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In federated learning, secret sharing is a key technology to maintain the privacy of participants’ local 
models. Moreover, with the rapid development of quantum computers, existing federated learning 
privacy protection schemes based on secret sharing will no longer be able to guarantee the data 
security of participants in the post-quantum era. In addition, existing privacy protection methods 
have the problem of high communication and computational overhead. Although the multi-stage 
secret sharing scheme proposed by Pilaram et al. is one of the effective solutions to the above 
problems, existing studies have proven the privacy leakage risk of this scheme. This paper firstly 
designs a new lattice-based multi-stage secret sharing scheme Improved-Pilaram to solve the security 
problem, which allows participants to use public vectors to reconstruct different secret values without 
changing the secret sharing. Based on Improved-Pilaram, this article proposes a post-quantum secure 
federated learning scheme PQSF. PQSF uses double masking technology to encrypt model parameters 
and achieves mask reconstruction through secret sharing. Since Improved-Pilaram is multi-stage, 
participants do not need to update their local secret shares frequently during training. Analysis 
and experimental results show that the PQSF proposed in this paper reduces the communication 
complexity between participants and reduces the computational overhead by about 20% compared 
with existing solutions.
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In 2016, federated learning was first proposed as a distributed machine learning technology1. Its main idea is 
to perform distributed machine learning model training among multiple participants with local data sets . This 
technology can jointly train a global model by exchanging only the intermediate parameters of the training 
model without uploading local sample data2. Once the concept of federated learning was proposed, it has 
received widespread attention from experts in the industry and academia as a key technology to break “data 
silos” and realize data mining3,4.

However, as research continues to deepen, the privacy protection capabilities of federated learning face 
severe challenges5. With the emergence of reverse attacks and inference attacks, users’ local sensitive data may 
be leaked due to unencrypted model parameters6. While enhancing the security of federated learning, providing 
privacy protection functions has become one of the focuses of current research. Currently, privacy protection 
methods for federated learning are mainly implemented through three technologies: Differential Privacy 
(DP), Homomorphic Encryption (HE) and Secure Multi-Party Computation (SMPC). Differential privacy is 
a technology that protects privacy by adding a certain amount of random noise to the data7. Homomorphic 
encryption protects data privacy by directly calculating ciphertext8. However, aggregation methods based 
on differential privacy will destroy the accuracy of federated learning training results, while homomorphic 
encryption will greatly increase the computational overhead of federated learning. In comparison, privacy-
preserving protocols based on secure multi-party computation generally have lower computational overhead 
and higher computational accuracy9,10.

As one of the underlying technologies of secure multi-party computation, secret sharing is widely used in 
federated learning to achieve user privacy protection11,12. Currently, with the rapid development of quantum 
computing technology, the security of traditional secret sharing schemes can no longer be guaranteed, and post-
quantum secure secret sharing technology is becoming one of the hot topics of current research13,14. As an 
important candidate scheme, lattice cipher has attracted widespread attention due to its efficient computing 
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power and versatility. Multi-stage secret sharing can reconstruct and recover different secrets, so it is very 
suitable for federated learning scenarios. In 2017, Pilaram et al. proposed a lattice-based multi-stage secret 
sharing scheme15. This scheme can perform secret reconstruction through shares and public parameters without 
exposing secret share information during the multi-stage reconstruction process. However, the scheme they 
proposed was proven to have security risks in 202316. When the number of recovered secrets multiplied by 
the threshold value is greater than the share length, the security of the remaining unrecovered secrets will be 
destroyed. This threat will be further amplified in a federated learning environment.

Privacy protection has received widespread attention as an important function in federated learning. 
However, existing privacy protection schemes based on secret sharing require complex computation and 
communication overhead among participants. On the other hand, the rapid development of quantum computers 
is threatening the security of traditional cryptography. How to build a quantum-resistant and communication-
efficient federated learning based on a multi-stage secret sharing scheme is the focus of this article. Therefore, 
we investigate in detail existing federated learning privacy-preserving methods as well as post-quantum secure 
multi-stage secret sharing techniques. In view of the risk of privacy leakage described by Yang et al.16, the 
scheme15 was improved and a secure multi-stage secret sharing scheme Improved-Pilaram was proposed. Based 
on Improved-Pilaram, a post-quantum secure federated learning security aggregation scheme PQSF is designed. 
The main contributions of this article are as follows: 

 (1)  First, the existing lattice-based multi-stage secret sharing scheme15 is improved, and a secure secret sharing 
protocol Improved-Pilaram is proposed. This protocol enables the same secret share to participate in recon-
structing multiple secret messages without destroying the security of other unreconstructed secrets.

 (2)  Based on Improved-Pilaram, this paper designs a post-quantum secure federated learning privacy protec-
tion scheme PQSF combined with double mask technology. Due to the multi-stage nature of Improved-Pi-
laram, training participants do not need to frequently update local shares during the federated learning 
process. Instead, they use different public parameters to perform secret reconstruction, thereby effectively 
reducing the communication complexity between participants.

 (3)  This paper conducts security analysis on the proposed secret sharing protocol and federated learning 
scheme, and conducts simulation experiments. This article compares PQSF with the existing post-quan-
tum secure federated learning scheme LaF17. Analysis and experimental results show that the post-quan-
tum secure privacy-preserving federated learning PQSF based on Improved-Pilaram effectively reduces the 
computing overhead by about 20%.The rest of this paper is organized as follows: First, section “Releated 
work” of the paper briefly introduces related research work in the field of privacy-preserving federated 
learning and secret sharing. Then we briefly introduce the relevant technical basis used in this paper in 
section “Preliminary”. The proposed lattice-based multi-stage secret sharing scheme Improved-Pilaram is 
introduced in detail in section “Improved-pilaram: lattice-based multi-stage secret sharing scheme”, which 
includes the detailed construction and security analysis of the scheme. Then section “The proposed PQSF” 
introduces the detailed execution process and privacy protection method of the proposed post-quantum 
secure federated learning protocol PQSF. In section “Simulation experiment and analysis”, the performance 
of the proposed scheme is analyzed through simulation experiments and compared with previous schemes. 
Concluding observations are found in section “Conclusion”.

Releated work
Privacy-preserving federated learning
In 2016, the Google AI team18 proposed a distributed machine learning19 framework-federated learning, which 
was subsequently experimented with on mobile device input prediction and achieved success. Its core involves 
training machine learning models on user devices, completing multi-party aggregation through a server, and 
updating global parameters, a process that cycles continuously until training objectives or termination conditions 
are reached. However, the method of achieving global model training by sharing local parameter information is 
not sufficient to protect data privacy. For example, Song et al.20 introduced mGAN-AI to analyze privacy leakage 
issues in federated learning, and they were the first to achieve user-level privacy leakage through attacks by 
malicious servers. Currently, privacy protection methods for federated learning are mainly implemented through 
three technologies: Differential Privacy, Homomorphic Encryption, and Secure Multi-Party Computation21.

Differential privacy is a technique that protects privacy by adding a certain amount of random noise to the 
data7. Zhao et al. proposed a federated learning framework based on local differential privacy22, which ensures 
security by deploying noise to model parameters. However, adding noise locally will be diluted in the process of 
averaging the global model, and the approach of achieving privacy protection through DP will inevitably affect 
the accuracy of the federated learning model. Bin et al.23 proposed protecting the model through HE. In the 
proposed privacy protection scheme, a trusted terminal generates a public-private key pair for each participant. 
Each terminal encrypts local model parameters using the public key, and the central server computes the global 
model directly from the ciphertext. However, each participant in the model has the same private key, which 
cannot resist malicious terminal devices. Meanwhile, HE technology is computationally expensive and not 
suitable for lightweight, multi-participant federated learning frameworks.

Compared to the accuracy loss brought by DP and the high computational cost of HE, privacy protection 
protocols based on SMPC generally have lower computational overhead and higher computational accuracy9. 
Among them, secret sharing, as a classical cryptographic technique, is widely applied in the field of secure 
multi-party computation. Bonawitz et al.24 proposed a privacy-protective secure aggregation scheme based on 
a participant-server framework in 2017. They protected the participants’ model parameters through a double 
masking method and used the Shamir secret sharing algorithm to recover the mask information of offline 
participants. Inspired by their work, Duan et al.25 used secret sharing technology to share gradient shares among 
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participants and upload them to the server after aggregation. However, with the advent of the post-quantum era, 
many existing schemes will no longer be secure, such as the Diffie–Hellman key agreement protocol based on 
the Discrete Logarithm Problem (DLP). To address this problem, Xu et al.17, based on the work of Bonawitz et 
al., constructed a communication-efficient federated learning protocol LaF based on lattices. This scheme not 
only achieves post-quantum security but also avoids distributing new shares to all participants in each round of 
federated learning, saving a significant amount of communication overhead.

Secret sharing
Secret sharing was first introduced by Shamir26 and Blakley27. Blakley constructed a threshold secret sharing 
scheme using hyper-geometric problems, while Shamir developed a secret sharing scheme using polynomial 
problems over finite fields. Secret sharing is commonly applied in scenarios such as key management and access 
control28. Furthermore, as a crucial technology for constructing secure multi-party computation schemes29, 
secret sharing is also widely used in the field of privacy-preserving federated learning.

Ordinary secret sharing schemes cannot adapt well to various complex situations. For this reason, a large 
number of scholars have not only researched the construction of threshold sharing schemes using different 
tools but have also extensively studied the construction of threshold schemes with additional functionalities. 
The purpose of Verifiable Secret Sharing (VSS) is to make secret sharing robust against malicious parties. In 
2020, Kandar et al. proposed a (t,  n) VSS scheme30 with aggregator verification and cheater detection. The 
scheme not only achieved verification of secret reconstruction correctness but also could detect participants 
who submitted incorrect shares. The development of this direction enables traditional secret sharing schemes 
to resist dishonest participants, effectively preventing mutual deception among distributors, participants, and 
between participants31.

However, the underlying hard problems used to construct verifiable secret sharing schemes can no longer 
resist attacks from quantum computers, and the security of other schemes will also be threatened. In 1994, Shor32 
proposed a quantum algorithm that solves the factorization problem in polynomial time, and subsequently, 
more and more scholars have presented quantum cracking algorithm studies targeting numerical assumptions, 
demonstrating the vulnerability of schemes based on numerical assumptions33. As such, with the continuous 
maturation and improvement of quantum technology, the security of traditional secret sharing schemes will 
suffer greatly, and there is an urgent need to research new candidate schemes for quantum-resistant secret 
sharing.

In 2019, Rajabi et al. proposed a lattice-based verifiable secret sharing scheme based on the Shamir secret 
sharing scheme34. In this paper, the authors first proposed a general threshold verifiable secret sharing structure. 
The proposed scheme requires a set of collision-resistant homomorphic hash functions to verify shares and 
uses a Generalized Compact Knapsack (GCK) function to construct a lattice-based verifiable secret sharing 
scheme. To support large committees comprising thousands of participants, the scheme’s communication 
and computation need to be sufficiently efficient. For this purpose, Gentry et al., based on the learning with 
errors problem, proposed a non-interactive publicly verifiable secret sharing scheme35. In 2017, Pilaram et al.15 
designed a multi-stage secret sharing scheme based on the Ajtai one-way function, and this scheme had multiple 
uses and was verifiable. However, this scheme was proven to have privacy leakage risks in 202316.

Preliminary
Lattice cryptography
Lattice cryptography is an encryption method based on lattice theory, which has received widespread attention 
in recent years due to its potential to resist quantum computing attacks, and is considered one of the most 
promising quantum-resistant cryptographic technologies36. A lattice is a set of linearly independent nonzero 
vectors and their integer linear combinations, with this set of linearly independent vectors known as the lattice 
basis. It is worth noting that the lattice basis of a lattice is not unique.

Definition 1 Given a set of linearly independent vectors b1, b2, . . . , bn∈Rm, the lattice L(B) generated by these 
vectors can be defined as:

 
L(B) = L(b1, b2, . . . , bn) =

{∑
xibi|xi ∈ Z

}
 (1)

The vectors (b1, b2, . . . , bn) are called a set of bases for the lattice L(B), and B is defined as an m× n matrix 
whose column vectors are b1, b2, . . . , bn, then the lattice generated by the matrix can also be defined as:

 L(B) = L(b1, b2, . . . , bn) = {Bx|x ∈ Zn} (2)

Wherein, both m and n are integers, and m ≥ n, m is called the dimension of the lattice, n is called the rank of 
the lattice, and a lattice that satisfies m = n is called full rank. The security of lattice cryptography is premised 
on the difficulty of solving computational problems on lattices, such as the Shortest Vector Problem (SVP), the 
Closest Vector Problem (CVP), and Learning With Errors (LWE)37. These problems are exceedingly challenging 
to resolve within high-dimensional lattices, and this holds true even in the context of quantum computing.

Threshold secret sharing
A (t, n) threshold secret sharing scheme refers to a scenario where n users participate in secret sharing, and each 
participant obtains a secret share through the sharing algorithm. The original secret can only be reconstructed if 
a specific access structure is satisfied, that is, any t or more than t users participate in the secret reconstruction. 
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Any fewer than t participants cannot obtain any information about the secret S. Here, t is the threshold value. A 
threshold secret sharing mechanism mainly includes two stages: one is the share generation stage, and the other 
is the secret reconstruction stage. Suppose there are n participants in a secret sharing, along with a dealer Dealer 
and a secret S. The secret sharing algorithm is defined as follows:

Definition 2 If a mechanism includes a share generation process and a secret reconstruction process, and satis-
fies both security and correctness, then it is referred to as a threshold secret sharing algorithm.

Traditional secret sharing schemes generally consist of the following two stages: 

 (1)  SS.Share(S,t,n):Inputs a secret S, a threshold value t, and the number of participants n. There exists a secret 
sharing algorithm that splits S into n secret shares: 

 SS.Share(S, t, n) → {s1, s2, . . . , sn} (3)

 (2)  SS.Recon({s1, s2, . . . , sn} , t):Input at least t secret shares, there exists a secret reconstruction algorithm 
that allows the original secret S to be reconstructed: 

 SS.Recon{s1, s2, . . . , sn} → S (4)

The secret sharing algorithm, while implementing share computation and reconstruction, also needs to satisfy 
the following security and correctness requirements: 

 (1)  Security: When the number of known secret shares does not meet the threshold t, no participant can obtain 
information about the secret S. That is to say, even if multiple participants collaborate to reconstruct the 
original secret S, as long as the agreed access structure is not satisfied, the scheme can still guarantee the 
security of S.

 (2)  Correctness: When all participants execute the protocol according to the predetermined rules, no single 
party can reconstruct the secret on their own, but the collective of all authorized participants can accurately 
and correctly recover the original secret S.

Improved-Pilaram: lattice-based multi-stage secret sharing scheme
The secret sharing protocol Improved-Pilaram proposed in this section achieves multi-stage secret reconstruction 
without compromising the security of sharing by allowing the same secret share to participate in the reconstruction 
of multiple secret messages. The protocol uses shared and public parameters in each reconstruction stage to 
ensure that the secret information remains confidential during the reconstruction process. In this way, the 
Improved-Pilaram multi-stage secret sharing scheme achieves post-quantum security by utilizing lattice-based 
encryption and multilinear mapping techniques, ensuring the protection of secret information even in the 
presence of quantum computing threats. By partitioning secrets across multiple stages, the scheme minimizes 
the impact of potential leakage at any single stage on the overall confidentiality, thereby strengthening data 
security. Moreover, the multi-stage design complicates and raises the cost of attacks, effectively countering 
malicious participant actions and enhancing the overall security of the system.

Scheme construction
The lattice-based Improved-Pilaram algorithm mainly includes the following stages:

(1) SS.Setup(v, t): To share a secret S, the Dealer randomly selects a vector v ∈ Zt
q, where the last entry of 

vector v is 1, v is a prime number, and t is the threshold value of the Improved-Pilaram. Subsequently, the Dealer 
calculates a lattice basis B of dimension t for the secret S.

 S = Bv (5)

Where B ∈ Zt×t
q . However, in this process, the solution to the equation is not unique, which could compromise 

the correctness of the Improved-Pilaram in the reconstruction phase. To solve this problem, the Dealer needs to 
split the basis B into B1 ∈ Zt×(t−1)

q  and b ∈ Zt
q, to achieve the correctness of Eq. (6).

 

S = Bv = [B1, b]

[
v′

1

]

⇒ b = S − B1v
′

 (6)

Where v′ is the first t− 1 elements of the random vector v and the last element is 1, B1 is randomly selected in 
Zt×(t−1)
q , and finally, the Dealer publicizes the vector v.

(2) SS.Share(S, t, n): As shown in Fig. 1, in the secret share generation stage,set the secret S,the threshold t ,the 
Dealer selects n vectors λj ∈ Zt

q, j = 1, 2, . . . , n, ensuring that every set of t vectors are linearly independent 
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of each other. The matrix Λ = [λ1, . . . , λn] ∈ Zt×n
q  is the right product of any t× t random invertible matrix 

and a random Vandermonde matrix. Next, the Dealer needs to find a matrix A ∈ Zt×r
q , a secret matrix 

C = [c1, . . . , cn] ∈ Zr×n
q  and vectors ej ∈ Zt

q, j = 1, 2, . . . , n, where r ≥ max(tlogt, n). To satisfy Eq. (7).

 

AC +H(E) = BΛ

⇒ A [c1, . . . , cn] +H(E) = B [λ1, . . . , λn]

⇒




Ac1 +H (e1) = Bλ1

Ac2 +H (e2) = Bλ2
...

Acn +H (en) = Bλn

 (7)

Where H(·) is a random permutation, E is a t× n order matrix composed of ej, j = 1, 2, . . . , n. Similar to the 
computation process of lattice basis B, the solution for the public matrix A is not unique. Therefore, the matrix 
A needs to be split into two unknown matrices A1 ∈ Zt×n

q ,A2 ∈ Zt×(r−n)
q n, and the secret matrix C split into 

C1 ∈ Zn×n
q  and C2 ∈ Z(r−n)×n

q  to calculate a specific value. The Dealer first randomly selects and determines the 
value of A2 in Zt×(r−n)

q  and calculates A1 through Eq. (8).

 

AC +H(E) = BΛ

⇒ [A1, A2]

[
C1

C2

]
+H(E) = BΛ

⇒ A1 = (BΛ−H(E)− A2C2)C
−1
1

 (8)

Finally, the Dealer packages each column cj, j = 1, 2, . . . , n and ej, j = 1, 2, . . . , n of the secret matrix and 
sends it as a secret share (cj, ej), j = 1, 2, . . . , n to each Improved-Pilaram participant Pj  through an encrypted 
channel, and discloses the matrix A,C and random arrangement method H(·).

(3) SS.Recon({s1, s2, . . . , sn}, t): As shown in Fig. 2, in the secret reconstruction phase, assume there exists a 
threshold number t of participantsPi, i ∈ 1, 2, . . . , t attempting to collaboratively reconstruct the secret S. Each 
participant locally uses their secret shares (ci, ei), the public matrix A, and the random permutation H(·) to 
calculate the secret information msgi = Aci +H(ei) and uploads it. The secret reconstruction initiator, after 
receiving a sufficient amount of secret information, selects the corresponding t column vectors from the Λ 
matrix for participants Pi to obtain ΛPi, and finally calculates the lattice basis B for the secret S.

 

ACPi +H(E)Pi = BΛPi

⇒ B = (ACPi +H(E)Pi)Λ
−1
Pi

 (9)

Based on Eq. (5), the secret aggregation initiator uses the calculated lattice basis B and the public vector v to 
reconstruct the original secret S = Bv.

(4) SS.Renew(S ′, t, n): In the secret update stage, to share a new secret S ′, the Dealer executes the initialization 
phase again with the new secret S’ to obtain the lattice basis B′. In the new Improved-Pilaram stage, the original 
secret shares (cj, ej), j = 1, 2, . . . , n remain unchanged, and calculate:

 A′C +H ′(E) = B′Λ (10)

Figure 1. Secret sharing stage.
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Finally, the public matrix A′ and the random permutation method H ′(·), as new secret reconstruction parameters, 
are publicized. During the sharing process of the new secret S ′, the secret sharing shares of participant Pj  do not 
need to change; instead, secret reconstruction is achieved by updating the public parameters, completing a new 
round of secret sharing operations. This approach greatly reduces the communication overhead and complexity 
between participants.

Compared with traditional federated learning privacy protection methods, the PQSF scheme is based on the 
improved multi-stage secret sharing scheme Improved-Pilaram, which can reconstruct secrets using different 
public parameters without frequently updating local secret shares, thereby reducing computational and 
communication overheads.

Security analysis
Correctness
The correctness of this Improved-Pilaram requires satisfying two conditions. First, after obtaining secret shares 
and public parameters through the initial execution of the sharing algorithm, during the secret reconstruction 
phase, at least t participating parties holding shares should be able to cooperatively use the secret shares and 
public parameters to reconstruct the original secret. Second, after performing secret updating to share a new 
secret, using the original secret shares and new public parameters, under the same premise of cooperation from 
at least t participating parties, the new round of secret information should be correctly recovered.

Theorem 1 For any secret S, threshold t, and number of participating parties n(1 ≤ t ≤ n), using public param-
eters  (A,Λ, v,H())  and participating parties Pi, i = 1, 2, . . . , t  to compute secret information Aci +H(ei), the 
secret recovery algorithm can correctly restore secret S when the number of shares n ≥ t.

Proof During the secret reconstruction phase, participating parties Pi, i = 1, 2, . . . , t calculate Aci +H(ei) us-
ing share information (ci, ei) and public parameters A and random permutation H(·), and upload them. The 
initiator of the secret reconstruction constructs ΛPi and ACPi +H(E)Pi based on the information from partic-
ipating parties to satisfy Eq. (11):

 (ACPi +H(E)Pi)Λ
−1
Pi

= BΛPiΛ
−1
Pi

= B (11)

Finally, according to Eq. (5), multiplying the lattice basis B obtained by the reconstruction algorithm with the 
public parameter vector v, the secret S can be correctly reconstructed. Theorem 1 is proved.

Theorem 2 For secret S ′, threshold  t, and number of participating parties n(1 ≤ t ≤ n), using public parame-
ters (A′,Λ, v′, H ′(·)) and participating parties Pi, i = 1, 2, . . . , t, to compute secret information A′ci +H ′(ei), the 
secret recovery algorithm can correctly restore the new round of secret S ′ when the number of shares n ≥ t.

Figure 2. Secret reconstruction stage.
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Proof During the secret updating phase, the Dealer calculates lattice basis B′ and public parameters A′ and 
H ′(·) using the new secret S ′. By analogy with Theorem 1, the correctness of Theorem 2 can be proved. 

Privacy protection
The security of the Improved-Pilaram proposed in this section needs to satisfy several conditions. First, in the 
proposed scheme, any subset of participating parties with fewer than t members should not be able to reconstruct 
the original secret S. Second, during the multi-stage secret sharing process, malicious participants should not 
be able to use known public vector information from previous rounds to compromise the security of secrets in 
the latest round.

Theorem 3 For any secret S, givenmsecret shares (cj, ej) and public parameters (A,Λ, v,H(·)), when the number 
of shares m < t, the original secret S cannot be reconstructed.

Proof Assume in the worst-case scenario, t− 1 participants Pk, k = 1, 2, . . . , t− 1, conspire to attempt to com-
promise the security of secret S through the reconstruction algorithm. They first calculate ACPk +H(E)Pk  and 
ΛPk  using their own secret shares and public parameters and obtain a Bk.

 Bk = (ACPk +H(E)Pk)Λ
−1
Pk

 (12)

However, Bk is a t× (t− 1) dimensional matrix that cannot reconstruct secret S through Eq. (5). Therefore, 
when the number of shares m < t, the value of original secret S cannot be reconstructed. Theorem 3 is proved. 

Theorem 4 Suppose the currently shared secret is the x-th secret Sx, given reconstructed secrets Si, i = 1, 2, . . . , x− 1
, and public parameters (Al,Λ, v,Hl(·)), l = 1, 2, . . . , x, malicious conspiring participants cannot compromise the 
security of the latest secret Sx using this information.

Proof It is known from the Improved-Pilaram algorithm that participating party Pj  computes Axcj  based on 
secret share cj, which is uniformly distributed over Zt

q. Furthermore, since the permutation method H(·) used is 
also random, Hx(ej) is also uniformly distributed over Zt

q. It can be inferred that Axcj +Hx(ej) obtained from 
secret shares (cj, ej) also satisfies the characteristic of uniform distribution. Therefore, attackers find it difficult 
to obtain useful information about secret Sx from Axcj +Hx(ej)

n
j=1. In the secret updating phase, the Dealer 

calculates and publishes new public parameters based on secret Sx, which also satisfy the characteristic of uni-
form distribution. As long as the permutation method H(·) used is random, the scheme remains secure. There-
fore, the privacy of unreconstructed secrets is not compromised by reconstructed secrets. Theorem 4 is proved. 

The proposed PQSF
In this section, we propose a PQSF aggregation scheme based on the secret sharing scheme presented in 
section  “Improved-pilaram: lattice-based multi-stage secret sharing scheme”, combined with a dual-mask 
mechanism. This method utilizes lattice-based key exchange protocols for Key Agreement among participating 
entities and employs dual masking to encrypt model gradients, thereby achieving privacy protection. Finally, 
the central server and online training participants reconstruct the dual masks through a Improved-Pilaram 
algorithm and ultimately update the global model.

Overview of the PQSF
System model
The goal of the scheme proposed in this paper is to use lattice-based multi-stage Improved-Pilaram technology to 
build a secure aggregation protocol, thereby providing a privacy-protected federated learning system that offers 
post-quantum security while reducing communication overhead between participants. We utilize a lattice-based 
key agreement scheme to generate masks between participants and protect the local training model gradients 
using a double-masking method. The system model of this scheme, as shown in Fig. 3, includes a central server 
and multiple training participants: 

 (1)  Training Participants: Training participants, the local data owners in federated learning, refer to the entities 
that participate in training using their local data and upload models for aggregation. To protect the secu-
rity of local data, data owners need to perform key agreement to generate masks that protect the model. 
Additionally, to prevent aggregation errors caused by participants dropping out during federated learning 
training, data owners also need to execute a Improved-Pilaram algorithm to reconstruct masks.

 (2)  Central Server: The central server, the main body completing model aggregation tasks in federated learning, 
typically has strong storage and computational capabilities. During the federated learning training process, 
the server first generates initial global model parameters and sends them to participants for training. In 
each training round, the server needs to use an aggregation algorithm to iteratively update the global model 
and collect secret information to restore the mask information of participants who have dropped out.

Threat model and design goals
In the PQSF proposed in this paper, we assume a semi-honest model. Training participants correctly execute the 
protocol for federated learning training, generate symmetric public and private keys through the key agreement 
protocol, and encrypt gradients using a lattice-based secret sharing algorithm combined with double-masking. 
The central server correctly forwards messages between participants, completes gradient aggregation, and 
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eliminates the masks of participants who have dropped out through secret reconstruction. However, they will 
try to collect information during the process to infer other participants’ private data or model details, thereby 
extracting as much knowledge as possible.

Based on the above threat model, to reduce communication complexity and protect data privacy, our 
proposed non-interactive federated learning secure aggregation scheme should meet privacy protection, post-
quantum security, effectiveness, and communication efficiency. The specific scheme requirements are as follows: 

 (1)  Privacy Protection: Privacy protection means that during the training process of the scheme, no adversary 
can learn any effective information about other participants’ local datasets, ensuring the security of partic-
ipants’ local datasets. In the proposed scheme, besides the aggregated result, the training server cannot ob-
tain any other information about the model parameters. At the same time, honest but curious participants 
also cannot learn other participants’ local model parameters.

 (2)  Post-Quantum Security: Post-quantum security means that even with quantum computing capabilities, at-
tackers cannot crack or infer the content of training participants’ local datasets. Privacy protection schemes 
designed based on anti-quantum secure algorithms can ensure data’s post-quantum security.

 (3)  Effectiveness: Effectiveness means that the gradient aggregation value calculated through the privacy pro-
tection method is correct. Following the protocol to execute gradient encryption and decryption leads to 
correct computation results, and the correctness of the aggregated model is not compromised due to partic-
ipants dropping out.

 (4)  Communication Efficiency: Communication efficiency means that the proposed federated learning model 
aggregation scheme can significantly reduce the amount of data transmission required while protecting the 
privacy of training participants.

Our construction
Initial stage
Before the formal training begins, the central server initializes the model and parameters. Model initialization 
involves setting the parameters of the original federated learning neural network model, including learning rate 
and training epochs, denoted as winit, and sending them to all participating data owners. Parameter initialization 
refers to the central server setting reasonable system security parameters such as k, a large prime number q, 
the number of participants n, the secret sharing threshold value t, and the pseudorandom number generator 
PRG(·) , based on the participating data owners.

Local training and gradient encryption stage
In the local training phase, the model gradient is encrypted through a double mask mechanism. Before the 
participant uploads the gradient, the system first exchanges keys through the lattice-based NewHope protocol 
to generate a mask for gradient encryption. This key exchange mechanism not only reduces the complex 
communication steps of frequent key generation and distribution in each round of training, but also ensures that 

Figure 3. PQSF secure aggregation model.
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in the event of a participant disconnection, the remaining participants can correctly reconstruct the required 
keys and masks through the shared public parameters, thereby successfully completing model aggregation. The 
following is an introduction to the specific solution: 

 (1)  Local Training: In the k-th round of local training, data owner Pi updates the local model using the global 
gradient information wk and trains it with dataset Di to obtain new gradient parameters wk+1

i . In tradition-
al federated learning algorithms, the server aggregates the gradient information of participants to update 
the global gradient. However, directly uploading the gradient parameters wk+1

j  of participants may compro-
mise the privacy of local datasets due to potential model inference attacks. Therefore, this protocol protects 
data privacy by adding masks before uploading participant gradients.

 (2)  Key Agreement: The dual-mask protocol used in this scheme is designed based on the key negotiation 
scheme. Before encryption, each participant interacts with other participants through the server. Compared 
with traditional key exchange methods, the NewHope protocol has quantum resistance, high computation-
al efficiency, moderate key size and low communication overhead, ensuring that it can continue to operate 
safely even when participants are offline, providing solid security for the post-quantum era. This scheme 
uses the NewHope protocol to negotiate and calculate two symmetric keys between participants Pj  and Pi

: keyci,j  and keysi,j. Here, keyci,j  is used for encrypting messages between the two participants, while keysi,j  
is used for encrypting gradient information during model aggregation. It is worth noting that if the current 
number of online participants is less than the threshold value t(|U1| < t), the protocol is terminated during 
server message forwarding.

 (3)  Gradient Encryption: During the gradient encryption phase, gradient masks are calculated using the sym-
metric key keysi,j  between data owners. Specifically, each participating online data owner Pi first determines 
whether each of the other participants Pj  satisfies i < j and calculates the specific values of the masks using 
a pseudorandom number generator PRG(·). Finally, the mask information is used to encrypt the local 
model wk+1

i  of each participating data owner Pi as follows: 

 
yk+1
i = wk+1

i +
∑

j∈U,j<i

PRG
(
keysi,j

)
−

∑
j∈U,j>i

PRG
(
keysi,j

)
 (13)

Based on the properties of negotiated keys and pseudorandom number generators, all model gradients are mu-
tually offset during server upload and final aggregation, resulting in correct aggregation results.

 PRG
(
keysi,j

)
− PRG

(
ksysi,j

)
= 0 (14)

However, there is a security risk in this scheme if a participant drops out or disconnects midway, potentially 
exposing the original gradient information. To address this, an additional random mask is added to the single-
mask scheme. In this process, participant Pi randomly samples a seed bi and modifies the single-mask scheme 
to a dual-mask scheme as follows:

 
yk+1
i = wk+1

i + PRG (bi) +
∑

j∈U,i<j

PRG
(
keysi,j

)
−

∑
j∈U,i>j

PRG
(
keysi,j

)
 (15)

After the central server completes model aggregation, the privacy of model gradients is still protected by the 
randomness of PRG(bi), thereby resisting inference attacks.

During the gradient encryption process, each participant applies a static mask and a random dynamic mask to 
double-mask the gradients. This method ensures that even if the dynamic mask of a certain round is intercepted 
by the attacker, the attacker cannot infer the true gradients of other rounds since the dynamic mask changes 
randomly in each round of training. By introducing random dynamic masks, the unpredictability of the masks 
in each round of training significantly enhances privacy protection and prevents attackers from cracking the 
model gradient through fixed patterns or repeated attacks, thereby effectively improving privacy security in 
federated learning.

Compared with traditional federated learning privacy protection methods, PQSF utilizes a double mask 
mechanism to protect model gradients, ensuring that model gradients can be correctly aggregated during the 
encrypted upload process even when participants are offline. This mechanism may increase certain computational 
overhead in the initial stage, but in the subsequent training stage, since there is no need to frequently generate 
and update secret shares, the overall computational overhead will be significantly reduced.

(4) Secret Sharing: During the federated learning training process, the dropout of participants can lead 
to the inability of gradient masks to correctly offset each other, thereby compromising the correctness of the 
model aggregation results. Therefore, to eliminate random numbers and dropped participant mask information 
after model aggregation to obtain correct results, training participantsPi convert the random seeds of the 
symmetric key keysi,j  into elements seedski  and seedei  on Zt

q and run the secret sharing algorithm SS.share from 
section “Preliminary” to compute bi and the corresponding shares of seed information as follows:

 bij ← SS.Share (t, n, bj) (16)

 seedsk
i,j ← SS.Share

(
t, n, seed sk

i

)
 (17)
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 seede
i,j ← SS.Share (t, n, seed e

i ) (18)

Data owners running the secret sharing Pi, use the symmetric key keyci,j  to encrypt the secret shares, and 
transmit them through the central server to other participants. If the number of online participants, |U2| < t, 
this round of federated learning execution is terminated. Finally, the public vector parameters generated by the 
secret sharing algorithm are disclosed.

Model aggregation stage
During the model aggregation phase, the server receives encrypted gradient information yk+1

i  from online data 
owners and performs gradient aggregation:

 
yk+1 =

∑
i∈U3

yk+1
i , t ≤ |U3| ≤ n (19)

If the number of online users |U3| is less than t(|U3| < t), the protocol is terminated. For other users Pi /∈ U3 
who have not dropped out and are participating in the aggregation, i ̸= j, Pj, online participants use secret 
shares related to bi to compute secret information. Otherwise, secret shares related to keysi,j  are selected for 
computation. After computing the shares using the public parameters, the training uploads the calculated 
information to the server.

The server collects all received secret information. If the number of shares is less than t, the protocol is terminated. 
In the PQSF scheme, for users Pi /∈ U3 who have dropped out, the server runs the secret reconstruction algorithm 
SS.Recon() to restore the symmetric key. And the secret shares of the remaining participants exceeding the 
threshold are collected to reconstruct the masks of the offline participants. In addition, under the double mask 
mechanism, the model gradient of each participant is encrypted by both the key-based mask and the random 
mask. Even if some participants are offline, the remaining gradients can be securely aggregated to prevent 
personal data leakage. Before the training starts, the participants distribute the secret shares of the random seeds 
used for masking through the threshold secret sharing scheme. Once a participant goes offline, the remaining 
participants can use these secret shares to reconstruct the lost random mask, allowing the server to accurately 
aggregate the gradients. This process effectively ensures the accuracy and security of gradient aggregation, so 
that it can calmly cope with the challenges brought by the disconnection of participants.For data owners Pj /∈ U3 
participating in the aggregation calculation, the central server restores the mask bj  and calculates the mask 
PRG(bj) using the secret reconstruction algorithm SS.Recon(). Finally, the server uses these masks to calculate 
the aggregated result and update the new global model wk+1

i .

Subsequent training stage
In the subsequent rounds of training, participants negotiate new symmetric keys and locally generate random 
masks. Training participants run the secret renewal algorithm SS.Renew() to obtain new public parameters for 
the next round of secrets and make them public. During this process, the Improved-Pilaram multi-stage secret 
sharing scheme allows participants to use the same secret shares in multiple stages without frequently updating 
these shares. In this way, in each training round, participants do not need to redistribute secret shares, but only 
need to use new public parameters for secret reconstruction.

In the subsequent secret reconstruction phase, the data holders participating in the reconstruction use 
the original secret share and new public parameters to calculate the encrypted information without the need 
to frequently update or re-transmit these public parameters. After the server receives a sufficient amount of 
information, it runs the secret reconstruction algorithm to obtain a new mask and calculates the final aggregated 
gradient information. With the reuse of secret shares and the sharing of public parameters, the communication 
overhead during each round of training is significantly reduced. The federated learning algorithm repeats these 
steps until the model converges or a specified number of training epochs is reached to terminate.

Security analysis
Correctness
Theorem 5 The execution process of the proposed PQSF scheme ensures that the server can always compute and 
output the correct gradient aggregation results, given the number of online training participants participating in 
model aggregation, denoted as |U | ≤ t .

Proof Through the NewHope key exchange scheme, participants Pi and Pj  can negotiate and obtain a shared 
key keysi,j=key

s
j,i. We first assume that during the training process, all individual training participants have not 

dropped out midway and have encrypted the gradients according to the protocol and participated in secret re-
construction. From the gradient encryption algorithm, we can derive the correctness of Eq. (20).

 

n
i=1

yk+1
i =

n
i=1


wk+1

i + PRG (bi) +


j∈U,i<j

PRG
�
keysi,j


−


j∈U,i>j

PRG
�
keysi,j





=

n
i=1

wk+1
i +

n
i=1

PRG (bi)

 (20)
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During the gradient aggregation phase, participants upload secret shares regarding the mask bi, and the central 
server runs a secret reconstruction algorithm to obtain bi, i = 1, 2, . . . , n and ultimately eliminate the mask, 
resulting in the aggregated model gradient. Next, we consider the scenario of participants dropping out during 
the training process.

 

|U |
i=1

yk+1
i =

n
i=1


wk+1

i + PRG (bi) +


j∈U,i<j

PRG
�
keysi,j


−


j∈U,i>j

PRG
�
keysi,j





=

n
i=1

wk+1
i +

n
i=1

PRG (bi)±


PRG (keys)

 (21)

When there are participants dropping out during the training process, the server still computes the correct 
gradient aggregation result. Firstly, assuming that the training participants Pl, l /∈ U  drop out midway, 
participating only Pi, i ∈ U  in the final model aggregation and secret reconstruction, the server can verify the 
correctness of Eq. (21) through aggregating encrypted gradients.

Here, PRG(keys) denotes the uncompensated mask due to participant Pl dropout. In the secret reconstruction 
phase, training participants make decisions: for users in the online set U, they calculate and upload the secret 
information corresponding to the mask bi using public parameters. For dropout users not belonging to the set 
U, they upload secret information related to Pl symmetric keys. The central server can ultimately eliminate the 
shares and perform model aggregation through the reconstruction algorithm SS.Recon().

In conclusion, as long as the number of online participants involved in model aggregation and secret 
reconstruction |U | ≤ t, the correct model aggregation result can be successfully computed, thereby proving 
Theorem 5. 

Privacy protection
Theorem 6 The proposed PQSF scheme ensures the security of participant models. In other words, honest but cu-
rious participants or the central server cannot compromise the security of the local data sets of participants through 
inference attacks.

Proof In the assumed semi-honest model, training participants and the server correctly encrypt and aggregate 
gradients according to the protocol. For the gradients of participant models, using masked encryption ensures 
that the original and encrypted gradients are indistinguishable. Suppose adversary A steals ciphertext informa-
tion during the participant’s model gradient upload process. However, due to the security of the NewHope key 
exchange scheme in the dual-mask scheme and the security of Improved-Pilaram, Theorem 3 and Theorem 4 can 
guarantee the privacy of original gradients in the PQSF.

Furthermore, during the aggregation process of the model by the central server, the security of participant 
local gradients is also ensured. This is because the proposed scheme in this paper not only uses symmetric key 
generation for masks that can cancel each other out but also encrypts gradients using dual masks based on 
random numbers bi. Even if honest but curious participants have received gradient vectors from participants 
and aggregated them to eliminate all symmetric key masks, the privacy of local data can still be ensured through 
random number masking. Honest but curious servers cannot compromise the security of participant local data 
sets through inference attacks on gradients, thus proving Theorem 6. 

Simulation experiment and analysis
In this section, we conducted simulation experiments on both the proposed Improved-Pilaram and the PQSF 
to demonstrate the feasibility of our approach. In addition, this section compares the proposed scheme with 
existing schemes and demonstrates the advantages of the proposed scheme in terms of computational overhead. 
The simulation experiments in this section were conducted on terminals running 64-bit Windows 10 systems. 
We simulated participants and server on a desktop computer configured with an Intel i7-9700 CPU @3.7 GHz 
and 64GB of installed memory.

Improved-Pilaram
This section evaluates the performance of the proposed Improved-Pilaram, analyzing the secret sharing, secret 
reconstruction, and secret updating phases of the protocol. The experiment examines the relationship between 
computational overhead and threshold ratio t/n under different numbers of participants, and compares it with 
the post-quantum secure scheme Mus. Specifically, this section simulates computational overhead at different 
stages with 100, 200, 300, 400, and 500 participants, with thresholds t/n ranging from 0.5 to 0.9.

Time overhead in the secret sharing stage
The time overhead of the proposed secret sharing algorithm at different thresholds is shown in Fig. 4a of this 
section. From the experiments, it can be observed that the computational overhead of participants increases 
linearly with the increase in the threshold t/n. Additionally, the increase in the number of participants also has a 
similar effect on the scheme. This is because the size of shares and the public matrix proposed in this section are 
both correlated with the threshold ratio. When there are 300 participants, the sharing algorithm takes 1403.4 ms 
to run at a threshold t/n of 0.5, and 1813.7 ms to run at a threshold t/n of 0.7, and 2261.5 ms to run at a threshold 
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t/n of 0.9. When the threshold t/n is fixed at 0.7, the algorithm requires 137.2 ms to run with 100 participants, 
1813.5 ms with 300 participants, and 6980.1 ms with 500 participants.

Figure 4b illustrates the comparative experiments between the approach proposed in this paper and Mus. The 
modified approach incurs some additional computational overhead in the secret sharing phase. This is because 
the Improved-Pilaram proposed in this paper adds an additional random vector during the construction process 
to ensure the security of secrets during multiple rounds of reconstruction. When the number of participants is 
300 and the threshold t/n is fixed at 0.7, the time taken for the secret sharing phase in the Mus scheme is 1725.2 
ms, while the proposed approach in this paper takes 1813.5 ms. The additional computational overhead is within 
an acceptable range.

Time overhead in the secret reconstruction stage
During the secret reconstruction phase, training participants locally compute secret information using shares 
and public vectors, and the secret reconstruction operation is completed by the initiator. As shown in Fig. 5a, 
the computational overhead in the reconstruction phase increases linearly with the number of participants. 
When there are 300 participants, the reconstruction algorithm requires 83.7 ms to run at a threshold t/n of 0.5, 
223.4 ms at a threshold t/n of 0.7, and 387.9 ms at a threshold t/n of 0.9. When the threshold t/n is set to 0.7, the 

Figure 5. Secret reconstruction phase.

 

Figure 4. Secret sharing phase.
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reconstruction algorithm consumes 21 ms with 100 participants, 308 ms with 300 participants, and 726 ms with 
500 participants.

In the Mus scheme, secret shares from participants are uploaded, and the secret reconstructor completes share 
calculation and reconstruction based on public parameters. However, in the approach proposed in this paper, 
participants locally perform combined operations on shares and public parameters to obtain secret information 
before uploading. This approach ensures the privacy of shares while also reducing the computational overhead 
for the secret reconstructor. As seen in Fig. 5b, with an increasing number of participants, the proposed approach 
exhibits lower computational overhead in the reconstruction phase compared to Mus. In real-world scenarios, 
participant local computations are distributed and synchronized, and the aggregator only needs to collect 
sufficient secret information from participants for combined computation. This significantly reduces the overall 
system’s computational overhead and time, while ensuring the security of secret shares is not compromised by 
aggregation.

Time overhead in the secret update stage
In the improved Improved-Pilaram of this paper, during the update phase, the original secret shares are used to 
compute the updated public vectors. In this process, the Dealer saves computational overhead by not generating 
multiple random vectors, and participants save overhead by not updating secret shares. As shown in Fig. 6a, 
when the number of participants is 300 and the threshold ratio t/n is 0.5, 0.7, and 0.9, the secret update algorithm 
requires 731.6, 995.4, and 1349.6 ms, respectively.

As shown in Fig. 6b, the proposed approach in this paper exhibits lower computational overhead during the 
update phase compared to Mus. The primary advantage in computational overhead lies in the fact that secret 
shares and certain vector parameters do not need to be modified, as the privacy of shares can be maintained over 
the long term in multi-secret sharing processes. However, in environments where all users share and update 
secrets, the proposed approach in this paper has smaller computational overhead, which is crucial for federated 
learning environments.

In summary, simulation experiments indicate that the Improved-Pilaram proposed in this section has lower 
computational overhead overall compared to Mus. Another significant advantage of this scheme is that secret 
shares do not change with secret updates, which is further amplified in scenarios with multiple participants 
and multiple secrets. Additionally, the scheme provides post-quantum security, which traditional secret sharing 
algorithms do not possess.

PQSF
In this section, we conducted simulation experiments on the proposed PQSF model aggregation scheme. As 
the approach used in the scheme is based on dual masking, the final model accuracy is not compromised by the 
implementation of privacy protection. Therefore, this section does not analyze the accuracy of the model. We 
conduct experiments with convolutional neural networks (CNN) on the MNIST data set. The hidden layers of 
the CNN consists of two 5 × 5 convolution layers followed by max polling layers, and two fully connected layers.

We simulated and compared the time overhead of the proposed privacy-preserving federated learning 
method in a single training round. Due to the construction of multi-stage secret sharing, we separately tested 
the overhead for participants in the initial stage and subsequent training stages, and compared it with the Laf 
scheme. In this simulation experiment, we set the threshold t/n for secret sharing to 0.7 and the proportion 
of participant dropouts to 70%. As shown in Fig. 7, although the secure aggregation scheme proposed in this 
paper has a large computational overhead in the initial rounds, the time overhead in subsequent training stages 

Figure 6. Secret update phase.
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is significantly reduced. This is due to the fact that the protocol requires more vector computations during the 
initial secret sharing phase, while these vectors and secret shares do not need to be regenerated during the 
secret update and subsequent phases. Therefore, our method exhibits lower computational and communication 
burden throughout the federated learning process.

In addition, the federated learning scheme proposed in this paper requires key agreement among participants. 
Therefore, we compared the computational overhead and the sizes of public and private keys between the 
NewHope key agreement protocol and traditional Diffie–Hellman (DH) key agreement protocol. As shown 
in Table 1, although there are discrepancies in communication volume and key size compared to traditional 
algorithms, the NewHope key agreement protocol used in this paper exhibits strong computational efficiency 
advantages, even surpassing traditional key agreement schemes. In conclusion, the key agreement scheme used 
in this paper, while ensuring post-quantum security, maintains acceptable sizes of public and private keys and 
efficient computational overhead.

This section conducted simulation experiments to test the computational overhead of the multi-stage 
Improved-Pilaram at different stages. Additionally, the computational overhead of the federated learning protocol 
based on this technique and the Key Agreement protocol were also tested. Through comparative experiments, 
the results indicate that the proposed approach in this section has smaller time overhead in federated learning. 
Furthermore, this approach does not require frequent updates of local secret shares during execution, making it 
more practical in real-world scenarios, and it can provide post-quantum security for model safety.

Conclusion
This paper presents a post-quantum secure federated learning secure aggregation scheme utilizing lattice-based 
secret sharing techniques. It aims to reduce communication overhead among participants while protecting the 
privacy of model parameters. This paper introduces a multi-stage Improved-Pilaram that enables participants 
to reconstruct different secrets using local shares and public parameters. In the proposed PQSF, this scheme 
encrypts model parameters using lattice-based key agreement scheme and dual masking mechanisms to protect 
them. It also implements mask reconstruction elimination based on the improved secret sharing scheme and 
ensures robustness against dropout participants. On one hand, participants in federated learning do not need 
to frequently update local secret shares, reducing computational overhead. On the other hand, participants no 
longer need to transmit shares to each other after the initial sharing round, reducing communication overhead. 
The security proofs and simulation experiments demonstrate that the proposed approach effectively reduces 
computational overhead while ensuring post-quantum security.

Data availability
The data used to support the findings of this study are available from the corresponding author on reasonable 
request.

Scheme

Time (ms)

Public key size (bits) Private key size (bits) Communication overhead (bits) Post-quantum securityAlice Bob

NewHope 0.326 0.375 14592 14336 30976 Support

DH 0.914 0.915 256 256 512 Unsupported

Table 1. Comparison of the overhead of the newhope key agreement scheme.

 

Figure 7. Comparison of single-round time overhead under different numbers of participants.
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