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CYpHER: catalytic extracellular targeted
protein degradation with high potency and
durable effect

Zachary R. Crook 1,2,3, Gregory P. Sevilla1,2,3, Pamela Young2, Emily J. Girard4,
Tinh-Doan Phi2, Monique L. Howard5, Jason Price3, James M. Olson 3,4 &
Natalie W. Nairn 1,2

Many disease-causing proteins have multiple pathogenic mechanisms, and
conventional inhibitors struggle to reliably disrupt more than one. Targeted
protein degradation (TPD) can eliminate the protein, and thus all its functions,
by directing a cell’s protein turnover machinery towards it. Two established
strategies either engage catalytic E3 ligases or drive uptake towards the
endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent
Endolysosomal delivery with Recycling) technology with potency and dur-
ability from a catalytic mechanism that shares the specificity and straightfor-
ward modular design of endolysosomal uptake. By bestowing pH-dependent
release on the target engager and using the rapid-cycling transferrin receptor
as the uptake receptor, CYpHER induces endolysosomal delivery of surface
and extracellular targets while re-using drug, potentially yielding increased
potency and reduced off-target tissue exposure risks. The TfR-based approach
allows targeting to tumors that overexpress this receptor and offers the
potential for transport to theCNS. CYpHER functionwasdemonstrated in vitro
with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-
small cell lung cancer.

Contemporary targeted therapeutics aim to modulate the activity of a
particular target, usually a protein, that has a defined role in disease
pathology. This modulation is often the disruption of protein function,
most commonly seen by enzyme inhibition (e.g., kinase inhibitors) or
steric blocking (e.g., antibodies). These conventional inhibitors and
blockers can disrupt a defined function, and often add beneficial pleio-
tropic effects, such as protein homeostasis disruption1 or altered target
trafficking2,3. Nevertheless, these drugs are often insufficient to mean-
ingfully and durably alter disease pathology. For one, many targets
exhibit multiple functions, and inhibiting one function can leave the
others available for potentiating pathologic signaling. Second, the nature
ofmany of these inhibitors leaves themparticularly vulnerable to cellular
adaptation and mutational resistance that diminishes drug durability.

An exemplary groupofprotein targets is receptor tyrosine kinases
(RTKs) in cancer, as they can potentiate growth, differentiation, and
survival signaling4. Many involve a mechanism for activation that
involves multimerization and cross-phosphorylation at the cell sur-
face. As such, they not only function as kinases, but as kinase sub-
stratesmediating signal transduction. Tyrosine kinase inhibitors (TKIs)
and antibodies are typical RTK-targeted therapeutics. TKIs can disrupt
kinase activity of RTKs5, but they do not block the RTKs from being
substrates for other kinases. As many RTKs function through both
homo- and heterodimerization with other RTKs, this leads to resis-
tance via upregulation of other partners6. As an additional liability,
point mutations can often directly or indirectly disrupt TKI binding7.
Conversely, antibodies can alter the multimerization tendencies of

Received: 25 March 2024

Accepted: 27 September 2024

Check for updates

1Cyclera Therapeutics Inc, Seattle, WA 98115, USA. 2Blaze Bioscience Inc, Seattle, WA 98109, USA. 3Clinical Research Division, Fred Hutchinson Research
Center, Seattle, WA 98109, USA. 4Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. 5NW
Biosensor, Seattle, WA 98103, USA. e-mail: natalie.nairn@cycleratx.com

Nature Communications |         (2024) 15:8731 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1142-9748
http://orcid.org/0000-0002-1142-9748
http://orcid.org/0000-0002-1142-9748
http://orcid.org/0000-0002-1142-9748
http://orcid.org/0000-0002-1142-9748
http://orcid.org/0000-0001-5990-6534
http://orcid.org/0000-0001-5990-6534
http://orcid.org/0000-0001-5990-6534
http://orcid.org/0000-0001-5990-6534
http://orcid.org/0000-0001-5990-6534
http://orcid.org/0000-0003-1293-345X
http://orcid.org/0000-0003-1293-345X
http://orcid.org/0000-0003-1293-345X
http://orcid.org/0000-0003-1293-345X
http://orcid.org/0000-0003-1293-345X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52975-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52975-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52975-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52975-2&domain=pdf
mailto:natalie.nairn@cycleratx.com
www.nature.com/naturecommunications


RTKs, but with kinase function retained, target or heterodimer partner
upregulation (or gain-of-function mutation) becomes a common
resistance mechanism8, with increased total membrane kinase activity
compensating for disrupted multimerization. Altogether, these inhi-
bitors can be effective for a periodof time, but themyriadmechanisms
for functional bypass typically render their efficacy transient.

In order to simultaneously disrupt all of a target’s disease-
associated functions, targeted protein degradation (TPD) can be used.
Expertly summarized in a recent review9, TPD leverages cells’
mechanisms for target turnover, altering the kinetics of this process
for specific targets. This is mainly through formation of ternary com-
plexes between target protein and degradation effector. For intracel-
lular (e.g., molecular glue and PROTAC)10 and some extracellular (e.g.,
AbTAC andREULR)11,12 molecules, this is through E3 ligase recruitment,
inducing ubiquitin-mediated target degradation by the proteasome or
lysosome. This benefits from a catalyticmechanismof action (the drug
is not expended in the process) but can be complicated by finding an
E3 ligase expressed in the target tissue that can be induced to interact
in an effective orientationwith the target for functional ubiquitination.
Meanwhile, small molecules (e.g., molecular glue and PROTAC) also
have many of the same point mutational resistance liabilities of TKIs.
Other approaches used for surface and extracellular soluble targets
(e.g., LYTAC, ATAC, KineTAC)13–15 engage surface protein trafficking
systems. Often targeting membrane sugar receptors (cation-indepen-
dent mannose-6-phosphate receptor [CI-M6PR] or asialoglycoprotein
receptor [ASGPR]) but also cytokine receptors (e.g., CXCR7), these are
designed to “hitch a ride”with the uptake receptor into the cell before
target release in the endolysosomal system.These tend tobebiologics,
benefiting from modular design and greater target specificity, but the
drug follows the target through its trafficking, limited to stoichio-
metric (as opposed to catalytic) activity.

Transferrin receptor (TfR) is another such uptake receptor with
potential in extracellular TPD (eTPD) approaches. Its normal role is
facilitating uptake of iron-loaded transferrin (holoTF)16. Upon uptake
and endosomalmaturation, which involves acidification to roughly pH
5.5, transferrin releases its iron but remains bound to TfR, returning to
the surface with its receptor. The process takes ~10–20min16, repeat-
ing dozens to hundreds of times over the protein’s lifetime17. Our work
concerns the development of eTPDmolecules thatmimic the behavior
of transferrin, as they are engineered for reduced binding affinity at
endosomal pH to permit target release and subsequent trafficking
through the endolysosomal system. They also contain a TfR-binding
endwith no such pH sensitivity, which permits themolecules to return
to the surface to take in additional targets. This catalytic activity
increases potency (multiple target molecules eliminated by a single
drug), permits retained activity after drug is cleared from extracellular
space, and should reduce the disruptive effects of shed, soluble var-
iants of a membrane target (that can otherwise act as a decoy for
conventional antibodies)18, since the soluble form would simply
represent one round of uptake and endosomal release.

Using TfR as the uptake receptor presents numerous advantages,
particularly for CNS disease and oncology. TfR is commonly upregu-
lated on a wide variety of solid tumors19,20, presumably to accom-
modate the increased iron demands in rapidly-dividing cells, and its
overexpression often correlates with disease severity20,21. This over-
expression compared to healthy tissue should concentrate the drug in
the tumor tissue, improving the therapeutic window. Also, cancer cells
are highly dependent on TfR for growth22, so a potential resistance
mechanism of receptor downregulation is avoided by using TfR. In
addition, TfR is well known as a mediator of blood-brain barrier
transcytosis23, having been used to deliver biologic molecules to the
brain parenchyma24,25. A drugwhosemechanismof action includes TfR
engagement has the potential to enable specific depletion of targets in
the CNS, an area of high unmetmedical need.We note that, during the
preparation of this work, another group also highlighted the

advantages of TfR-based TPD for oncology (TransTACs)26, but
designed the molecules to be degraded in the endosome to avoid
(rather than harness) TfR-based recycling for catalytic activity.

Here, we present CYpHER (CatalYtic pH-dependent Endolysoso-
mal delivery with Recycling), an eTPD technology that combines the
specificity and modularity of an endolysosomal trafficking approach
with a catalytic mechanism. We demonstrate the development of
CYpHER molecules, catalytic target uptake and elimination, suppres-
sing signaling andgrowthof cancer cells, and in vivo pharmacokinetics
and activity.Wediscuss the steps for engineeringmoleculeswith these
characteristics, assays for demonstrating surface target elimination
and uptake of multiple targets per drug molecule, and then discuss
potential advantages and utilities of this approach.

Results
The CYpHER concept
The core CYpHER concept is illustrated in Fig. 1a, b. A simplistic dia-
gram of a CYpHER molecule (Fig. 1a) includes a pH-dependent target-
binder linked to a recycling uptake receptor-binder (here, a TfR bin-
der). After CYpHER has initiated ternary complex formation on the cell
surface (Fig. 1b), the target and CYpHERmolecule are brought into the
cell in TfR-containing clathrin-coated vesicles. Following the traffick-
ingof TfR, the vesicle then joins endosomes that begin acidifying16. The
target-binders are engineered to release the target at low pH, permit-
ting the TfR:CYpHER complex to be trafficked back to the surface
where the target-binding end of CYpHER is free to bind and traffic
additional targetmolecules.Meanwhile, the released target undergoes
intracellular trafficking which includes lysosomal delivery and sub-
sequent degradation.

To construct CYpHER molecules, we began with two cystine-
dense peptide (CDP) miniproteins that we’ve recently characterized
separately for other in vivo functionalities25,27. CDPs are of interest for
incorporating into multifunctional biologics due to their small size,
potential for high affinity, and high inherent protease-resistance28. We
made use of a TfR-binding CDP allelic series25 thatmaintains binding at
reduced pH (Fig. 1c), has murine cross-reactivity (Fig. 1d), and has
demonstrated access to the CNS25. Then we further engineered a PD-
L1-binding CDP27 for enhanced pH-dependent release by generating a
library of variants that each contained up to two histidine substitu-
tions, and surface-display screened to enrich for variants that con-
ferred strong PD-L1 binding at pH7.4 but reduced PD-L1 binding after a
low-pH rinse (Fig. 1e). Three singleton histidine substitutions were
significantly enriched, and when testing them as singletons and com-
binations, one combination (His Sub 1 + 3) was found to confer PD-L1-
binding almost as well as the parental variant at pH 7.4 but conferred
substantially less PD-L1 binding after a low-pH rinse (Fig. 1f). A pilot
molecule comprisedof the pH-dependent PD-L1-bindingCDP fused via
flexible Gly-Ser linker to a high affinity TfR-binding CDP (Supplemen-
tary Fig. 1A) was used to stain 293T cells transfected with PD-L1-GFP
and TfR-RFP (or with TfR-RFP alone). Subsequent cell staining for a
6xHis tag on the pilot molecule and gating for double negative, GFP
+/RFP−, GFP−/RFP+, or GFP+/RFP+ cells indicated increased cell
staining when one or the other surface binding partner is over-
expressed with a massive increase in cell staining when both are
overexpressed (24–42× vs one or the other) (Supplementary Fig. 1B),
confirming cooperative targeting of TfR and target.

Engineering CYpHER candidates
Additional PD-L1-targeting CYpHER candidates were generated (Fig. 2a).
Both candidates contained an Fc domain with a high-affinity TfR binder
fused to its C-terminus by a Gly-Ser linker. One candidate (CT-4212-1)
also contained an N-terminal fusion (via Gly-Ser linker) with the pH-
dependent PD-L1-binding CDP, while the other candidate (CT-4212-3)
used a rigid linker from human IgA to fuse the PD-L1-binding CDP to the
TfR binder’s C-terminus. The two designs were to test whether a given
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binder could function at the N- or C-terminus of a CYpHER. The rigid
linker in CT-4212-3 is to prevent formation of aberrant cystines between
the two CDPs. Both molecules were tested on polyclonal 293T, H1650,
and MDA-MB-231 cell populations transduced (via lentivirus) to express
PD-L1-GFP. In all threepopulations, PD-L1was trafficked from the surface
by CYpHER (Fig. 2b), as seen in both microscopy and flow cytometry
assays (using a non-competitive PD-L1 antibody [clone 22C3],
Fig. 2c–e)29. Flow cytometric quantitation of per-cell GFP levels
demonstrated substantial and consistent surface PD-L1 removal (Fig. 2f,
h, j), as well as overall flow-assessed PD-L1-GFP reduction in all cases
(Fig. 2g, i, k). The degree of total PD-L1-GFP reduction varied by cell line

and CYpHER. The highest-expressing population, 293T-PDL1-GFP,
experienced the largest degree of GFP reduction. This could be caused
by better cooperative CYpHER accumulation when more target is pre-
sent, by saturation of the recycling pathway, or both.

The CYpHER platform is amenable to any target for which surface
or soluble elimination would benefit patients beyond simply binding
or blocking one site. One such target, with dual roles as both kinase
and kinase substrate (as well as other cell-surface-driven functions)30,
is EGFR. It is implicated as a driver of several common and deadly
cancers, including glioblastoma, lung cancer, head and neck cancer,
and colon cancer6,31–33. It is primarily targeted by TKIs or monoclonal
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Fig. 1 | Basic principles of CYpHER and component binders. a CYpHER design
including a pH-independent TfR-binding domain and a pH-dependent target-
binding domain separated by a linker. b CYpHER mechanism. CYpHER induces
ternary complex formation with target and TfR. Upon TfR-mediated uptake and
endosomal acidification, target is released for endolysosomal system trafficking.
TfR and CYpHER recycle to the surface for engagement with another target
molecule. c 293F cells displaying a high-affinity TfR-binding CDP were stained with
TfR and rinsed at pH 7.4 or pH 5.5 for 10min, showing similar binding via flow
cytometry in both conditions. Mean fluorescence intensity [MFI] ±95% confidence
interval [CI], pH 7.4, 80.1 ± 1.9; pH 5.5, 90.6 ± 2.0; precise N per sample unavailable.
d 293F cells displayingmediumor high affinity TfR-binding CDPswere stained with
humanTfR (hTfR) ormouseTfR (mTfR). Kruskal–Wallis testwithDunn’s correction:
Med affn hTfR vs High affn hTfR was not significant (P >0.9999), all others
P <0.0001. N cells per sample: GFP-, 479; Med affn hTfR, 317; Med affn mTfR, 295;
High affn hTfR, 266; High affn mTfR, 236. e pH-dependent PD-L1 binding flow
profile of 293F cells displaying a pool of histidine-doped variants of a PD-L1-binding
CDP after four rounds of flow sorting; two for high binding after pH 7.4 rinse, two

for low binding after pH 5.5 rinse. pH 7.4, N = 38,979 cells; pH 5.5, N = 37,450 cells.
f Three His substitutions were tested as singletons and combinations for PD-L1-
binding on 293F cells displaying a given binder after 10minpH 7.4 or pH 5.5 rinse
followed by flow cytometry quantitation. N cells per sample: Untransfected [UTF]
7.4, 19727; UTF 5.5, 17843; Parental 7.4, 41; Parental 5.5, 46; His sub 1 [HS1], 7.4, 27;
HS1 5.5, 17; HS2 7.4, 29; HS2 5.5, 25; HS3 7.4, 58; HS3 5.5, 62; HS1 + 2 7.4, 62; HS1 + 2
5.5, 58; HS1 + 3 7.4, 25; HS1 + 3 5.5, 29; HS2 + 3 7.4, 45; HS2 + 3 5.5, 40; HS1 + 2 + 3 7.4,
87; HS1 + 2 + 3 5.5, 92. Non-Parental samples within a given pH (7.4 or 5.5) vs Par-
ental sample by Kruskal–Wallis test with Dunn’s correction: at pH 7.4, His sub 1
(P >0.9999), His sub 3 (P =0.1161), and His sub 1 + 3 (P >0.9999) were not sig-
nificant, all others P <0.0001. At pH 5.5, His sub 1 (P =0.1666) and His sub 3
(P >0.9999) were not significant, all others P <0.0001. Variant with His substitu-
tions 1 and 3 was chosen for further work. Each experiment in c–f was performed
once. All box plots (d and f) feature a median (black line), 25th and 75th percentiles
(box boundaries), and 5th and 95th percentiles (whiskers). See the Supplementary
Data for full statistical breakdown. Source data are provided as a Source Data file.
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antibodies (mAbs). Patients can benefit for a time, but resistance to
these treatments inevitably emerges and remains an area of urgent
need for new therapies34. These resistance mechanisms are often
either a point mutation to reduce TKI activity or an upregulation of
another EGFR heterodimerization partner like HER2, HER3, or c-Met.
Elimination of EGFR from the surface would drastically reduce EGFR-
associated signaling, including kinase-independent signaling35,36, as it
primarily occurs at the plasma membrane.

An EGFR-binding VHH nanobody37 was engineered into a
CYpHER component through similar means to the PD-L1-binding
CDP. In one method, a pool of variants with His substitutions was
screened in mammalian surface display28 through four rounds of
enrichment; two rounds enriched for high binding at neutral pH (pH
7.4), while the other two enriched for low binding at early endoso-
mal pH (pH 5.5). In the final round of sorting, populations with low
(Supplementary Fig. 2A) or high binding at pH 5.5 (Supplementary

Fig. 2B) were collected. The primary variant in the pool enriched for
low binding in low pH loses roughly half its bound EGFR in tetra-
valent (streptavidin) stain conditions upon low-pH rinse (Supple-
mentary Fig. 2C), while the dominant variant from the population
with high binding at low pH does not have this property (Supple-
mentary Fig. 2D). Fc fusions to each of these molecules, when used
as ligands in surface plasmon resonance experiments, verified these
properties (Supplementary Fig. 2, E, F); the variant engineered for
pH-dependent EGFR release demonstrated higher affinity at neutral
pH (KD = 16.2 ± 0.1 nM at pH 7.4) compared to low pH
(KD = 61.2 ± 0.3 nM at pH 5.8) and the other variant demonstrating
slightly lower affinity at neutral pH (KD = 10.5 ± 0.1 nM at pH 7.4)
compared to low pH (KD = 7.8 ± 0.07 nM at pH 5.8). Both of these
represent >10-fold higher affinity vs the reported affinity of the
parental nanobody38. The pH-dependent release nanobody was
named EGFR Nanobody v1.
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Fig. 2 | PD-L1 CYpHER design and target depletion in cell pools overexpressing
PD-L1-GFP. a Two designs of PD-L1 CYpHERs, named CT-4212-1 and CT-4212-3,
using a high-affinity TfR-binding CDP and a pH-dependent PD-L1-binding CDP.
b Illustration of PD-L1-GFP trafficking induced by CYpHER. Pools of 293T cells (c),
H1650 cells (d), andMDA-MB-231 cells (e) transduced with lentivirus driving PD-L1-
GFP were untreated or incubated with 10 nM CYpHER for 24h before GFP-channel
microscopy (above) and flow cytometry (below) after staining for surface PD-L1.
Black contour in flowprofiles: cells stainedwithout PD-L1 antibody. Flow cytometry
quantitation of normalized surface PD-L1 (f, h, and j) or total PD-L1-GFP (g, i, and k)
signal in 293T-PDL1-GFP cells (f and g), H1650-PDL1-GFP cells (h and i), and MDA-
MB-231-PDL1-GFP cells (j and k) with or without CYpHER treatment. N cells per
sample as follows. c, f, g Untreated, 842; CT-4212-1, 808; CT-4212-3, 598.

d, h, i Untreated, 1867; CT-4212-1, 2318; CT-4212-3, 2734. e, j, k Untreated, 823; CT-
4212-1, 536; CT-4212-3, 893. For f–k, within each line and assay, significance by
Kruskal–Wallis test with Dunn’s correction were all P <0.0001 except: 293T-PDL1-
GFP surface PD-L1, CT-4212-1 vs CT-4212-3 (P =0.1647); 293T-PDL1-GFP total GFP,
CT-4212-1 vs CT-4212-3 (P =0.0027); H1650-PDL1-GFP surface PD-L1, CT-4212-1 vs
CT-4212-3 (P =0.0908); H1650-PDL1-GFP total GFP, Untreated vs CT-4212-3
(P =0.0002);MDA-MB-231-PDL1-GFP total GFP,Untreated vs CT-4212-1 (P =0.3139).
Each experiment in c–k was performed once. All box plots (f–k) feature a median
(black line), 25th and 75th percentiles (box boundaries), and 5th and 95th percentiles
(whiskers). See the Supplementary Data for full statistical breakdown. Source data
are provided as a Source Data file.
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As an additional allele identification strategy, singleton His scan-
ning (i.e. single His substitutions tested one at a time) was performed
on the nanobody in CDRs 1 and 3, as these CDRs are primarily impli-
cated in EGFR-binding38. One variant (His Sub 10) was identified in
mammalian surface display that lost roughly half its bound EGFR in
tetravalent stain conditions upon low-pH rinse (Supplementary
Fig. 2G); this was named EGFR Nanobody v2.

Adapting a native ligand for CYpHER
In building the platform, it was apparent that the target-binding
domain needn’t be an exogenous molecule. As a great many disease-
associated target proteins do so by signal transduction mediated by
ligand-binding, the ligand presents itself as a natural target-binder that
can be adapted, through engineering and affinity/pH maturation, for
CYpHER incorporation. In the case of EGFR, EGF itself (a naturally pH-
dependent binder which is also a CDP)39 can be used after engineering
it to disable signal transduction capabilities. Rosetta proteinmodeling
software40,41 was used to design EGF variants that bind to EGFRDomain
III in the absence of Domain I, after which studying the EGF:EGFR co-
crystal structure (PDB: 1IVO)42 was used to identify mutations pre-
dicted to disrupt Domain I interaction. The end result was a dominant-
negative EGF variant a) that binds to Domain III in the absence of
Domain I, b)whoseDomain I interaction is disrupted to the degree that
Domain I impairs binding, and c) that retains the pH-dependent
binding of the parent molecule (Supplementary Fig. 3). The details for
this design effort are found in the Supplemental Methods. The final
variant from this process, EGFd1.5.36, was then used in CYpHER
molecules.

EGFR CYpHER induces EGFR surface clearance and elimination
A candidate EGFR CYpHER, CT-1212-1, was produced using a high-
affinity TfR-binding CDP and EGFR Nanobody v1 (Fig. 3a–c). The
molecule demonstrated goodexpression and assemblywith negligible
aggregate after capture from supernatant and buffer exchange.
293T cells expressing a variable level of EGFR-GFP, expected to
undergo target internalization upon CYpHER treatment similar to PD-
L1-GFP (Fig. 3d), were dosed and analyzed by microscopy and flow
cytometry (staining with non-competitive anti-EGFR clone 199.12)43 for
total EGFR-GFP and surface EGFR (Fig. 3e). As a population, cells
demonstrated >80% reduction of surface EGFR and ~50% reduction of
total EGFR-GFP signal at 24 h, which was validated by Western blot of
lysate from flow-sorted, viable cells (Fig. 3f). Viable cells were studied
because dead cells and debris are not metabolically active and cannot
drive endolysosomal trafficking of targets. The flow profile was not
“shifted” en-masse by CYpHER treatment; instead, much of the
reduction occurred in those cells with the highest initial EGFR levels.
Partitioning flow profiles by surface EGFR supported this observation
(Fig. 3g), where the cells with the most surface EGFR experienced the
greatest proportional loss. Meanwhile, time-course experiments
demonstrated that surface EGFR clearance is rapid (near maximal
effect after 1 h), consistent with rapid TfR-mediated uptake, while
EGFR-GFP signal loss takes more time, likely due to the slower kinetics
of lysosomal degradation vs surface internalization (Fig. 3h, i). Thiswas
corroborated by labeling 293T-EGFR-GFP cells with LAMP1-RFP via
baculovirus (BacMam 2.0, Invitrogen) for 24 h and then treating cells
with DyLight 755-conjugated CT-1212-1 for 0, 1, or 4 h (Fig. 3j). Lyso-
somal RFP signal overlapped with EGFR-GFP foci more often andmore
intensely at 4 h than at 1 h. CYpHER signalwas alsomore intenseoverall
at 4 h than at 1 h. The CYpHER signal at 4 h was within several intra-
cellular compartments, including the lysosome, indicating some of the
CYpHERbeing trafficked alongside EGFR-GFP to the lysosome and/or a
portion of TfR undergoing normal lysosomal turnover bringing
CYpHER with it.

We focus much of our protein trafficking data on surface clear-
ance instead of total protein elimination. First, removal of EGFR from

the plasma membrane separates it from access to both ligand and
downstream signaling modulators like KRas. Second, after endosomal
release, actual elimination vs recycling of protein is highly context-
dependent, involving cell-specific recycling kinetics and saturable
traffickingmodulators44. Third, proteins in theprocessof synthesis can
be detected as total protein but can neither signal effectively nor be
accessed by CYpHER.

We explored surface EGFR clearance rates on a panel of non-small
cell lung cancer (NSCLC) cell lines which include various drug-
resistance mechanisms that can occur in patients: H1650 (EGFR with
exon 19 deletion and PTEN knockout), H1975 (EGFR with L858R and
T790M mutations [the latter rendering it resistant to 1st generation
EGFR TKIs] along with activating G118D mutation in PIK3CA), A549
(wild type EGFR with activated KRas G12S), and H358 (wild type EGFR
with activated KRas G12C). They represent a range of total surface
levels and ratios of EGFR and TfR (the latter measured with non-
competitive clone OKT9)45 (Fig. 4a). All four lines responded to
CYpHER for surface EGFR clearance (Fig. 4b), with rapid kinetics (1 h)
and to a much greater degree than seen with cetuximab, a molecule
known to induce surface clearance and overall protein reduction via
induction of ubiquitin-mediated uptake2,3. We also confirmed that
CYpHER remains detectible on the cell surface 24 h after media
exchange, where cetuximab does not (Fig. 4c).

CYpHERs with any of the three engineered EGFR binders clear
surface EGFR
The other two engineered EGFR binders were also incorporated into
CYpHER molecules (Fig. 4d). The same Fc with a high-affinity TfR-
binding CDP (separated by Gly-Ser linker) was the starting point. The
nanobodies were fused via a Gly-Ser linker to the N-terminus of the Fc
domain as was done in CT-4212-1; the nanobody’s N-terminus is at the
EGFRDomain III interface38, so this format is optimal for EGFR binding.
As with EGFR Nanobody v1 and CT-1212-1, EGFR Nanobody v2 was
incorporated into CT-6212-1. Conversely, the C-terminus of EGF is
adjacent to the EGFRDomain III interface42, so fusion via its N-terminus
is optimal; it was incorporated in a similar format to that of CT-4212-3,
producing CT-5212-3.

Surface EGFR levels in A549 cells were reduced after 24 h CYpHER
treatment with all 3 designs, including after media exchange and
growthwithout drug for another 24 h (“Withdrawal”) (Fig. 4e); as EGFR
turnover in the absence of ligand is fairly rapid (~6–10 h on most cell
lines)46, this suggested retention of activity via catalyticmechanism. All
three CYpHER molecules were still present on the surface after a 24 h
drug withdrawal (Fig. 4f).

CT-1212-1 was tested for up to 3 days in the four NSCLC cell lines
(A549, H1975, H358, and H1650). All four cancer lines had rapid
(within 1 h) reduction of surface EGFR, which was reduced by 55–81%
of untreated after 24 h (Fig. 4g and Supplementary Fig. 4); this
reduction was maintained for at least 3 days. Additionally, 24 h
without drug after 24 h of treatment (“withdrawal”) still yielded
surface EGFR levels markedly lower than untreated cells; in A549 and
H1975 cells, this effect is durable out to 3 days after drug withdrawal,
at which point CYpHER is still observed on the cell surface (Sup-
plementary Fig. 5). Different cell lines are expected to have different
uptake and rebound kinetics, so this phenomenon is not assumed to
be universal. We also evaluated surface TfR levels (Supplementary
Fig. 6). In A549 and H1975 cells, mild fluctuations that may represent
drug-dependent effects on TfR expression and/or trafficking, but are
not persistent with continuous drug exposure, are apparent. In the
lines with the highest TfR levels (H358 and H1650), a more sub-
stantial and sustained reduction of surface TfR occurred that took
24 h to reach these low levels and largely returned to normal after
24 h of withdrawal. Their higher levels of surface TfR may facilitate
CYpHER-induced multimerization, which is known to alter TfR
trafficking47.
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tailed Kolmogorov–Smirnov test, PBS vs CT-1212-1 pairwise were all P <0.0001,
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parisons were P <0.0001. h, i 293T-EGFR-GFP cells dosed with PBS or 10 nM CT-
1212-1 for 30min, 4 h, 24 h, or 24 h followed by 24 h without drug (“Withdrawal”)
wereflowanalyzed for surfaceEGFR (h) or total EGFR-GFP (i) as in e, with EGFRstain
(h) or total EGFR-GFP (i) fluorescence per cell shown. N cells per sample in h and i:
PBS 30min [m], 14806; 1212-1 30m, 12117; PBS 4 hour [h], 15289; 1212-1 4 h, 13400;

PBS 24h, 14449; 1212-1 24 h, 12588; PBSWithdrawal [WD], 14487; 1212-1 WD, 13972.
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theGFP, RFP, andnear IR channels. Arrows indicate location of LAMP1-RFP foci (i.e.,
lysosomes). Each experiment in e–j was performed once (e, g–j) or twice (f) pro-
ducing similar results. All box plots (h and i) feature a median (black line), 25th and
75th percentiles (box boundaries), and 5th and 95th percentiles (whiskers). See the
Supplementary Data for full statistical breakdown. Source data are provided as a
Source Data file.
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We also tested whether we could observe a hook effect. This
phenomenon has been documented for some bispecific TPD mole-
cules, wherein target depletion is blunted if the drug concentration is
so high that separate drug molecules occupy each respective partner
(preventing ternary complex formation)48. At all doses of CT-1212-1,
CT-5212-3, andCT-6212-1 evaluated (2–200nM), surfaceEGFR levels on
A549 cells were reduced compared to untreated cells after 24 h of
treatment (Fig. 4h). The degree of EGFR reduction by CT-1212-1 was
modestly blunted at 200 nM compared to lower doses, whereas CT-
5212-3 and CT-6212-1 show minimal variation over this concentration
range. This suggests that the effect, if any, is mild and the nature of the
molecule (binder and/or modular organization) may have some
impact. Effects may also differ by cell line, target, and metabolic state.

CYpHER-driven EGFR intracellular sequestration
We evaluated EGFR trafficking in a knock-in A549-EGFR-GFP cell line
using CT-1212-1 and variants thereof (Fig. 5a) that used heterodimeric
Fc domains to alter EGFR- and TfR-binding valence. All four molecules
that contained at least one EGFR-binder and at least one TfR-binder

drove EGFR-GFP from the membrane into intracellular compartments
(Fig. 5b), with flow assays demonstrating this effect to be dose-
dependent in 3 of 4 drugs and mostly retained by all after 24 h drug
withdrawal (Fig. 5c). Controlmolecules containing anon-EGFR-binding
nanobody or a non-TfR-binding CDP did not induce trafficking
(Fig. 5d); this trafficking is not associated with a reduction in total
EGFR-GFP in this line (Supplementary Fig. 7). We confirmed the rapid
activity of the mechanism, showing this internalization phenotype
after only 20min of treatment (Fig. 5e). We also tested holoTF com-
petition, as our TfR-binding CDP binds to the same site on TfR as
transferrin25. Both EGFR-GFP internalization (Fig. 5f) and surface EGFR
clearance (Fig. 5g) were retained in the presence of human holoTF,
with only mild suppression of activity at 1000x molar levels of holoTF
versus CYpHER.

CYpHER catalytic target uptake
Our experiments with drug withdrawal strongly suggest a catalytic
mechanism of action where one drug molecule can induce uptake of
multiple target molecules, as we see both retention of activity and
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amount of holoTF and analyzed by flow cytometry for surface EGFR. Dashed lines
indicate quantitation of surfaceEGFR inuntreated cells (upper) or cells treatedwith
10 nM CT-1212-1 but no holoTF (lower). Each treatment vs No CYpHER (100% line)
by Kruskal–Wallis test with Dunn’s correction [KWD] was P <0.0001. Each
CYpHER + holoTF treatment vs CYpHER+no holoTF (“No holoTF” line at ~21%) by
KWD: 100nM holoTF P =0.9831, all others P <0.0001. Experiments in b–g were
performed once (c, f, g) or twice (b, d, e) with similar results. All box plots (c)
feature amedian (black line), 25th and 75th percentiles (box boundaries), and 5th and
95th percentiles (whiskers). See the Supplementary Data for full statistical break-
down. Source data are provided as a Source Data file.

Fig. 4 | Performance comparison of different EGFR CYpHER designs. a A549,
H1975, H1650, and H358 cells were flow analyzed alongside calibration beads to
quantitate surface EGFRandTfR protein levels.bNormalized surface EGFR levels in
the four lines after 1 or 24h treatment with 10 nM CT-1212-1 or cetuximab, showing
surface EGFR stain per cell by flow. N cells per sample as follows. A549: Untreated,
17129; CT-1212-1 1 h, 17641; CT-1212-1 24 h, 19326; Cetuximab 1 h, 16815; Cetuximab
24h, 18083. H1975: Untreated, 5544; CT-1212-1 1 h, 6091; CT-1212-1 24 h, 6593;
Cetuximab 1 h, 4847; Cetuximab 24h, 5400. H1650: Untreated, 4789; CT-1212-1 1 h,
5258; CT-1212-1 24 h, 5460; Cetuximab 1 h, 5548; Cetuximab 24h, 5541. H358:
Untreated, 7846; CT-1212-1 1 h, 8239; CT-1212-1 24 h, 7834; Cetuximab 1 h, 8120;
Cetuximab 24 h, 8409. Within each of the four cell lines (A549, H1975, H1650,
H358), all five samples were compared to one another by Kruskal–Wallis test with
Dunn’s correction [KWD]; all comparisons for all cell lines were P <0.0001. c A549
cells incubatedwith 10 nMCT-1212-1 or cetuximab for 2 h or for 2 h followedby24h
without drug (“Withdrawal”) followed by staining for human IgG to quantitate
surface drug levels, showing surface IgG stain per cell by flow. N cells per sample:
CT-1212-1 2 h, 6336; Cetuximab 2 h, 6126; CT-1212-1 Withdrawal [WD], 7335;
Cetuximab WD, 7187. All vs all by KWD; CT-1212-1 2 h vs Cetuximab 2 h was
P =0.0001, all others P <0.0001. Furthermore, all samples were compared via one
sample two-tailed T test to 0; Cetuximab Withdrawal was P =0.37, all others
P <0.0001. d EGFR CYpHER designs. e Surface EGFR levels in A549 cells incubated
with 10nM CYpHER for 24h or for 24h followed by 24 h without CYpHER

(“Withdrawal”), showing surface EGFR stain per cell by flow.N cells per sample– see
Source Data for details. All treated samples vs Untreated by KWD were P <0.0001.
All 24 h vs Withdrawal samples compared by Kolmogorov–Smirnov [KS] test were
P <0.0001. f Same treatment as e but staining for human Fc to quantitate surface
CYpHER levels, showing surface Fc stain per cell by flow. N cells per sample – see
Source Data for details. All treated samples vs Untreated by KWD were P <0.0001.
All 24 h vs Withdrawal samples compared by Kolmogorov–Smirnov [KS] test were
P <0.0001. g A549, H1975, H1650, and H358 cells untreated or treated with 10 nM
CT-1212-1 for 1 h, 1 day, 2 days, 3 days, or 1 day followed by 1 day without drug
(“Withdrawal”) then analyzed by flow cytometry to see surface EGFR levels per cell.
N cells per sample– see SourceData for details. All samples vs all within a cell lineby
KWD: A549, 1 h vs 1 day P = 0.0019, 1 h vs 2 day P =0.9911, all others P <0.0001;
H1975, 1 day vs 2 dayP =0.8709, 1 day vs 3 dayP =0.0004, 2 day vs 3day P =0.3246,
all others P <0.0001; H1650, 1 h vs 3 day P =0.0188, 1 day vs 2 day, P =0.0069, all
others P <0.0001; H358, 1 day vs 2 day P >0.9999, all others P <0.0001. h A549
cells treated for 24hr with 2 nM, 10 nM, 50 nM, or 200nM CYpHER then analyzed
by flow cytometry for surface EGFR levels to show surface EGFR levels per cell by
flow. N cells per sample – see Source Data for details. Experiments in b, c, e, and
f were performed once. All box plots (b, c, e–g) feature a median (black line), 25th

and 75th percentiles (box boundaries), and 5th and 95th percentiles (whiskers). See
the Supplementary Data for full statistical breakdown. Source data are provided as
a Source Data file.
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retention of CYpHER molecules on the surface of cells after 24 h drug
withdrawal.Wedeveloped anassay to further evaluate catalytic uptake
of soluble cargo (Fig. 6a and Supplementary Fig. 8). We first demon-
strated that cells specifically take up soluble target:CYpHER com-
plexes. Cells were exposed to CYpHER saturated with fluorescently
labeled target for 2 h, permitting time for target uptake and for
CYpHER (via TfR) to cycle in and out of the cell several times. This
yielded specific target uptake (Supplementary Fig. 8, bars 1 vs 2 [2 h]
and bars 3 vs 5 [24 h]). Next, the assay wasmodified to look for uptake
of newly introduced target after the initial 2 h uptake followed by
removal of all soluble CYpHER from the system. In step 1 of this assay,
cells are exposed to CYpHER saturated with unlabeled target for 2 hrs.
Then the cells are thoroughly rinsed to remove all soluble molecules

and then exposed to fluorescent soluble target alone for 24 h. Any
fluorescent target uptake during these 24 h, in excess of that seen by
cells that were not pre-exposed to CYpHER, is due to the catalytic
activity of CYpHER molecules that have already cycled and released
their non-fluorescent cargo (Supplementary Fig. 8, bars 3 vs 4). With
this assay, using various CYpHER designs (Fig. 6b), we saw catalytic
CYpHER-driven uptake of cargo with all CYpHER molecules and cell
lines tested. Fluorescent soluble EGFRvIII uptake via CT-1212-1 in A549,
H1650, H1975, and H358 cell lines (Fig. 6c), was seen, with catalytic
uptake (normalized to passive uptake without CYpHER, which is likely
via pinocytosis) at levels that vary by cell line. The degree of catalytic
uptake also changed dependent on the nature of the target-binder
(Fig. 6d). Additionally, as demonstrated using PD-L1 CYpHERs and
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soluble PD-L1, the format of the CYpHER (Fig. 6e) had an impact. In all
cases, uptake of soluble target in excess of passive uptake was seen,
demonstrating a catalytic mechanism of action for CYpHER.

Pharmacodynamic effects of CYpHER in vitro
Having established target depletion, we tested how CYpHER alters
EGFR-mediated signaling and cell growth (Fig. 7). Using various
CYpHER and control molecules (Fig. 7a), we investigated ligand-
induced signaling, where both surface clearance and competitive
binding to EGFR could have impacts. StimulatingCYpHER-treated cells

with EGF produced no increased EGFR phosphorylation in CT-1212-1-
treated cells (Fig. 7b), suggesting any remaining EGFR on the surface is
blocked by the drug or is otherwise signaling-incapable. The valence-
altering variants (CT-1211-1, CT-1112-1, CT-1111-1) had the same effect,
but control molecules CT-1232-1 (non-TfR-binding CDP) and CT-3212-1
(non-EGFR-binding nanobody) did not, demonstrating that both TfR-
and EGFR-binding functions are necessary together to block ligand-
induced activation of EGFR. CYpHER containing the EGF variant was
also tested (Fig. 7c); in contrast to the nanobody-containing CYpHER
series, CT-5212-3-treated cells showed some residual EGFR
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phosphorylation in response to EGF, suggesting the EGF variant on the
CYpHER provides less complete blockade of the EGF-binding site of
the residual surface-resident EGFR. Further affinity maturation of the
variantmay improve its ability to competitively inhibit EGF stimulation
under these conditions. Meanwhile, the EGF variant itself (in the form
of Fc fusion CT-5200-6) did not induce EGFR phosphorylation, con-
firming its capacity as a dominant-negative EGF.

As head and neck cancer (e.g., HNSCC) and lung cancer (e.g.,
NSCLC) are commonly treated with EGFR-targeting agents6,33, CT-1212-
1 was tested for growth suppression in several relevant cell lines: head
and neck cancer line A431 (with a massive duplication of the EGFR
gene), and the four NSCLC lines H1650, H1975, A549, and H358. All of
these lines were tested alongside clinical EGFR-targeted drugs cetux-
imab (EGFR mAb), gefitinib (1st generation EGFR TKI), and osimertinib
(3rd generation EGFR TKI) (Fig. 7d–i). CT-1212-1 suppressed growth
across all cancer types andmutational profiles tested.Moreover, It had
higher potency than the three clinical comparators in all five lines, with
the exception of comparable potency with osimertinib in H1975 cells
containing the T790M mutation against which osimertinib was ori-
ginally developed49.

The potency of CYpHER in KRas mutant lines A549 (G12S) and
H358 (G12C) led us to ask to what degree EGFR signaling and/or iron
uptake disruption is contributing to the cell growth inhibition (Sup-
plementary Fig. 9). Reducing TfR-binding valence or affinity modestly
reduced potency. Using ferric ammonium citrate (FAC), a cell-
penetrant chelated iron supplement, FAC prevented the CT-1212-1
growth disruption on A549 cells. Despite expressing mutant KRas
G12S, A549 cells still respond to 1 ng/mL EGF (an amount consistent
with tumor parenchyma levels50) in the media by demonstrating a
migratory phenotype alongside increased growth, both of which were
completely or partially (respectively) suppressed by CT-1212-1 but not
CT-3212-1 (control that binds TfR but not EGFR) when FAC is present.
Additionally, we tested a colon cancer cell line with wild type KRas and
high, but not constitutively-active, EGFR expression51,52, since such
colon cancers are commonly treatedwith EGFR-targeting biologics53. It
demonstrates growth disruption in response to CT-1212-1 but not
cetuximab, similar to the NSCLC lines, but its growth is still partially
disrupted when FAC is present. These experiments provide additional
context to CYpHER growth disruption, in that cells in vitro can be
highly sensitive to iron uptake disruption, but CYpHER can still disrupt
EGFR-based growth and migration.

As many EGFR-targeted therapeutics (mAbs and TKIs) demon-
strate skin toxicities due to the sensitivity of keratinocytes to EGFR
suppression7,54, CT-1212-1 was also tested in primary human dermal
keratinocytes (Supplementary Fig. 10). Examining TfR and EGFR on
these cells, TfR levels were much lower on these normal cells than on
the cancer lines we tested, while EGFR levels are high (Supplementary
Fig. 10A). Surface EGFR clearance was observed with CT-1212-1, but
with much slower kinetics than seen in the cancer lines (likely due to
much lower surface TfR), and no reduction in surface TfR was seen
(Supplementary Fig. 10B). In primary keratinocyte growth inhibition
assays (Supplementary Fig. 10C), CT-1212-1 demonstrated similar
properties to cetuximab, while the TKIs had similar profiles as their
activity on the cancer cell lines. Comparative potencies on cancer and
keratinocytes suggest CYpHER could have advantages in sparing ker-
atinocytes from growth disruption while still impairing cancer cell
growth (Supplementary Fig. 10D).

In light of CYpHER’s interactions with TfR and because some TfR-
targeting biologics have impacted reticulocyte levels55,56, we chroni-
cally dosed female athymic nude mice with CT-1222-1 for 4 weeks,
twice weekly, at doses from 15μg to 1000μg. Looking at red blood
cells, reticulocytes, total white blood cells, neutrophils, and lympho-
cytes 48 h after the final dose, blood cell counts were not significantly
altered (Supplementary Fig. 11). Themice also didnot demonstrate any
body weight loss, gross physical responses, or drug-related behavioral

changes. Thus, there were no signs that chronic CYpHER exposure
in vivo yielded gross toxicity or hematopoietic side effects, in spite of
any impact by CYpHER on TfR levels or iron homeostasis in cancer
lines in vitro.

In vivo CYpHER pharmacokinetics and pharmacodynamics
To investigate the in vivo pharmacokinetic (PK) properties of the
CYpHER candidates, we dosedNCr nu/numice with 1.5mg/kg CT-1212-
1, CT-1222-1, CT-1211-1, and CT-1232-1 (Fig. 8a). The nanobody does not
cross-react with murine EGFR, so only the murine cross-reactive TfR-
binding CDP and the Fc domain would be expected to influence PK.
CT-1212-1 has two high-affinity TfR-binding CDPs, CT-1222-1 has two
medium-affinity TfR-binding CDPs, CT-1211-1 has one high-affinity
TfR-binding CDP, and CT-1232-1 has no TfR-binding capability
(Fig. 8a). As measured by ELISA (Fig. 8b), serum levels of the CYpHER
molecules demonstrated serum half-lives between 41 and 88 hrs at
this dose, with the longest belonging to the non-TfR-binding mole-
cule CT-1232-1. It is likely that TfR binding increases clearance, a
phenomenon seen in other studies55,57, even with the Fc otherwise
extending serum residence. Considering that CYpHERs exhibited
potency on cancer cells at concentrations as low as 0.2 nM and EGFR
surface clearance at concentrations as high as 200 nM, the PK data
indicates that serum levels in a therapeutic range may be readily
attained with infrequent dosing. The biodistribution to the target
tissue (e.g., tumor), as well as the durability of activity given catalytic
target clearance in cells even when CYpHER is removed from extra-
cellular fluid, are still to be investigated.

We next tested mice implanted with flank H1975 xenografts and
treated for 8 days with CYpHER for any observed pharmacodynamic
(PD) effects (Fig. 8c). Female athymic nude mice were implanted with
5×106 H1975 cells. After 21 days of growth,mice received three doses of
CYpHER on days 0 (enrollment day), 3, and 7. CYpHERs and doses
administered were: CT-1212-1 450μg/dose; CT-1212-1 150μg/dose; CT-
1212-1 30μg/dose; CT-1222-1 150 μg/dose; and CT-5212-3 150μg/dose.
On day 8, tumors were harvested for Western blotting and histology.
Western blotting (Fig. 8d, e) demonstrated a reduction (P = 0.04, as
normalized to actin) in total EGFR by CT-1222-1 150μg/dose, and a
trend towards EGFR reduction (P =0.11) by CT-1212-1 450μg/dose;
pY1068 blotting was not significantly different between the groups
(Supplementary Fig. 12). Histology for EGFR and Ki67 (Fig. 8f, g)
demonstrated two phenomena. First, most fields from the CT-1212-1
450μg/dose and CT-1222-1 150μg/dose tumors demonstrated altered
localization of EGFR (Fig. 8f), visible asmarked reduction ofmembrane
EGFR (DAB stain) relative to intracellular levels. Second, automated
Ki67 quantitation (Fig. 8g) demonstrated that 8 days of treatment
caused a reduction in the proliferation marker Ki67 (percent Ki67
positivity) in the CT-1212-1 450μg/dose (P = 0.003), CT-1212-1 150μg/
dose (P = 0.0004), and CT-1222-1 150μg/dose (P =0.0002) groups vs
vehicle. We will note that the ineffectiveness of CT-5212-3 at reducing
proliferation suggests that bivalent high-affinity TfR-binding is not
sufficient for disrupting H1975 flank tumor growth. As the nanobody-
based CYpHERs that reduced proliferation also were more effective at
reducing EGF-mediated EGFR phosphorylation than CT-5212-3
(Fig. 7b, c), the EGFR-inhibition capabilities of CYpHER may be driv-
ing the effect in vivo. However, CT-5212-3, which has a murine cross-
reactive EGFR binder, may also have altered biodistribution dynamics,
which could impact tumor accumulation. These, and other variables,
are of interest for future studies.

Discussion
Catalytic TPD via CYpHER is a promising approach to durably deplet-
ing disease-driving proteins, capable of altering target trafficking and
cell behavior both in vitro and in vivo. CYpHER leverages TfR, a protein
whose rapid recycling kinetics provide activity acrossmany tumor and
cell types. Furthermore, TfR is overexpressed and required for cancer
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cell growth, increasing potential tumor accumulation and reducing the
risk of acquired drug resistance. TfR also delivers cargo across the
blood-brain barrier, adding CNS proteins as potential targets. Through
engineering the target-binding end for pH-dependent release, CYpHER
is not reliant on other enzymes for function, and its catalytic activity

permits one drug molecule to clear multiple target molecules with
more durable function. Lastly, the drug molecules are proteins pro-
duced by standard recombinant expression, requiring no chemical
modifications and using binder modalities found in other clinically-
approved molecules.
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CYpHER is a promising approach for cancers driven by RTKs,
exemplified by the inexorable challenge of EGFR-driven cancer. Our
pilot studies demonstrate a pharmacodynamic effect in tumors, but
more studies are necessary to establish potential efficacy in tumor
growth inhibition. Meanwhile, the CYpHER platform can approach
numerous difficult targets in oncology and CNS disease. The ErbB
family of RTKs (e.g., EGFR, HER2, HER3) are all associated with driving
cancer and/or inflammation in various tissues and settings, alongside
other growth factor and cytokine receptors (e.g., c-Met, FGF receptors,
IGF-1 receptors, interleukin receptors). Similar to EGFR, all feature
multiple functions like homodimerization, heteroassociation, kinase
function, and/or scaffolding for signal transduction. Protein elimina-
tion is the only way to completely neutralize all possible disease-
causing functions. For CNS conditions, access to the CNS via TfR-
mediated transcytosis offers exciting possibilities such as clearing
neurodegeneration-associated misfolded proteins (e.g., amyloid, tau,
huntingtin) or their inflammatory mediators. CNS metastasis is also a
common cause for cancer progression, and TfR-mediated CNS access
may prevent this mechanism of recurrence.

In conclusion, CYpHER adds a powerful entry to the TPD field.
With catalytic functionality, broad target applicability, good assembly
and production, potent and durable alteration of target trafficking,
and demonstrable in vivo activity, proteins for which traditional tar-
geted therapeutics have struggled may be approachable, with pro-
mising implications to our most insidious and intransigent diseases.

Methods
Study design
This work describes the conception, engineering, and applications of
CYpHER, a catalytic targeted protein degradation technology using a
recycling receptor (here, TfR), evaluating target trafficking and elim-
ination in tissue culture and inmurine tumors. Thework complies with
all relevant ethical regulations. Cyclera Therapeutics oversaw com-
pliance with biosafety regulations for in vitro work. Animal work
compliance described in the pharmacokinetics and tumor implanta-
tion sections below.

Recombinant proteins, antibodies, and co-stains/secondary
antibodies
Identities of catalog item recombinant proteins and antibodies can be
found in the Supplementary Information.

EGF variant design using Rosetta
A previously-published co-crystal structure containing EGF and EGFR
(PDB 1IVO) was processed to separate EGF (chain C) and EGFR domain
III (chain A, residues 311-510). They were combined into a single PDB,
whichwas used as the input for Rosettascripts40 using proprietaryXML
scripts optimized for CDP redesign. 1000 unique variants were
designed and scored using an interface analysis script, with 488 that
had favorable scoring parameters incorporated into a mammalian
surface display screening library. The steps for screening the binders
and selectively mutagenizing the variants to identify a dominant-
negative variant for CYpHER incorporation can be found in the Sup-
plementary Information.

Mammalian surface display
Surface display flow cytometry was based on previously described
protocols (62), with details found in Supplementary Information. The
library screens for identifying and maturing EGFR-binding nanobody
and EGF variants were each conducted once.

Recombinant protein production and analysis
Pilot CYpHER (Supplementary Fig. 1) molecule was produced as pre-
viously described27; in short, 293 FreeStyle cells (Thermo Fisher
R79007) were transduced with constructs driving expression of the

protein of interest at a multiplicity of infection ≈10 and grown until
terminal volume (~30mL) in FreeStyle 293 Expression Medium (Invi-
trogen 12338018) until harvest, 0.22-μm sterile filtration, and IMAC Ni-
affinity chromatography (Cytiva, 17525501) purification. All other
CYpHER molecules were produced by transient expression in sus-
pension HEK293 cells (ThermoFisher GeneArt) and purified either via
Ni-NTA pull-down as previously described27 or by Protein A columns
(Cytiva 28985254 [pre-packed Protein A columns] and 28903059
[buffer kit]) as per manufacturer’s protocol. Proteins were buffer
exchanged (Sephadex G25 desalting columns, Cytiva 17085101) into
PBS and aliquoted for storage at −80 °C. SDS-PAGE (4–12% Bis-Tris
1mm thickness, ThermoFisher NP0321BOX or NP0323BOX) was run
with MES buffer (ThermoFisher NP0002) at 180V for 50min prior to
Coomassie stain. SE-HPLC was performed on Agilent instrumentation
using a TSKgel G3000SWXL column (Tosoh 08541). Mobile phase was
50mM acetate pH 5.0, 100mMNaCl, 100mM arginine, 5% EtOH. Flow
rate for the run was 0.5mL/min. 100μg protein was loaded.

Surface plasmon resonance (SPR) interaction analyses, micro-
scopy, western blotting, cell viability dose response testing,
immunohistochemistry, and ELISA
The details for the SPR, microscopy, Western blotting, cell viability
dose response tests, immunohistochemistry, and ELISA can be found
in the Supplementary Information.

Cancer cell line and primary keratinocyte surface protein flow
cytometry
Detailed protocols can be found in the Supplementary Information. In
brief, cells for surfaceprotein analysis were lifted, pelleted, and stained
for 30min on ice with 10 nM of the appropriate antibody (anti-PD-L1,
anti-EGFR, anti-TfR, or anti-human Fc), all ofwhichwere chosen tobind
a site non-competitive with the CYpHER binding site. Fluorescent co-
stains were included, permitting flow cytometry quantitation of sur-
face protein after cells were rinsed. Note: where Y axes in figures are
denoted with “vs PBS”, “vs Untreated”, or “vs No CYpHER”, it means
values were normalized to themeanof that sample (PBS, Untreated, or
No CYpHER) prior to plotting.

Catalytic soluble protein uptake
Thedetailed protocol is available in the Supplementary Information. In
brief, cells in 24well plateswere treated for 2 hwith 20 nMbiotinylated
EGFRvIII with or without 5 nM CYpHER. After 2 h, cells were rinsed
twice with PBS and then exposed to 10 nM biotinylated EGFRvIII and
10 nM iFluor 647-conjugatedmonovalent streptavidin. After 24 h, cells
were lifted and analyzed by flow cytometry for fluorescence in the 647
channel, normalizing averages of cells treated with both EGFRvIII and
CYpHER in Step 1 to cells only treated with EGFRvIII in Step 1.

In vivo pharmacokinetic analysis
PK work was performed at Charles River Laboratories with approval
from their internal review board. For each test article, 12 female NCr
nu/nu mice (8–10 weeks of age) received single IV doses of 1.5mg/kg
test article in PBS (or only PBS vehicle). Females were used for ease in
re-housing and to reduce waste in the breeding scheme (males used
for strain maintenance). Further development experiments will use
both male and female mice. In groups of 3, mice were bled at 10min,
30min, 1 h, 2 h, 4 h, 8 h, 24 h, 48h, 96 h, and 168 h. 12 mice produced
these samples: one trio of mice was bled at 10min, 4 h, and 96 h; one
triowas bled at 30min, 8 h, and 168 h; one trio was bled at 1 h and 24 h;
and one triowas bled at 2 h and 48h. Serum samples were snap-frozen
and stored at −80 °C until analysis using an in-house ELISA method.

In vivo tumor implantation and dosage
Tumor implantation and dosage was performed at Seattle Children’s
Research Institute. All mice were maintained in accordance with the
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National Institutes of Health Guide for the Care of Laboratory Animals
with approval from the Seattle Children’s Research Institute, Institu-
tional Animal Care and Use Committee (protocol ACUC00682). 7-
week-old female Athymic Nude mice (Foxn1nu) were purchased from
Inotiv Laboratories (#069) and housed under specific pathogen free
conditions. Females were used for ease in re-housing and to reduce
waste in the breeding scheme (males used for strain maintenance).
Further development experiments will use bothmale and femalemice.
NCI-H1975 lung tumor cells were purchased from ATCC (CRL-5908)
and verified human pathogen andmycoplasma free. CYpHER proteins
CT-1212-1, CT-1222-1, and CT-5212-3 were formulated in phosphate-
sucrose buffer and confirmed tomeet endotoxin specifications. 5 ×106

tumor cells in PBS were inoculated in the subcutaneous space on the
right flank of seven weeks old mice. Study enrollment was done en
mass on day 0, 21 days after tumor implantation when the average
tumor volume per group was 275mm3. Six mice were randomly
assigned to each treatment group, normalizing for equal starting
tumor volume. Vehicle or therapeutic were administered as a 200μL
bolus via tail vein injectionondays0, 3, and 7. Tumor volumeandbody
weight were recorded on days 0, 2, 4, and 7. The study ended onday 8.
Mice were removed from the study early if ulcerations developed on
the tumor surface. Tumors did not reach IACUC-determined maximal
size (1500mm3). For blood counts, mice bearing H1975 xenografts
were treated twice perweek IVwith CT-1212-1 or vehicle for fourweeks.
48 h after the final dose, mice were euthanized and blood collected.
Blood was kept on ice and shipped overnight to IDEXX BioAnalytics
(West Sacramento, CA) for complete blood count (CBC) analysis. All
mice were group-housed with unrestrictedmobility and free access to
food and water for the duration of study. The housing room is main-
tained at 68–79 °F with 30–70% relative humidity on a 12-h light
dark cycle.

Statistics and reproducibility
All comparisons within a given plot or panel were performed simul-
taneously. Measurements involved distinct samples; the same sam-
ple was not measured repeatedly. No data were excluded from
analyses. Flow cytometry and microscopy experiments were per-
formed once or twice as described in figure legends; when once, the
experiments were compared to similar, but not identical, experi-
ments (e.g., same cell line and treatment but different timepoints) for
reproducibility assessment before inclusion in the manuscript. In
vitro growth suppression experiments were performed once (A431,
H358, SW48) or twice (A549, H1975, H1650, primary keratinocytes);
when twice, both datasets produced similar data so one was used in
analysis. Experiments consisted of 8-9 concentrations dosed in tri-
plicate to arrive at reported potencies, calculated using Graphpad
Prism v10, details for which can be found in the Supplementary
Information. All animals in both the PK and tumor xenograft studies
were female. No statistical method was used to predetermine sample
size. Investigators were blinded to test article identity for the PK
study, while the tumor xenograft study was unblinded. For the tumor
xenografts, enrollment was done when the average tumor volume
per group was 275mm3, randomly assigning mice to each treatment
group, normalizing for equal starting tumor volume. For the ELISA,
all murine serum samples were measured at two dilutions (1:100 and
1:1000) in technical triplicate, using whichever dilution produced
interpolated values closest to the middle of the linear portion of the
ten-point standard curve (technical triplicate at all concentrations) as
the actual values. Full information on statistical tests used, sig-
nificance values, and N per sample, are found in the
Supplementary Data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data associated with this study are present in the paper, Supple-
mentary Information and SupplementaryData. Additional information
and/or materials related to this study, including recombinant proteins
and datasets, will be made available through a material transfer
agreement upon request to the corresponding author. Source data are
provided with this paper.
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