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Visual working memory (VWM) is a core cognitive function wherein visual information is stored and manipulated over short periods. 
Response errors in VWM tasks arise from the imprecise memory of target items, swaps between targets and nontargets, and random 
guesses. However, it remains unclear whether these types of errors are underpinned by distinct neural networks. To answer this 
question, we recruited 80 healthy adults to perform delayed estimation tasks and acquired their resting-state functional magnetic 
resonance imaging scans. The tasks required participants to reproduce the memorized visual feature along continuous scales, which, 
combined with mixture distribution modeling, allowed us to estimate the measures of memory precision, swap errors, and random 
guesses. Intrinsic functional connectivity within and between different networks, identified using a hierarchical clustering approach, 
was estimated for each participant. Our analyses revealed that higher memory precision was associated with increased connectivity 
within a frontal-opercular network, as well as between the dorsal attention network and an angular-gyrus-cerebellar network. We 
also found that coupling between the frontoparietal control network and the cingulo-opercular network contributes to both memory 
precision and random guesses. Our findings demonstrate that distinct sources of variability in VWM performance are underpinned by 
different yet partially overlapping intrinsic functional networks. 

Key words: brain-behavior associations; delayed estimation task; mixture distribution modeling; resting-state networks; visual working 
memory. 

Introduction 
Visual working memory (VWM) refers to the ability to hold and 
manipulate visual information over short periods of time. Since 
the pioneering work by Bays et al. (2009), previous studies have 
sought to understand variability in VWM performance through 
the segregation of different sources of error. Hypothetically, 
internal representations stored in working memory reflect an 
imprecise representation of a target item, sometimes along with 
representations of nontarget items. These representations con-
tain information about the spatial location and visual attributes 
of the encoded items (Logie 1986, 1995). Response errors can arise 
from imprecision in these representations, thought to originate 
from the inherent noise within the working memory system. 
Alternatively, errors can arise from erroneous binding between 
different features of the target and nontarget items (e.g. binding 
location of the target item with the orientation of a nontarget 
item), so-called “swap errors” (Bays et al. 2009). Finally, response 
errors can arise from random guessing when sensory encoding or 
maintenance of the encoded information fails (Bays et al. 2009). 
This influential framework challenges the long-standing model 
of VWM, which holds that a fixed number of memory “slots” are 

used to store a fixed number of visual items (Zhang and Luck 
2008). Instead, Bays et al. framework has led to the development 
of resource-based models of VWM, which suggest that a single 
memory resource is distributed among visual items. As the 
number of items increases, the representation of each individual 
item becomes less precise, resulting in more frequent swaps and 
guesses (Bays et al. 2009; Ma et al. 2014). The framework has also 
enabled researchers to gain a deeper understanding of individual 
differences in VWM performance. For example, among children 
aged 7 to 13 yrs, improvements in overall task performance were 
primarily driven by enhanced age-related memory precision 
rather than by decreases in swap errors or random guesses 
(Burnett Heyes et al. 2012; Burnett Heyes et al. 2016). 

Despite the theoretical and practical implications of the mix-
ture component framework, only a few studies to date have 
examined the neural correlates of the distinct sources of variabil-
ity in VWM performance. Lugtmeijer et al. (2021), for example, 
investigated feature recall and binding in stroke patients and 
found that deficits in memory precision were associated with 
lesions in the left superior parietal lobule and auditory cortex and 
the right inferior frontal gyrus and supplementary motor area,
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whereas deficits in feature binding were specifically associated 
with lesions in the left postcentral gyrus (Lugtmeijer et al. 2021). 
By examining individual differences in white matter microstruc-
tural properties among healthy adults, our recent work revealed 
associations between sources of error in VWM tasks and long-
range association fibers (Li et al. 2023). We found that mem-
ory precision was specifically associated with fiber coherence of 
the bilateral superior longitudinal fasciculus and inferior fronto-
occipital fasciculus, whereas random guessing was specifically 
related to axonal density of the inferior fronto-occipital fascicu-
lus. Of note, the associations we found were generalized across 2 
working memory tasks examining different visual features: one 
spatial task, where participants recalled the location of a target 
item, and one object task, where they recalled the orientation of 
the target item. 

The previous findings suggest that the distinct sources of error 
in VWM performance are supported by distinct white matter 
tracts and cortical regions that work in unison to enable veridi-
cal memory storage and retrieval. This raises the question of 
whether these errors are also supported by different patterns of 
spontaneous functional brain activity. A significant aspect of the 
spontaneous brain activity is its ability to show reproducible tem-
poral correlations among brain regions, thus revealing intrinsic 
networks of the brain (Fox et al. 2005; Vincent et al. 2008; Yeo 
et al. 2011). The topographical properties, along with the internal 
and external dynamics of these networks, can be analyzed to 
understand brain activity over timescales from ten to hundreds of 
seconds. Moreover, the macroscale organization reflected by these 
intrinsic networks often closely mirrors the functional networks 
engaged during a wide range of tasks, providing insights beyond 
what structural imaging alone can offer. 

Studies employing resting-state functional magnetic reso-
nance imaging (rs-fMRI) have revealed links between VWM 
performance and functional connectivity (FC) within and between 
several intrinsic brain networks. For example, intrinsic FC 
within the dorsal attention network, a network crucial for 
top-down attention (Corbetta and Shulman 2002; Vossel et al. 
2014), was associated with working memory accuracy (Ren 
et al. 2019). Additionally, training-induced changes in FC within 
the frontoparietal control network, a network for executive 
control and adaptive behavior (Vincent et al. 2008; Dixon et al. 
2018), were correlated with improved task accuracy (Jolles 
et al. 2013). Moreover, individual differences in the extent to 
which the default mode network, typically deactivated during 
cognitively demanding tasks (Fox et al. 2005; Yeo et al. 2011), 
and the frontoparietal control network were anticorrelated at 
resting state were associated with individual differences in 
working memory capacity (Sala-Llonch et al. 2012; Keller et al. 
2015). Taken together, prior studies have shown relationships 
between aggregate VWM performance and several intrinsic 
functional networks. Importantly, however, they have overlooked 
the heterogeneous nature of VWM performance and have not 
distinguished between memory precision, binding failures, and 
random guessing. Whether and how distinct sources of errors 
in task performance are related to intrinsic functional networks 
remains unclear. 

In this study, we sought to characterize the relationships 
between distinct sources of behavioral variability in VWM 
and intrinsic functional networks. To achieve this goal, we 
acquired rs-fMRI and computed FC between 37 regions of 
interest (ROIs). A data-driven hierarchical clustering approach 
was applied to reveal different functional networks, followed 
by calculating the average strength of FC within and between 

different networks. To evaluate VWM performance, we used 
a delayed estimation task, as employed in our previous work 
(Li et al. 2023), which required participants to encode visual 
gratings that varied in both their spatial location and orientation. 
Following a short delay period, participants reported on a 
continuous scale either the orientation or location of only one 
of the gratings. The location and orientation tasks were used to 
investigate the effects of spatial and nonspatial visual features on 
relationships between functional brain networks and measures of 
working memory performance. Estimated measures of memory 
precision, swap errors, and random guesses were obtained by 
modeling different sources of error using computational modeling 
(Bays et al. 2009). 

Building on our previous work (Li et al. 2023) and findings 
from Lugtmeijer et al. (2021), which suggest the existence of 
specific neural systems for memory precision, swap errors, 
and random guesses, we hypothesized that distinct VWM 
errors would be associated with distinct intrinsic functional 
networks. Specifically, for memory precision, we considered the 
frontoparietal control network and dorsal attention network 
as the prime candidates, due to their spatial correspondence 
with the superior longitudinal fasciculus (Vincent et al. 2008; 
Vossel et al. 2014; Li et al. 2023). Furthermore, we expected 
swap errors, previously linked to lesions in the postcentral gyrus 
(Lugtmeijer et al. 2021), to be associated with the somatomotor 
network. Additionally, we hypothesized that random guesses, 
often stemming from attentional lapses, mind-wandering, and 
fatigue, would be linked to the default mode network, which 
is crucial for regulating internally directed cognition (Buckner 
et al. 2008; Christoff et al. 2016). Since our prior study showed 
that the observed associations were generalized across working 
memory tasks examining spatial and nonspatial visual features 
(Li et al. 2023), we predicted in this study that the relationships 
between intrinsic networks and different error types would not 
vary specifically between the location and orientation tasks. 

Materials and methods 
Participants 
Eighty-seven healthy adult humans were recruited from the Uni-
versity of Queensland through an online volunteer system. Par-
ticipants underwent a behavioral session to perform the VWM 
experiment, followed by an MRI. Seven participants were excluded 
due to either data corruption (n = 4) or incomplete brain imaging 
data acquisition (n = 3). The final sample included 80 participants 
aged 18 to 38 yrs (M = 24.24, SD = 4.61; 39 females). All participants 
completed safety screening questionnaires and provided written 
informed consent before the experimental sessions. Participants 
were reimbursed at a rate of $20 per h. The study was approved 
by the Human Research Ethics Committee of The University of 
Queensland (2018001427). 

Experimental procedure 
The delayed estimation experiment has been described in detail 
in our previous study (Li et al. 2023). Briefly, the experiment 
was implemented in MATLAB R2018a (MathWorks, Natick, MA) 
using Psychtoolbox (Brainard 1997; Pelli 1997). Of note, the exper-
iment was performed concurrently with electroencephalography 
recording, but these data are not reported here. Each trial started 
with the presentation of a central arrow cue pointing to either 
left or right (Fig. 1). This manipulation was designed to direct 
participants’ attention to the task-relevant visual hemifield. The 
cue was followed by an encoding phase for 400 ms, during which 6
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Fig. 1. Schematic illustration of the delayed estimation tasks. At the beginning of each trial, an arrow cue appeared to remind participants to encode 
items presented on either the left or right side of the screen. Six differently oriented gratings were then presented during the encoding period, followed 
by a maintenance period. In the Orientation Task, the location of one of the memorized items was presented as a probe to indicate which item would 
be retrieved. During the response period, participants reported the orientation of the target item. In the Location Task, the orientation of one of the 
memorized items was presented as a probe and participants reported the location of the target item during the response period. 

differently oriented gratings were presented simultaneously and 
bilaterally (i.e. 3 in each visual hemifield). Based on the direction 
of the cue arrow, participants had to focus only on the 3 gratings 
presented on the left or right hemifield. The encoding phase was 
followed by a 900 ms maintenance phase, during which only the 
central cross remained on the screen. Next, a response probe 
appeared, showing either the location or orientation of one of the 
memorized gratings for 700 ms. In the orientation task, a probe 
stimulus was displayed at the location of a randomly chosen 
grating. As the probe disappeared, participants were instructed to 
report the orientation of the target item in a white circle. In the 
location task, by contrast, the probe indicated the orientation of a 
randomly chosen grating. As the probe disappeared, participants 
were instructed to report the location of the target item on a white 
circle. For both tasks, participants had maximally 3,500 ms to 
respond. After the response, or at the end of the response period, 
feedback was provided for 1,000 ms in the form of a green line to 
show the correct orientation or a green circle to show the correct 
location. 

The experiment consisted of 4 randomized blocks so that each 
of the tasks was presented twice. Each block contained 2 runs in 
which participants were cued to encode items on the left side of 
the screen and 2 runs in which participants were cued to encode 
items on the right side, and these alternated with each other. 
The runs were counterbalanced across participants. Each block 
comprised 120 trials, with 30 trials per run. A total of 480 trials 
were collected from each participant. 

Behavioral analyses 
To quantify behavioral performance in each trial, response 
errors were computed as the angular difference between the 
participant’s response and the correct orientation or location of 
the probed item. In the orientation task, response errors ranged 
between 0◦ and ± 90◦. In the location task, response errors ranged 
between 0◦ and ± 180◦, with errors larger than ±90◦ indicating that 
participants selected a location in the uncued hemifield. Initial 
data inspection indicated that participants never made such 
“hemifield-swap” errors. Thus, in later analyses, item location 
was treated similarly to item orientation, with the range of 
response errors being between 0◦ and ± 90◦. Response errors in 

both tasks were transformed from degrees to pi radians (πrad) 
with 0◦ and ± 90◦ mapped to 0 πrad and ± 1 πrad, respectively. A 
histogram of response errors was constructed for each participant 
and each task. 

To identify outlier participants, error distributions per task 
were compared against a uniform distribution (i.e. a uniform 
distribution is expected if a participant guessed in a majority of 
trials) for each participant, using the Kolmogorov–Smirnov test 
(Massey 1951). Participants whose error distributions proved to 
be uniformly distributed at the level of P < 0.05 were removed 
from further analyses. Based on this criterion, 8 participants were 
excluded, leaving a total of 72 participants (36 females; 18 to 
38 yrs, M = 24.31, SD = 4.77) for the following analyses. 

To identify different sources of behavioral variability in VWM 
tasks, a mixture distribution modeling introduced by Bays et al. 
(2009) was applied, which attributes response errors to a mixture 
of 3 components. Briefly, the model is defined as the probability 
of reporting the target item (PT), the probability of reporting the 
nontarget items (PNT), the probability of random guessing (PG), 
and the concentration parameter κ of the von Mises distribu-
tion that described the variability around the target value. The 
maximum likelihood estimates of the parameters were obtained 
separately for each participant in each task using an expectation– 
maximization algorithm. The fitted von Mises κ was converted 
to circular standard deviation (σ vM) as defined by Fisher (1995), 
giving an inverse measure of memory precision that reflects the 
precision of representations stored in VWM (Bays, Gorgoraptis, 
et al. 2011a; Bays, Wu, et al. 2011b; Pratte et al. 2017). PNT measures 
swap errors, which describe the proportion of responses arising 
from feature binding anomalies in working memory where a 
nontarget feature is “swapped in” for the target feature (Bays 2016; 
Schneegans and Bays 2017). PG measures the random guesses which 
reflect the proportion of responses originating from attention 
lapses, poor task compliance or other motivational factors. These 
analyses were performed using the Analogue Report Toolbox in 
MATLAB R2021b (Bays et al. 2009; Schneegans and Bays 2016). 
Further analyses were conducted to assess the recoverability of 
model parameters, which demonstrated that all parameters were 
readily recoverable (White et al. 2018; Wilson and Collins 2019; see  
Supplementary Methods).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae401#supplementary-data
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To explore whether behavioral performance differs in the ori-
entation and location tasks, we conducted paired-samples t-tests 
to examine the differences in σ vM, PT, PNT, and  PG between tasks. 
The significance level was set at P < 0.05, corrected for multiple 
comparisons using Bonferroni adjustment. These analyses were 
performed using R package “rstatix” (Kassambara 2020). 

Neuroimaging analysis 
Image acquisition 
Participants underwent MRI scans using a Siemens Magnetom 
Prisma 3 T system at the Centre for Advanced Imaging at The 
University of Queensland. T1-weighted structural scans were 
obtained with a magnetization-prepared 2 rapid acquisition 
gradient echo sequence (Marques et al. 2010), with field-of-
view = 240 mm, number of slices = 176, TR = 4000 ms, TE = 2.92 ms, 
TI 1 = 700 ms, TI 2 = 2220 ms, first flip angle = 6◦, second flip 
angle = 7◦, and 5 to 6 min of acquisition time. Whole-brain blood-
oxygen-level-dependent (BOLD) signals were acquired using 
an echo-planar imaging sequence with field-of-view = 206 mm, 
number of slices = 60, slice thickness = 2.4 mm, TR = 820 ms, 
TE = 33 ms, and flip angle = 53◦, and acquisition time of about 
7 min. Participants were instructed to close their eyes and relax 
while remaining awake during the resting-state functional scans. 

Image Preprocessing and Denoising 
Data were preprocessed using the CONN toolbox (v21.a; Nieto-
Castanon 2020) and Statistical Parametric Mapping (SPM) 12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Functional 
data were corrected for subject movement and magnetic 
susceptibility geometric distortions (Andersson et al. 2001). 
Temporal misalignment between slices was corrected using 
SPM12 slice-timing correction procedure (Henson et al. 1999; 
Sladky et al. 2011). Potential outlier scans were identified using 
artifact detection tools as scans with framewise displacement 
above 0.9 mm or global signal changes above 5 standard 
deviations (Power et al. 2014). Functional and T1-weighted data 
were normalized into standard MNI152 space, segmented into 
gray matter, white matter, and cerebrospinal fluid tissue classes 
using SPM unified segmentation and normalization algorithm 
(Ashburner and Friston 2005). BOLD data were spatially smoothed 
with an 8 mm full-width-at-half-maximum Gaussian kernel. 

The BOLD signal timeseries was denoised by regressing out 
noise components from cerebral white matter and cerebrospinal 
fluid areas (Behzadi et al. 2007), subject-motion parameters and 
their first-order derivatives (Friston et al. 1996), and outlier scans 
(Power et al. 2014). This was followed by bandpass frequency filter-
ing of the BOLD timeseries between 0.008 Hz and 0.1 Hz (Hallquist 
et al. 2013). The anatomical component-based noise correction 
within white matter and cerebrospinal fluid was estimated by 
computing the average BOLD signal as well as the largest principal 
components orthogonal to the BOLD average, motion parameters, 
and outlier scans within each participant’s eroded segmentation 
masks (Behzadi et al. 2007; Chai et al. 2012). 

First-level analysis 
Thirty-seven ROIs were selected on the basis of a recent meta-
analysis of task-based fMRI experiments of VWM (Li et al. 2022). 
This meta-analysis synthesized BOLD activations during the delay 
period of VWM tasks across 30 experiments involving 515 healthy 
young adults. The MNI coordinates of each ROI were defined 
according to the local peak coordinates obtained from the meta-
analysis using the seed-based d mapping algorithm (Table S1). A 
spherical ROI with a radius of 4 mm was created for each MNI 

coordinate (Fig. 3b). FC between each pair of ROIs was measured 
by the Fisher-transformed Pearson’s cross-correlation coefficient 
from a weighted general linear model at the subject level (Nieto– 
Castanon 2020). 

Second-level analysis 
In this study, we identified different intrinsic functional net-
works using complete-linkage clustering, a data-driven agglom-
erative hierarchical clustering procedure (Sorensen 1948; Nieto-
Castanon 2020). Hierarchical clustering has been used to analyze 
rs-fMRI data in many influential studies (e.g. Cordes et al. 2002; 
Salvador et al. 2005), proving to be as valid as other multivariate 
approaches such as independent component analysis (Wang and 
Li 2013). This method stratifies data into hierarchical structures 
(Zhou et al. 2006; Boly et al. 2012), which aligns conceptually 
with our understanding of neural networks related to working 
memory. Although the ROIs we chose were co-activated during 
VWM tasks and could appear to constitute a single large network, 
we believed that multiple functionally dissimilar subnetworks 
were embedded within to support working memory. Therefore, 
we expected that some well-established intrinsic functional net-
works, consistently revealed by other approaches (Damoiseaux 
et al. 2006; Seeley et al. 2007), would be identified through hier-
archical clustering. Additionally, using a data-driven approach 
instead of focusing on predefined networks enables us to study 
networks that were previously unidentified in research. 

The clustering process starts with each region as its own clus-
ter. In each iteration, the pairwise distance between all regions 
is calculated, and the maximum distance between any 2 regions, 
each belonging to one of the clusters, is defined as the distance 
between 2 clusters. The 2 clusters with the shortest distance 
among all cluster pairs are joined together. This process continues 
until the optimal number of clusters is reached, which is deter-
mined by a point in the hierarchy that corresponds to a jump 
in the linkage distance. Mathematically, the distance between 
clusters can be described by the following expression: 

D (X, Y) = max
{
d

(
p, q

) |p ∈ X, q ∈ Y
}

where X and Y denote 2 clusters of regions. d
(
p, q

)
is the distance 

between region p ∈ X and q ∈ Y. 
The distance between regions p and q is defined as the weighted 

sum of the functional similarity metric, given by the squared 
Euclidean distance between the group-average FC patterns of 
the regions, and the anatomical proximity metric, given  by  the  
squared Euclidean distance between the centroid coordinates 
of the regions. Formally, d

(
p, q

)
is described as follows: 

d
(
p, q

) = r × 
m∑

j=1

(
Fpj − Fqj

)2 + (1 − r) × 
3∑

k=1

(
Cpk − Cqk

)2 

where Fpjand Fqj are the group-average connectivity coefficients of 
regions p and q with respect to the j-th region of the m ROIs. Cpk and 
Cqk refer to the k-th coordinates of the centroids of regions p and q. 
r is the weighting parameter, ranging from 0 to 1. For the following 
analysis, a default weighting parameter r = 0.95 was set to allow a 
strong contribution of functional similarity between regions while 
considering a small contribution of anatomical proximity (Nieto-
Castanon 2020). 

Multivariate analyses were conducted to test whether the FC 
of the identified clusters differed significantly from zero, using 
Functional Network Connectivity parametric statistics (Jafri et al.
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https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae401#supplementary-data


Li et al. | 5

2008). For each connection between pairs of ROIs, a separate 
general linear model was defined, with the bivariate correla-
tion coefficient at this connection as the dependent variable. 
Hypothesis testing at the connection level was performed with 
random effects across participants and sample covariance esti-
mation across multiple measurements. Statistical inference was 
performed at the level of individual clusters based on the mul-
tivariate parametric statistics within and between each pair of 
clusters (Jafri et al. 2008), with a cluster-level threshold at P < 0.05, 
corrected for false discovery rate (FDR; Benjamini and Hochberg 
1995), together with a post hoc connection-level threshold at 
uncorrected P < 0.05 to identify individual connections showing 
some of the largest effects within each significant cluster. For each 
participant, we calculated the average FC within and between 
the identified clusters, including all related ROIs, regardless of 
whether individual connections were above the threshold or not. 
These measures of within-network FC and between-network FC were 
then used for subsequent analysis of brain-behavior association. 

Brain-behavior association analysis 
To examine the relationship between intrinsic functional net-
works and distinct sources of error in task performance, we 
applied linear mixed-effects models to regress memory precision, 
swap errors, and random guesses separately against FC within and 
between the identified networks, using R packages “lme4” (Bates 
et al. 2015) and “lmerTest” (Kuznetsova et al. 2017). To find the 
most parsimonious model that provided the best fit to the data, a 
step-up model-building approach was used. This procedure starts 
with the construction of a base model, followed by the stepwise 
addition of predictor variables. The base model comprised a fixed 
intercept, a fixed effect of task (location vs. orientation), and a 
random intercept of subject to account for the within-subject 
design. The fixed effects of within- and between-network FC and 
their interactions with the task effect were tested. All models 
were ordered based on their restricted log-likelihood obtained 
via restricted maximum likelihood estimation. Every new model 
was evaluated against its nested model via the likelihood ratio 
test, with models refitted by the unrestricted maximum likelihood 
estimation. In the case of significant interactions, the correspond-
ing main effect terms were also retained. Significant interactions 
were followed up using simple slope analysis as implemented in 
the “interactions” package (Long 2022). The significance level was 
set at P < 0.05; P-values for fixed effects were calculated using 
Satterthwaite approximations. Parametric bootstrapping was per-
formed to compute confidence intervals for the parameters of the 
best-fitting models using the percentile method with 10,000 sim-
ulations. Additional analyses of influential cases were conducted 
using the “influence.ME” package (Nieuwenhuis et al. 2012). 

Results 
Behavioral results 
Figure 2a shows the empirical response error distributions for 
both orientation and location tasks, and the corresponding model 
fits predicted by the mixture distribution model. The presence of 
nonuniform, bell-shaped distributions centered on zero suggests 
that participants were successful in reporting features of the 
target item in most trials. The distribution of response errors 
was wider for the orientation task compared to the location 
task, indicating higher variability in the former. The mixture 
distribution model provided good fits to the empirical data for 
both tasks (Fig. 2a), with the estimated σ vM being significantly 
higher for the orientation task (M = 0.74, SEM = 0.03) than for the 

location task (M = 0.40, SEM = 0.01) as shown in Fig. 2b, t(71) = 10.40, 
P = 6.28e-16. The error distributions for both tasks also displayed 
long tails, indicating the presence of swap errors and random 
guesses. Figure 2c shows the differences in the model-estimated 
probabilities between tasks. The estimated probabilities of target 
response, measured by the PT, were similar in the orientation 
(M = 0.61, SEM = 0.02) and location tasks (M = 0.64, SEM = 0.01), 
t(71) = −1.41, P = 0.652. The occurrence of swap errors, measured 
by the PNT, was significantly lower in the orientation task (M = 0.03, 
SEM = 0.01) than in the location task (M = 0.34, SEM = 0.01), 
t(71) = −28.10, P = 3.71e-40. The occurrence of random guessing, 
measured by the PG, was significantly higher in the orientation 
task (M = 0.36, SEM = 0.03) than in the location task (M = 0.02, 
SEM = 0.01), t(71) = 13.20, P = 1.02e-20. 

Identification of intrinsic functional networks 
Using the data-driven hierarchical clustering approach, we iden-
tified 6 intrinsic functional networks (Fig. 3a, b, and  d; Table S1). 
Network 1 (N1) is specific to the left hemisphere, and it comprises 
2 prefrontal ROIs in the superior and middle frontal gyrus and 
the middle occipital gyrus. Network 2 (N2) is the largest network 
identified by the clustering procedure, which corresponded well to 
the dorsal attention network responsible for top-down attention 
(Corbetta and Shulman 2002; Vossel et al. 2014). It comprised the 
bilateral intraparietal sulcus, the left inferior frontal junction and 
precuneus, and the right human frontal eye field and inferior tem-
poral gyrus. Network 3 (N3) comprised 4 regions commonly found 
in the frontoparietal control network (Vincent et al. 2008; Dixon 
et al. 2018), including the right middle frontal gyrus, the pars trian-
gularis and pars opercularis of the inferior frontal gyrus, and the 
right supramarginal gyrus. Network 4 (N4) comprised the bilateral 
angular gyrus and the Crus I and lobule VII in the left posterior 
cerebellum. Network 5 (N5), the second largest network, showed 
some overlap with the cingulo-opercular network (Seeley et al. 
2007; Han et al. 2018). It comprised the bilateral supplementary 
motor areas, anterior insula, dorsomedial superior frontal gyrus, 
anterior and mid-cingulate cortices, dorsal striatum, as well as 
the left cerebellar lobule VI. Finally, network 6 (N6) comprised the 
pars orbitalis of the bilateral inferior frontal gyrus and the right 
precentral gyrus, Rolandic operculum, and Heschl’s gyrus. 

The FC between all pairs of ROIs within each network, as well 
as between pairs of ROIs in any 2 networks, was significantly dif-
ferent from zero at the cluster level, as demonstrated by the mul-
tivariate parametric analyses (Fig. 3a). Next, for each participant, 
we calculated the average FC within and between the identified 
networks for subsequent analysis of brain-behavior association 
(Table S2). Most of the identified networks demonstrated positive 
correlations with the other networks, except for N6, which was 
negatively correlated with N1 and N4 (Fig. 3c). 

Brain-behavior associations 
The model comparison and selection processes for all dependent 
variables are summarized in Tables S3 to S5. In the best-fitting 
model of memory precision, there was a significant main effect 
of the within-network FC of N6, as well as its interaction effect 
with task (Fig. 4a; Table 1). The post hoc simple slope analyses 
revealed that stronger FC within N6 was associated with lower 
σ vM and thus higher memory precision in the orientation task 
(β = −0.073, P = 0.003), whereas no such association was found for 
the location task (β = −0.009, P = 0.701). In addition, there were also 
significant main and interaction effects of the between-network 
FC of N2 and N4 (Fig. 4b). The post hoc analyses revealed that 
for the orientation task, stronger FC between N2 and N4 was

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae401#supplementary-data
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Fig. 2. Response error distributions and mixture distribution model fits. (a) Histograms of response deviation relative to the target value for both tasks. 
Solid lines show the mean of model fits across participants, with shading areas showing ±1 SEM. (b) The estimates of memory precision as measured by 
the circular standard deviation of von Mises κ and (c) probabilities of reporting the target and nontarget items, and random guessing across participants 
for both tasks. Error bars denote ±1 SEM. 

associated with lower σ vM, that is, higher memory precision 
(β = −0.076, P = 0.002), whereas for the location task, the asso-
ciation was not significant (β = −0.014, P = 0.542). It should be 
noted, however, that the significant interaction effect between 
task and the between-network FC of N2 and N4 was heavily 
driven by 3 influential cases. The updated model showed that 
with the exclusion of these cases, the interaction effect was 
no longer statistically significant (see Supplementary Results). 
Lastly, the model also showed that stronger FC between N3 

and N5 was related to lower σ vM and, therefore, higher memory 
precision (Fig. 4c), and again, this effect was significant only for 
the orientation task (β = −0.077, P = 0.002) but not the location 
task (β = −0.001, P = 0.960). 

No significant effect of within- and between-network FC was 
found in the model of swap errors (Ps > 0.105. The best-fitting 
model of random guesses, on the other hand, revealed significant 
effects of the between-network FC of N3 and N5, showing both 
a significant main effect and a significant interaction with task 
(Fig. 4d; Table 2). The post hoc analyses showed that stronger 
FC between N3 and N5 was associated with a higher probability 
of random guesses in the orientation task (β = 0.058, P = 0.003), 
whereas no such association was found for the location task 
(β = 0.006, P = 0.736). 

Discussion 
In this study, we investigated the relationships between resting-
state functional networks and distinct aspects of VWM 

performance, including memory precision, swap errors, and 
random guesses. We first identified 6 intrinsic functional 
networks using hierarchical clustering, including a prefrontal-
occipital network, a dorsal attention network, a frontoparietal 
control network, an angular-gyrus-cerebellar network, a cingulo-
opercular network, and a frontal-opercular network. Consistent 
with our hypothesis, we found networks uniquely associated 
with memory precision; specifically, stronger FC within the 
frontal-opercular network and between the dorsal attention 
network and the angular-gyrus-cerebellar network was linked 
to more precise task responses. In addition, we identified intrinsic 
networks shared between memory precision and random guesses, 
where stronger FC between the frontoparietal control network 
and the cingulo-opercular network was associated with higher 
memory precision and fewer guesses. While our previous work 
implied that associations between brain networks and response 
errors were not specific to either the spatial or object VWM 
tasks (Li et al. 2023), the current findings indicate a contrasting 
pattern. Here, significant networks and patterns of network 
couplings were found to vary depending on the visual attributes 
examined—predominantly, our principal findings were specific to 
the orientation task. 

Previous rs-fMRI studies have highlighted the role of resting-
state networks in accounting for aggregate behavioral variability 
in VWM tasks (Sala-Llonch et al. 2012; Jolles et al. 2013; Keller 
et al. 2015). In this study, the use of a delayed estimation task and 
computational modeling, recognizing the heterogeneous nature 
of VWM task performance, has allowed us to identify critical

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae401#supplementary-data
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Figure 3. Intrinsic functional networks identified by hierarchical clustering. (a) FC matrix showing a pattern of suprathreshold FC within and between 
each cluster of ROIs. Rectangles with solid black lines denote significant clusters of connections, with FDR-corrected cluster-level P < 0.05. Nonsignificant 
connections with a post hoc connection-level P > 0.05 are shown in light gray. (b) Spherical ROIs included in the hierarchical clustering analysis are shown 
in MNI space, color-coded based on their network membership following the clustering analysis. (c) Correlation plot showing the between-network FC. 
ROI-to-ROI connections for each network pair are averaged across participants, with larger size of squares denoting stronger correlation. (d) Identified 
intrinsic functional networks visualized in glass brains, with ROIs presented in MNI space. 
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Fig. 4. Models of memory precision and random guesses. Effects of (a) within-network FC of N6, (b) between-network FC of N2 and N4, and (c) between-
network FC of N3 and N5 at each level of task on memory precision. (d) Effects of between-network FC of N3 and N5 at each level of task on random 
guesses. In all interaction plots, solid lines represent the estimated marginal effects, and shaded areas indicate the 95% confidence intervals. Note: The 
circular standard deviation of the von Mise concentration parameter σ vM provides an inverse measure of memory precision. 

Table 1. The best-fitting model of memory precision. 

Fixed effects Estimate SEM t Bootstrap-based 95% CI P 

Intercept (Orientation) 0.74 0.02 31.61 [0.69, 0.78] 1.15e-63 
Task (Location) −0.34 0.03 −11.28 [−0.40, −0.28] 3.22e-17 
FCW of N6 −0.07 0.02 −3.07 [−0.12, −0.03] 0.003 
FCB of N2 and N4 −0.08 0.02 −3.22 [−0.12, −0.03] 0.002 
FCB of N3 and N5 −0.08 0.02 −3.21 [−0.12, −0.03] 0.002 
Task × FCW of N6 0.06 0.03 2.07 [0.00, 0.13] 0.042 
Task × FCB of N2 and N4 0.06 0.03 2.01 [0.00, 0.12] 0.049 
Task × FCB of N3 and N5 0.08 0.03 2.43 [0.01, 0.14] 0.018 

FCW, within-network FC; FCB, between-network FC. 

Table 2. The best-fitting model of random guesses. 

Fixed effects Estimate SEM t Bootstrap-based 95% CI P 

Intercept (Orientation) 0.36 0.02 19.45 [0.33, 0.40] 1.69e-41 
Task (Location) −0.34 0.03 −13.44 [−0.39, −0.29] 4.59e-21 
FCB of N3 and N5 0.06 0.02 3.07 [0.02, 0.10] 0.003 
Task × FCB of N3 and N5 −0.05 0.03 −2.02 [−0.10, 0.00] 0.048 

FCW, within-network FC; FCB, between-network FC. 

networks for memory precision and random guessing separately. 
Unlike most prior studies that focused exclusively on a select 
group of canonical networks, we included not only cortical but 
also subcortical and cerebellar regions in our data-driven clus-
tering analysis. This approach allows us to reproduce some well-
defined networks as well as to identify networks that encompass 

a wider range of anatomical regions. For instance, the network 
N4 we identified comprises the bilateral angular gyri and the 
Crus I and lobule VII of the left cerebellum. While the angular 
gyrus is a region that consistently demonstrates deactivation 
during various tasks as a node of the default mode network 
( Buckner et al. 2008), the left posterior cerebellum is involved in
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a wide range of higher order cognitive functions, including cogni-
tive control and spatial processing (O’Reilly et al. 2009; Stoodley 
and Schmahmann 2009; Strick et al. 2009). This indicates that 
N4 does not correspond to the well-established default mode 
network. Indeed, according to a comprehensive review (Seghier 
2013), the angular gyrus is considered a critical hub for combining 
multisensory information with prior experiences and knowledge. 
The N4 we identified may instead contribute to the cross-modal 
integration of information. Our analyses further revealed that 
stronger coupling between N4 and N2 was associated with higher 
memory precision. The network N2 corresponds well to the dorsal 
attention network, which is thought to facilitate goal-directed 
selection over perceptual stimuli and action plans (Corbetta and 
Shulman 2002). This network was hypothesized to be associated 
with memory precision specifically. The current finding indicates 
that while the dorsal attention network is indeed involved, it does 
not act independently. Instead, to modulate memory precision, it 
functions in coordination with the angular-gyrus-cerebellar net-
work. Increased FC between these networks may help strengthen 
the representations of specific items and features by integrating 
visuospatial inputs with contextual, internal task goals, which, as 
a result, contributes to more precise working memory responses. 

In addition to N2 and N4, the network N6, comprising the 
bilateral pars orbitalis of inferior frontal gyrus and the right 
precentral gyrus, Rolandic operculum, and Heschl’s gyrus was 
also specifically associated with memory precision. Increased 
FC within N6 was associated with higher memory precision. In 
studies of semantic and emotional processing, the pars orbitalis 
of inferior frontal gyrus is consistently co-activated with the 
precentral gyrus (Belyk et al. 2017). Through a long-range white 
matter bundle, the inferior frontal gyrus is also structurally con-
nected to the opercular cortices where the Rolandic operculum 
and Heschl’s gyrus lie (Briggs et al. 2019). Intrinsic FC found in this 
study further confirms the functional similarity of these regions, 
at least among a large set of ROIs that have been involved in VWM 
tasks. The pars orbitalis of the inferior frontal gyrus is involved 
in the perception of semantic meaning during communication 
(Belyk et al. 2017) and learning (Race et al. 2009). The precentral 
gyrus and Rolandic operculum are linked with speech production 
(Triarhou 2021; Silva et al. 2022), and Heschl’s gyrus has been 
associated with spontaneous inner speech (Hurlburt et al. 2016). 
The network N6 may, therefore, contribute to the articulatory pro-
cessing of semantically meaningful contents. This aligns with the 
substantial body of evidence indicating that verbal or semantic 
codes are utilized in the representation of visual information such 
as pictures, colors, and abstract shapes (Brown et al. 2006; Mate 
et al. 2012; Logie et al. 2020). Individual differences in the strength 
of FC within this frontal-opercular network may thus reflect 
how well participants could recruit additional codes, potentially 
linguistic in nature, to encode, rehearse, and retrieve the visually 
presented items. Although our interpretation of the role of the 
frontal-opercular network seems plausible, we must acknowledge 
that these interpretations are speculative, as this network may 
also support other cognitive processes. 

Besides the brain-behavior associations specific to memory 
precision, we found that the FC between N3 and N5 was linked 
to both memory precision and random guesses. Notably, stronger 
FC between the networks was associated with higher memory 
precision but, in a seemingly contradictory fashion, also with a 
higher rate of random guessing. The network N3 corresponds to 
a right-lateralized frontoparietal control network responsible for 
executive control (Vincent et al. 2008; Dixon et al. 2018), whereas 
N5 corresponds well to the cingulo-opercular network involved 

in task set implementation and switching based on rewards 
(Dosenbach et al. 2006; Dosenbach et al. 2007; Seeley et al. 
2007; Han et al. 2018). The involvement of the cingulo-opercular 
network aligns with our hypothesis, which identified the network 
as a prime candidate for regulating both memory precision and 
one other type of response error. Although we predicted that the 
frontoparietal control network would specifically contribute to 
memory precision, our result indicates that it also plays a role in 
regulating random guesses. To guide overt behaviors, the cingulo-
opercular network is believed to represent motivational incentives 
to regulate cognitive control processes in the frontoparietal 
control network (Kouneiher et al. 2009; Wood and Nee 2023). 
In our experiment, a feedback stimulus appeared in each trial 
to help participants evaluate their responses. We speculate 
that the enhanced couplings between the frontoparietal control 
network and cingulo-opercular network found in this study could 
facilitate the learning of associations between precise responses 
and specific task-performing strategies, leading to more and 
more such responses over trials. However, due to the growing 
frequency of obtaining rewards (i.e. the precise responses per se), 
monitoring of task performance might subside, which can result 
in attentional lapses or impulsive, reward-seeking behaviors 
that constitute random guesses. Increases in response errors 
detected by the cingulo-opercular network may again motivate 
the frontoparietal control network, which, in turn, updates the 
task-performing strategies to drive more precise responses. While 
these interpretations are tentative, it is clear from our findings 
that the relationship between VWM performance and intrinsic 
networks is complex. 

Our experiment investigated the effects of visual features by 
incorporating tasks for recalling spatial location and object fea-
tures. A recent study by Ren et al. (2019) has further distin-
guished between spatial and object working memory based on 
their patterns of resting-state FC. They found that the capacity 
of spatial working memory was associated with FC between the 
left dorsolateral prefrontal cortex and left precuneus, between 
the right dorsolateral prefrontal cortex and right middle frontal 
gyrus, and between the left superior frontal sulcus and right 
inferior parietal lobule. The capacity of object working memory 
was associated with FC between the right intraparietal sulcus 
and the left postcentral gyrus, left supplementary motor area, 
and right precentral gyrus (Ren et al. 2019). In the present study, 
we found task-specific brain-behavior associations, with princi-
pal findings emerging from the orientation task. This contrasts 
with our earlier study on white matter microstructure, which 
showed that associations were not specific to either location 
or orientation task but generalized across both (Li et al. 2023). 
These findings collectively suggest that in supporting VWM for 
object orientation, the brain relies not merely on direct interareal 
communication via large coherent white matter tracts but also on 
indirect communication through functional couplings within and 
between intrinsic networks. 

Our results clearly demonstrate that multiple large-scale 
intrinsic functional networks are engaged to facilitate VWM task 
performance. Importantly, distinct sets of networks are employed 
to regulate either memory precision in isolation or both precision 
and random guesses. These observations support the recent 
theoretical model of working memory proposed by Logie et al. 
(2020). Under Logie et al. framework, working memory comprises 
multiple domain-specific temporary stores and cognitive pro-
cesses that, notably, work in unison. Given this, conventional 
aggregate measures of working memory performance are 
understood to reflect the collective contributions of these stores
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and processes, as well as the overall efficiency with which these 
components operate together (Logie et al. 2020). By distinguishing 
between memory precision, swap errors, and random guesses, our 
study allows us to identify theoretical principles of the system 
that may have been obscured when only a single behavioral 
measure is used. Indeed, our findings enhance our understanding 
of the system’s efficiency by providing evidence of its inherent 
flexibility. Specifically, in response to particular task demands— 
namely, maintaining the fine-grained visual representations of 
target items or adjusting task responses to prevent guesses— 
the system can mobilize different combinations of cognitive 
processes across different functional domains. 

Despite our insightful results, there are several limitations that 
we need to discuss. First, it is important to note that the behavioral 
measures estimated for the location task exhibit significantly 
less variability compared to those for the orientation task. This 
reduced variability may be because the location task is easier 
relative to the orientation task. A potential ceiling effect might 
have restricted our ability to identify associations’ specific to 
the location task, suggesting that we should interpret the task 
specificity of the results with more caution. Similarly, this ceiling 
effect may have limited our ability to identify brain-behavior 
associations for swap errors. However, it is also plausible that swap 
errors are modulated by neural processing within specific brain 
regions rather than across larger-scale networks, as indicated by 
feature-binding deficits observed in patients with localized brain 
lesions in the postcentral gyrus (Lugtmeijer et al. 2021). To better 
differentiate between a ceiling effect and a true null effect in 
future studies, the location task could be made more challenging 
by requiring participants to memorize gratings placed across both 
visual hemifields rather than only those on the cued side. Second, 
our selection of ROIs, combined with the data-driven hierarchical 
clustering, has enabled us to identify networks that were less 
explored in previous studies. However, some well-established net-
works, such as the default mode network, were not detected by 
our approach. The inability to identify the default mode network 
may have limited our ability to fully test our hypothesis since 
this network was hypothesized to specifically modulate random 
guesses. Future studies may consider including more regions 
or even adopting whole-brain voxel-wise approaches to address 
this question. Finally, our study predominantly focused on young 
college students. This narrow demographic focus has restricted 
the generalizability of our findings, as the networks related to 
different sources of response errors may vary significantly across 
age groups. Future studies might consider testing our hypotheses 
in children and adolescents, particularly in light of the increasing 
recognition of mixture distribution modeling as a valuable tool 
in studying cognitive development (Burnett Heyes et al. 2012; 
Burnett Heyes et al. 2016). 

Conclusion 
In conclusion, our study demonstrates that distinct sources 
of error in VWM tasks are underpinned by different yet 
partially overlapping intrinsic functional networks. We found 
that higher memory precision is associated with increased 
connectivity within the frontal-opercular network, as well as 
between the dorsal attention network and the angular-gyrus-
cerebellar network. Identifying neural correlates specific to 
memory precision implies that multiple cognitive processes are 
selectively recruited to maintain high-fidelity working memory 
representations. Additionally, we found that stronger coupling 

between the frontoparietal control network and the cingulo-
opercular network is a common factor underlying both higher 
memory precision and increased random guesses, suggesting the 
potential role of a shared cognitive mechanism that facilitates 
constant adjustment of task responses. 
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