, 10-min, and
30-min policies. The historical policy precisely follows the on-scene resus-
citation times recorded in the dataset. In the 10-min policy, the EMS con-
ducts on-scene resuscitation for 10min before initiating transport if on-
scene ROSC is not achieved. In the 30-min policy, the EMS undertakes on-
scene resuscitation for 30minprior to transport initiation if on-sceneROSC
is not achieved. Transport was initiated when on-scene ROSCwas achieved
or after 30min of on-scene resuscitation in all policies.

To estimate the expected outcomes of each policy, we correlated the
expected cumulative rewards for each patient under the historical policy
with the outcomes.We categorized the cumulative rewards into 0.05-width
bins, calculating the average survival to hospital discharge and good neu-
rological recovery rates for each policy. Applying this binning approach, we
estimated the expected outcomes of the optimal, 10-min, and 30-min
policies.
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Determining the recommended maximum on-scene
resuscitation time
The recommended maximum on-scene resuscitation time is defined as the
recommended duration of on-scene resuscitation in cases where a patient
fails to achieve on-scene ROSC. If a patient achieves ROSC before this time,
the patient would be immediately transported to the hospital. This duration
can be identified by comparing the Q-values for intra-arrest transport
(action = 1) andon-scene resuscitation (action = 0) at each time step, from0
to 30min, assuming the patient has not achieved on-scene ROSC. The
recommended maximum on-scene resuscitation time is determined as the
time point when the Q-value for action = 1 surpasses that for action = 0
(Supplementary Fig. 3). Since it is based on the assumption that on-scene
ROSC has not been achieved, the recommended maximum on-scene
resuscitation time can be determined early on using the patient’s initial
characteristics rather than requiring real-time updates on the patient’s
ROSC status at each step.

Ablation study
Two ablation studies were conducted to observe the performance of the
models in settings where the obtainable variables differ. First, we utilized
only Core Utstein variables (i.e., core data elements used internationally for
reportingOHCApatients: age, sex, presumed cause of arrest, place of arrest,
EMS witnessed, bystander witnessed, dispatcher-assisted CPR, unassisted
CPR, bystander AED use, initial rhythm, EMS team level, and RTI)53.
Second, ED level was added as a state in the main model, assuming that the
transport destination would not be changed from the historical ED. FAMD
was employed to ensure that the final dimension of the state spacematched
that of themain study. The rest of themethods remained consistentwith the
original analysis.

Implications for settings with termination of resuscitation
We analyzed the Q-values of the optimal policy at the historical time of
intra-arrest transport. SinceQ-values are calibratedwith survival rates, a low
Q-value indicates a low probability of survival at thatmoment. Based on the
finding that the specificity of performing TOR for patients with Q-values
below 0.003 at the time of intra-arrest transport was 0.992, we established a
Q-value-based TOR rule using this threshold. These criteria were applied to
test set patients at the historical transport time, and the sensitivity, specifi-
city, PPV, andNPVofTORtopredictdeathwere analyzed. For comparison,
the ALS-TOR rule was also applied at the historical transport time, and its
test characteristics were analyzed. The ALS-TOR rule is known for its high
specificity in predicting death and recommends TOR when all five criteria
are met: (1) no shock delivered, (2) the arrest was not witnessed by a
bystander or (3) EMS personnel, (4) no bystander CPR was provided, and
(5) no ROSC was achieved before transport24.

Statistical analysis
Categorical variables were presented as numbers and proportions, with the
chi-square test utilized for group comparisons. Continuous variables were
presented as medians and IQRs, and comparisons between groups were
conducted using the Mann–Whitney U test or Kruskal–Wallis test, as

appropriate. A two-sided p-value of less than 0.05 was deemed statistically
significant.While thereweremissing data for place of arrest, witnessed status,
bystander CPR, bystander AED use, and initial rhythm, the proportions of
missing data were less than 3% for all variables. Missing data were imputed
using stochastic regression imputationwith logistic regression39,54. Cases with
missing on-scene resuscitation time or the status/timing of on-scene ROSC
were excluded rather than imputed. This exclusion is based on the following
rationale: (1) these variables determine the length of a patient’s trajectory,
which is critical in reinforcement learning; (2) missing values make it
impossible to ascertain if ROSC was achieved on-scene; and (3) these vari-
ables are used as outcomes in the Random Survival Forest model55. The
discrimination and calibration performance of the fitted RSF model was
evaluated using the C-index and integrated Brier score in the validation set13.

All statistical analyses were conducted using Python version 3.8.12
(Python Software Foundation,Wilmington, DE, USA) and SAS version 9.4
(SAS Institute Inc, Cary, NC, USA). The development and evaluation of
reinforcement learning models were performed using d3rlpy library ver-
sion 2.3.056.

Data availability
The data analyzed during the current study are not publicly available due to
institutional restrictions on data privacy but may be available from the
corresponding author on reasonable request.

Code availability
Thecodes thatwereused todevelop andevaluate the reinforcement learning
models in this study can be accessed at https://github.com/dhcsnu/on-
scene-time-ohca.
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