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CREB3L1 deficiency impairs odontoblastic differentiation and
molar dentin deposition partially through the TMEM30B
Yuanyuan Li1, Yuxiu Lin1,2, Jinqiang Guo1, Delan Huang1, Huanyan Zuo1, Hanshu Zhang1, Guohua Yuan 1, Huan Liu 1,3,4✉ and
Zhi Chen 1,2✉

Odontoblasts are primarily responsible for synthesizing and secreting extracellular matrix proteins, which are crucial for
dentinogenesis. Our previous single-cell profile and RNAscope for odontoblast lineage revealed that cyclic adenosine
monophosphate responsive element-binding protein 3 like 1 (Creb3l1) was specifically enriched in the terminal differentiated
odontoblasts. In this study, deletion of Creb3l1 in theWnt1+ lineage led to insufficient root elongation and dentin deposition. Assay
for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing were performed to
revealed that in CREB3L1-deficient mouse dental papilla cells (mDPCs), the genes near the closed chromatin regions were mainly
associated with mesenchymal development and the downregulated genes were primarily related to biological processes including
cell differentiation, protein biosynthesis and transport, all of which were evidenced by a diminished ability of odontoblastic
differentiation, a significant reduction in intracellular proteins, and an even greater decline in extracellular supernatant proteins.
Dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp), and transmembrane protein 30B (Tmem30b) were identified as
direct transcriptional regulatory targets. TMEM30B was intensively expressed in the differentiated odontoblasts, and exhibited a
significant decline in both CREB3L1-deficient odontoblasts in vivo and in vitro. Deletion of Tmem30b impaired the ability of
odontoblastic differentiation, protein synthesis, and protein secretion in mDPCs. Moreover, overexpressing TMEM30B in CREB3L1-
deficient mDPCs partially rescued the extracellular proteins secretion. Collectively, our findings suggest that CREB3L1 participates in
dentinogenesis and facilitates odontoblastic differentiation by directly enhancing the transcription of Dmp1, Dspp, and other
differentiation-related genes and indirectly promoting protein secretion partially via TMEM30B.
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INTRODUCTION
Dentin is the primary load-bearing tissue in teeth, and crucial for
their durability.1 The formation of dentin, dentinogenesis, ensues
from the deposition of an intricate extracellular matrix (ECM), which
is synthesized and secreted by the odontoblasts.2 The ECM proteins
form the initial organic dentinal matrix, representing the non-
mineralized predentin.3 Dentin ECM contains abundant noncolla-
genous proteins (NCPs) considered to be responsible for initiating
and controlling the mineralization process that transforms predentin
into dentin.4 The small integrin-ligand N-linked glycoproteins
(SIBLING) family, including dentin matrix protein 1 (DMP1) and
dentin sialophosphoprotein (DSPP), are representatives of the NCPs
in ECM proteins.4,5 DMP1 deficiency resulted in partial failure of
maturation of predentin to dentin, hypomineralization, and
expanded pulp and root canal cavities during postnatal tooth
development.6 Mutations of DSPP led to dentinogenesis imperfecta
characterized by enlarged or smaller dental pulp chambers.7,8

However, the transcription regulation of these ECM proteins during
odontoblastic differentiation or lineage specification remained
unclear. In order to obtain a global view for transcription regulation
of the ECM proteins, we performed an integrated assay using single
cell RNA-seq and ATAC-seq, and found a group of transcription

factors (TFs) regulating the odontoblastic differentiation in a stage-
dependent manner. We previously disclosed that klf4 directly
upregulate the transcription of Dmp1, which pre-determined the
odontoblast lineage commitment.9 Besides, we noticed the regulons
of basic leucine zipper (bZIP) family was mainly enriched in the
mature odontoblasts, among which cyclic adenosine monopho-
sphate (cAMP) responsive element-binding protein 3 like 1
(CREB3L1) was specifically upregulated.10

CREB3L1, also known as old astrocyte specifically induced
substance (OASIS), was identified as a transcription factor.11

Ordinarily, the protein resides in the endoplasmic reticulum (ER)
membrane. However, in response to ER stress, it undergoes
translocation to the Golgi membrane for cleavage. The N-terminal
segment of CREB3L1, comprising the bZIP domain, then migrates
to the nucleus, where it initiates the transcriptional activation of
target genes.12,13 Mutations in CREB3L1 have been reported in
individuals suffering from oligodontia, osteogenesis imperfecta, or
fatal osteogenesis imperfecta.14–18 However, the specific reasons
behind its heightened expression in mature odontoblasts and its
potential contribution to dentinogenesis require further study.
In this study, we used Wnt1-Cre to ablate Creb3l1 in the neural

crest lineage. Shorter tooth roots and insufficient dentin
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deposition were observed in Wnt1-Cre; Creb3l1f/f conditional
knockout mice (cKO). We conducted assays for transposase-
accessible chromatin with high-throughput sequencing (ATAC-
seq)19 and RNA sequencing (RNA-seq). These analyses demon-
strated that the downregulation of CREB3L1 in mDPCs, after
5 days of differentiation induction, affected biological processes
associated with protein biosynthesis, transport, and epithelial-
to-mesenchymal transition. Besides of the direct downregula-
tion of Dmp1 and Dspp, slightly reduced intracellular and
greatly decreased supernatant protein levels were also
observed in the CREB3L1-deficient mDPCs. Combining the
two sequencing results, Tmem30b, one of the highest-ranked
possible target genes responsible for intracellular protein
transport was acquired. Deficiency of TMEM30B impaired the
odontoblastic differentiation ability of mDPCs by slightly
decreasing the intracellular protein and severely reducing the
supernatant protein levels. Overexpression of TMEM30B par-
tially rescued the total amount of extracellular supernatant
proteins in CREB3L1-deficient mDPCs. Our findings indicate that
CREB3L1 deficiency results in inadequate root elongation and
dentin deposition. Additionally, CREB3L1-regulated protein
biosynthesis occurs independently of TMEM30B, and protein
transport is partially mediated by TMEM30B, leading to a
reduction in the total amount of both intracellular and ECM
proteins.

RESULTS
Deficiency of Creb3l1 in Wnt1+ lineage led to shorter roots and
thinner dentin
We firstly revisited the published scRNA-seq profile of the
odontoblast lineage, and found regulon of CREB3L1 was
specifically highly enriched at the terminal stage of odonto-
blast differentiation according to our previous single-cell RNA-
seq results10 (Fig. 1a). RNAscope staining revealed that Creb3l1
mRNA was not expressed in preodontoblasts at embryonic day
15.5 (E15.5) (Fig. 1b), whilst its expression was evident in
polarized odontoblasts at E18.5 (Fig. 1c), and it was con-
tinuously expressed in mature odontoblasts at postnatal day
2.5 (PN2.5) (Fig. 1d). To uncover its necessity in dentinogenesis,
we generated Wnt1-Cre; Creb3l1f/f conditional knockout mice
(cKO), which were used to specifically delete Creb3l1 in the
neural crest lineage. All conditional knockout mice survived
and displayed no statistically significant differences in either
body size or weight compared to wildtype (WT) mice
(Supplementary Fig. S1a, b). To assess the efficiency of
knockout and examine tooth morphology in cKO mice,
hematoxylin and eosin (HE) staining and immunohistochem-
istry (IHC) staining of CREB3L1 were conducted on molars at
postnatal day 0.5 (PN 0.5) (Supplementary Fig. S2a, b). As
expected, the dental papilla showed no expression of CREB3L1
(Supplementary Fig. S2a). However, there were no significant
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Fig. 1 Creb3l1 mRNA exhibited high expression levels in polarized and mature odontoblasts. a Regulon of CREB3L1 in scRNA-seq profile for
dental mesenchyme isolated from PN0 mouse lower molar.10 The CREB3L1 regulons were notably enriched in mature odontoblasts
population. b–d RNAscope in situ hybridization was performed on the dental germ at embryonic day 15.5, 18.5 (E15.5, E18.5), and postnatal
day 2.5 (PN2.5) developmental stages. The Creb3l1 mRNA was not expressed in dental mesenchymal cells but was specifically expressed in the
epithelium and bone at E15.5 (b). Creb3l1 mRNA exhibited a high level of expression in the polarized odontoblasts and bone at E18.5 (c).
Creb3l1 mRNA is localized in polarized and mature odontoblasts at PN2.5 (d). Scale bar= 100 μm
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differences in tooth crown morphology between WT and cKO
(Supplementary Fig. S2b).
Micro-CT scans were conducted on mice at two separate

developmental periods: postnatal 3 weeks (PN 3 W), the time of
tooth root development, and postnatal 8 weeks (PN 8 W), the
time of completed body development (Fig. 2a). The conditional
deletion of Creb3l1 in the neural crest lineage demonstrated no
effect on the number of teeth or crown morphology. The
mandibular height below the root furcation of the first molar
was analyzed (Supplementary Fig. S3a). It was found that this
height was slightly decreased in cKO mice compared to WT
mice at PN 3 W (Supplementary Fig. S3b), but significantly
reduced at PN 8 W (Supplementary Fig. S3c). The mandibular
alveolar bone (MAB) between the roots of the first molar (MAB1)
and between the first and second molars (MAB2) were analyzed
(Supplementary Figs. S4a, b, S5a, b). It was found that at PN 3 W,
half of the cKO mice exhibited a significant decrease in bone
mass. However, the other half did not exhibit any significant
changes. Furthermore, there was no statistically significant
difference in the bone volume (BV) to tissue volume (TV) ratio
(BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N),
and trabecular separation (Tb.Sp) of cKO mice when compared
with WT mice at PN 3 W (Supplementary Figs. S4c–f, S5c–f). A
statistical analysis of all samples at PN 8 W revealed a
statistically significant decrease in BV/TV in cKO mice in the
mandible at both sites (Supplementary Figs. S4g, S5g).
Additionally, a statistically significant reduction in trabecular
number (Tb.N) was observed exclusively in the MAB1 in the PN
8 W cKO mice (Supplementary Fig. S4i). No statistically
significant differences were observed for the remaining
indicators (Supplementary Figs. S4h, j, S5h–j). Objectively, only
a subset of the cKO mice exhibited a more pronounced
reduction in bone mass when examined individually. The
cementum of the first molar at PN 8 W exhibited a reduction
in the amount of cementum in cKO mice compared to WT mice
(Supplementary Fig. S6).
The crown and root length, the thickness of crown and root

dentin were analyzed to investigate potential abnormalities in
tooth development20 (Fig. 2a, b). Shorter roots were observed in
PN 3W and PN 8W cKO mice (Fig. 2a). The histological
examination (Fig. 2c) and Micro-CT analysis of PN 3W (Fig. 2d)
and PN 8W (Fig. 2e) mice provided further evidence to support
this observation. Although there was a reduction in crown dentin
thickness in cKO mice at PN 3W in comparison to WT mice, this
difference was not statistically significant (Fig. 2f). However, a
significant difference was observed in the reduction in crown
dentin thickness in cKO mice at PN 8W (Fig. 2g). Both PN 3W and
PN 8W cKO mice displayed thinner root dentin in contrast to WT
mice (Fig. 2h, i).
Although there were macroscopic changes, it is unclear if

any alterations in density and microstructure occurred in
dentin. The Micro-CT analysis was employed to assess the
density of dentin in both the crown and root of PN 8 W mice.
The density of the crown and root exhibited no significant
alterations (Fig. 2j, k). Scanning electron microscopy (SEM) was
used to examine the dentinal tubules at the crown, cementoe-
namel junction (CEJ), and root. No significant changes in the
dentinal tubule structure and dentinal tubules were observed
(Fig. S7). The findings indicate that CREB3L1 is associated with
total dentin deposition, but not with the density or structure of
dentinal tubules.

Downregulation of Creb3l1 attenuated the odontoblastic
differentiation capability of mDPCs
The RNAscope technique was employed to ascertain the mRNA
expression of genes encoding proteins associated with odonto-
blast terminal differentiation in order to evaluate the potential
role of CREB3L1 in regulating odontoblast differentiation at the

transcriptional level in vivo. The expression of Dmp1 (Fig. 3a)
and Dspp (Fig. 3b) in odontoblasts of cKO mice was observed to
be diminished in comparison to WT mice in vivo, indicating that
CREB3L1 may regulate the expression of Dmp1 and Dspp. To
determine the mechanism underlying the shorter root and
thinner dentin in cKO mice, the mDPC6T-Cas9 cell line,21,22

which maintained the differentiation capacity of primary
cultured mouse dental papilla cells and constitutively expressed
the CAS9 protein, was used to knock down Creb3l1 in vitro. The
expression of CREB3L1 was initially verified during the
differentiation induction of the mDPC6T-Cas9 cell line. The
successful induction of differentiation was confirmed through
the upregulation of differentiation-related proteins, including
DMP1 and DSPP. Notably, the mRNA expression of Creb3l1
peaked on the fifth day after differentiation induction (Fig. 4a).
The mRNA expressions of Dspp and Dmp1 increased during the
differentiation induction (Fig. 4b, c) along with the increased
protein levels (Fig. 4d, e). Since cleavage is required for CREB3L1
to function, the active form is the cleaved CREB3L1 fragment
(Cleaved-CREB3L1). Western blot analysis detected two distinct
bands, CREB3L1-FL (full-length CREB3L1) and Cleaved-CREB3L1
(Fig. 4d). Additionally, the highest expression of CREB3L1 was
observed on the fifth day of differentiation induction as well
(Fig. 4d, e). Furthermore, the role of CREB3L1 was explored by
using CRISPR/CAS9 technology23 to knock out the Creb3l1 gene
with a pair of single guide RNAs (sgRNAs) designated A8 (Fig. 4f,
Supplementary Table S1). The P1 and P2 primers (Supplemen-
tary Table S1) were used to identify the chromosome that was
successfully excised if a 553 bp fragment appeared (Fig. 4f). P3
and P4 primers (Supplementary Table S1) were used to identify
the WT chromosome when 321 bp appeared (Fig. 4f). If both
553 bp and 321 bp were observed, the chromosome was
considered to be incompletely cleaved and was regarded as a
heterozygous cell line.
The monoclonal cell line was obtained via limiting dilution of

the mDPC6T-Cas9 cell line treated with A8 sgRNAs. Two
heterozygous monoclones, sgCreb3l1_A8-4 and sgCreb3l1_A8-8,
were identified from the A8 sgRNA-treated cell pool (Supplemen-
tary Figs. S8a, Fig. 4g). The groups were divided into day 0 (D0),
without differentiation induction, and day 5 (D5), with differentia-
tion induction for 5 days. The mRNA levels of Creb3l1 (Fig. 4h),
Dmp1 (Fig. 4i), and Dspp (Fig. 4j) were significantly decreased in
sgCreb3l1_A8-4 cells on D5. These findings indicate that CREB3L1
was involved in the transcriptional regulation of Dmp1 and Dspp
expression.
Finally, for the subsequent experiments, sgCreb3l1_A8-4 was

selected for further studies. After 5 days of differentiation
induction, the protein levels of CREB3L1, DMP1, and DSPP were
found to be reduced in the sgCreb3l1_A8-4 group (Fig. 4k, l). A
similar outcome was observed in the sgCreb3l1_A8-8 group
(Supplementary Fig. S8b, c). The mineralized nodule formation
ability of mDPC6T-Cas9 cells treated with A8 sgRNAs (sgCre-
b3l1_A8) after 14 days of differentiation induction (D14) was
also impaired (Fig. 4m). These observations implied that
CREB3L1 deficiency diminished the synthesis of dentin matrix
proteins.

The deficiency of CREB3L1 altered chromatin accessibility and
reduced gene expression associated with protein production and
secretion
The established function of CREB3L1 is acting as a transcription
factor.24 To validate this, immunofluorescence staining of
N-terminal forms of CREB3L1 (CREB3L1-N) was conducted
during the differentiation induction of mDPCs to examine the
nuclear translocation of CREB3L1. The CREB3L1-N were pre-
dominantly localized in the nucleus after 12 and 24 h of
differentiation induction (Fig. 5a). To elucidate the mechanism
behind the impaired differentiation capacity of CREB3L1-
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deficient mDPCs, ATAC-seq and RNA-seq analyses were per-
formed in Ctrl and CREB3L1-deficient mDPCs on D5. A significant
change in chromatin accessibility was observed, with 888
regions exhibiting decreased accessibility and 510 regions

exhibiting increased accessibility in the CREB3L1-deficient group
(Fig. 5b, Supplementary Table S2). Gene Ontology (GO) analysis
for the genes near the closed chromatin regions revealed a
significant impact on biological processes including stem cell
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development, skeletal morphogenesis, regulation of cell-
substrate adhesion, Notch signaling pathway, neural tube
development, neural crest cell differentiation, mesenchymal
development, epithelial-to-mesenchymal transition, and con-
nective tissue development (Fig. 5c). The “mouse phenotype
single KO” descriptions of these genes were associated with
decreased neural crest cell number, decreased birth size,
abnormal neural tube closure and abnormal craniofacial
development (Fig. 5d). Downregulation of CREB3L1 resulted in
decreased chromatin accessibility at the regulatory regions near
the Dmp1 and Dspp genes (Fig. 5e, f).
Apart from the chromatin accessibility changes, the difference

in gene expression was also investigated. RNA-seq revealed that
1 007 genes were downregulated and 1 027 genes were upregu-
lated in the CREB3L1-deficient mDPCs (P < 0.01) (Fig. 5g,
Supplementary Table S3). Furthermore, GO analysis of the
downregulated genes in CREB3L1-deficient mDPCs revealed
their association with several cellular processes, including
positive regulation of intracellular transport, such as
Tmem30b;25–28 response to ER stress, such as Atf6b,29 Creb3l1;13

positive regulation of protein phosphorylation, such as Bmp6,30

Fgfr3,31,32 Sox9;33–35 regulation of protein stability, such as
Smad3,36 Mdm2;37 regulation of collagen metabolic process,
such as Notch1,38 Itga2;39,40 extracellular matrix organization,
such as Col11a1, an important component of collagen;41

intracellular protein transport, such as Notch1;42 growth
hormone synthesis, secretion and action such as Atf6b,29

Notch1;42 regulation of stem cell differentiation, such as
Notch1,43 Sox9;33–35 positive regulation of epithelial to mesench-
ymal transition, such as Notch1,43 Smad344 (Fig. 5h, i). These
findings are consistent with the reported role of CREB3L1 in ER
stress, regulating transporter and extracellular matrix protein
levels.45,46 These observations suggest that CREB3L1 altered
chromatin accessibility and downregulated the expression of
genes related to cell differentiation, protein biosynthesis, and
protein secretion.

The CREB3L1-deficient mDPCs exhibited a weakened capacity for
protein biosynthesis and secretion
Inspired by the top GO enriched term, we asked if loss of CREB3L1
leads to weakened capacity for protein biosynthesis and secretion.
First, we chose to analyze marker protein for odontoblast terminal
differentiation, DMP1 and DSPP. Consistent with the down-
regulation of RNA level for Dmp1 and Dspp in vitro and in vivo,
the protein levels of DMP1 (Fig. 6a) and DSPP (Fig. 6b) in the
odontoblasts of cKO mice were significantly lower than that of WT
mice. Since the downregulation of DMP1 and DSPP protein may
be due to the inhibition of transcription, we further investigate
protein production in the knockout clone. The quantities of
intracellular protein and supernatant secreted protein were
compared between the Ctrl and sgCreb3l1_A8-4 groups. A
significant reduction (30.74% in D0 and 41.97% in D5) in the
quantity of intracellular proteins was observed in CREB3L1-
deficient mDPCs (Fig. 6c). Notably, a more severe decrease
(41.31% in D0 and 53.88% in D5) in the amount of cellular
supernatant proteins was detected in CREB3L1-deficient mDPCs
(Fig. 6d).
The reduction in total protein levels could be due to a reduced

ability to produce protein or an increase in degradation. To
determine whether the rate of protein degradation varied after
inhibition of protein synthesis, cycloheximide (CHX)47 was
applied to inhibit protein synthesis in the Ctrl and sgCre-
b3l1_A8-4 groups. Through a gradient concentration screen, it
was determined that the application of 1 ug/mL CHX affected
cellular protein synthesis with less cell death (Supplementary
Fig. S9). Both Ctrl and sgCreb3l1_A8-4 groups were treated with
this concentration of CHX for 24 h and the protein degradation
rates before and after treatment were compared between the
two groups. No significant difference was observed in the
degradation rate between the two groups (Fig. 6e). These
observations support the sequencing results that downregula-
tion of CREB3L1 leads to a diminution of protein production and
secretion.

CREB3L1 deficiency repressed TMEM30B expression in
odontoblasts
In addition to its role as a transcription factor regulating the
synthesis of mineralization-associated proteins, we are particularly
interested in understanding how CREB3L1 regulates the protein
secretion pathway. The BETA tool48 was utilized to identify the
downregulated genes whose potential regulatory elements were
also closed in ATAC-seq (Supplementary Tables S4, 5). To
understand the role of TMEM30B, we initially confirmed its
expression during the differentiation induction process. Its
expression pattern was parallel to that of CREB3L1, peaking at
D5 in mDPCs (Fig. 7a, b). Similarly, its expression pattern in dental
papilla is similar to that of CREB3L1 in vivo (Supplementary
Fig. S10). Additionally, in vivo histological analysis of the first molar
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from PN 3W cKO mice revealed a significant reduction in
TMEM30B expression levels (Fig. 7c).
To determine if CREB3L1 can directly regulate Tmem30b

transcription, a CREB family motif within Tmem30b located in

the sgCreb3l1_A8-4 lost NFR was identified by JASPR website
(Fig. 7d). Then, the corresponding region together with the
regulatory element was cloned into the pGL3 promoter plasmid
(T1) and the region without the motif (T1_mut). Dual-luciferase
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Fig. 4 Downregulation of CREB3L1 inhibited the odontoblastic differentiation of mDPCs. a–c The mRNA expression level of Creb3l1, Dmp1, Dspp
during differentiation induction. d The protein expression levels of the full length of CREB3L1 (CREB3L1-FL), Cleaved-CREB3L1, DMP1, and DSPP
were detected during differentiation induction. e Quantification of the relative levels of protein expression in d. f Design of sgRNAs for Creb3l1
knockout. g Genotyping results for a monoclonal heterozygous cell line with knockdown of Creb3l1 (sgCreb3l1_A8-4). h–j The mRNA expression of
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assays were conducted on the vector group, overexpressed
Creb3l1 (oeCreb3l1)+T1 group, and oeCreb3l1+ T1_mut group.
The results showed that overexpression of CREB3L1 could
significantly upregulate the luciferase activity driven by the
regulatory element of Tmem30b. However, the luciferase activity
of the mutated Tmem30b regulatory element (oeCreb3l1+
T1_mut) group was downregulated compared to wildtype
(oeCreb3l1+ T1) group. Thus, CREB3L1 is a positive regulator of
this motif fragment (Fig. 7e).
The expression levels of TMEM30B protein were also detected

during the 5-day differentiation induction of Ctrl and sgCre-
b3l1_A8-4 groups. As shown by the analysis of the isolated
cytoplasm and nucleus, TMEM30B expression was exclusively
observed in the cytoplasm and demonstrated a significant
decrease in sgCreb3l1_A8-4 groups (Fig. 7f, g). Taken together,
these observations suggest that TMEM30B is expressed in
odontoblasts and regulated by CREB3L1.

TMEM30B deprivation impaired the protein synthesis and
secretion capability of mDPCs
To examine the impact of TMEM30B deficiency on mDPC
differentiation, Tmem30b expression was inhibited by siRNA
(Fig. 8a). The suppression of Tmem30b resulted in a significant
reduction in TMEM30B, DMP1, and DSPP protein levels during the

differentiation process (Fig. 8b, c). Moreover, inhibiting Tmem30b
greatly decreased the formation of mineralized nodules (Fig. 8d).
Targeted knockout of Tmem30b was performed using a pair of

sgRNAs (sgRNA_a and sgRNA_b) (Fig. 8e) to evaluate the impact of
Tmem30b deficiency on intracellular and supernatant proteins
during differentiation induction. The P_a+ P_b primers (Supple-
mentary Table S6) were utilized to identify the wild-type (598 bp)
and knockout (225 bp) chromosome (Fig. 8e). Subsequently, a
homozygous knockout monoclone, sgTmem30b_60, was selected
for further experiments (Fig. 8f). Initially, the knockout of Tmem30b
significantly reduced the mRNA expression of Tmem30b and Dmp1
(Supplementary Fig. S11a) and decreased the protein level of
DMP1 and DSPP (Supplementary Fig. S11b, c) during differentia-
tion induction. Moreover, sgTmem30b_60 also hindered the
formation of mineralized nodules after 14 days of differentiation
induction, as evidenced by Alizarin red S staining (Supplementary
Fig. S11d). The levels of intracellular and secreted proteins were
examined in TMEM30B-deficient cells. The results indicated a
marked reduction in intracellular proteins (20.46% in D0 and
33.78% in D5) and an even greater decrease in supernatant
proteins (36.18% in D0 and 43.82% in D5) in the sgTmem30b_60
group (Fig. 8g, h).
Similarly, the protein degradation rates before and after CHX

treatment were compared between the Ctrl and sgTmem30b_60
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groups by treating both groups with 1 ug/mL CHX for 24 h. No
significant difference in the rate of degradation was observed
(Fig. 8i). The results suggest that the absence of Tmem30b results
in impaired odontoblastic differentiation ability of mDPCs and
reduced protein synthesis and secretion.

Overexpression of TMEM30B in CREB3L1-deficient mDPCs partially
rescued protein secretion ability
TMEM30B was overexpressed in CREB3L1-deficient cells to
investigate whether overexpressing TMEM30B rescues protein
synthesis and secretion function. The mRNA level of Tmem30b
increased upon the infection with Flag-Tmem30b lentivirus
(oeTmem30b) during differentiation induction (Fig. 9a). The levels
of FLAG-TMEM30B were also elevated (Fig. 9b). Dmp1 levels were

not rescued by oeTmem30b in the sgCreb3l1_A8-4 group
compared to the sgCreb3l1_A8-4 group after a 5-day differentia-
tion induction (Fig. 9c). Additionally, oeTmem30b did not rescue
the protein levels of DMP1 (Fig. 9d) and DSPP (Supplementary
Fig. S12a, b) on D5. Likewise, the capacity to form mineralized
nodules was also not restored (Supplementary Fig. S12c).
Although oeTmem30b cannot rescue the intracellular proteins
(Fig. 9e), it can partially rescue the extracellular supernatant
proteins in sgCreb3l1_A8-4 mDPCs during 5-day differentiation
induction (Fig. 9f).
The reduction in mineralization-associated proteins (such as

DMP1 and DSPP) in CREB3L1-deficient cells is not attributable to a
shortage of TMEM30B. Thus, we propose that the upregulation of
CREB3L1 in TMEM30B-deficient cells is likely to enhance the
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intracellular protein was performed in three groups, Ctrl, sgCreb3l1_A8-4, and the sgCreb3l1_A8-4 treated with oeTmem30b. f Quantification of
culture supernatant protein was conducted in three groups, Ctrl, sgCreb3l1_A8-4, and the sgCreb3l1_A8-4 treated with oeTmem30b group.
n= 3. ns not significant, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.000 1
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production of these proteins. CREB3L1 overexpression (oeCreb3l1)
was performed on TMEM30B-deficient mDPCs (sgTmem30b_60).
Creb3l1 mRNA levels showed a large increase in the oeCreb3l1
treated group (Supplementary Fig. S13a). Consistent with the
hypothesis, the overexpression group exhibited strongly upregu-
lated expression of CREB3L1-FL, Cleaved-CREB3L1, DMP1, and
DSPP (Supplementary Fig. S13b, c).
Overall, the deficiency of CREB3L1 in mDPCs leads to reduced

protein levels both intracellularly and extracellularly. The reduc-
tion in intracellular protein is due to the transcriptional down-
regulation of Dmp1, Dspp, and other differentiation-related genes,
while the decrease in extracellular protein is partially attributed to
TMEM30B deficiency.

DISCUSSION
Tooth development is regulated by intricate and well-coordinated
molecular networks.2,49 In this study, Creb3l1 was deleted in the
neural crest lineage by using Wnt1-Cre.50–52 Wnt1-Cre; Creb3l1f/f

conditional knockout mice exhibited deficiencies in both root
elongation and dentin deposition. Subsequent investigations
revealed that CREB3L1 primarily mediates transcriptional regula-
tion of ECM proteins production and secretion. Deficiency of
CREB3L1 in mDPCs caused decreased levels of intracellular and
extracellular proteins, and the decline in extracellular proteins was
partially attributed to the deprivation of TMEM30B.
Our RNAscope data were consistent with previous studies,

indicating that CREB3L1 is primarily expressed in polarized,
secretory, and mature odontoblasts,53 as well as in root
odontoblasts,54 suggesting that CREB3L1 may participate in
dentinogenesis. Previous findings reported that CREB3L1 was
implicated in the terminal differentiation of osteoblasts, and
CREB3L1 deficient mice exhibited severe bone loss.55,56 In this
study, Wnt1-Cre; Creb3l1f/f (cKO) mice exhibited a reduction in the
height of mandibular bone below the first molar root furcation in
comparison to the WT mice. A subset of cKO mice exhibited a
reduction in mandibular bone mass compared to WT mice.
However, the reduction was not as pronounced as that observed
in global knockout mice. It is speculated that this may be due to
the compensatory effect of cells from other subsequent lineage
origins on the jawbone phenotype, but this requires further
research to confirm this conjecture. It is also possible that the
penetrance rate in conditional knockout mice is lower than in
global knockout mice. A previous study reported that only 64% of
Wnt1-Cre; Fgf18c/c mice exhibited the cleft palate phenotype,
which was lower than that of Fgf18−/− mice.57

In addition to the observed phenotype in the mandible, the cKO
mice exhibited shorter roots and thinner dentin, in comparison to
the WT mice. The crown dentin thickness of PN 3W cKO mice
decreased compared to WT mice, but no statistically significant
difference was observed. However, a statistically significant
difference was identified in the decrease in root dentin thickness.
With continued deposition of dentin in the crown and root until 8
weeks of age, cKO mice exhibited a more notable reduction in
dentin thickness in both crown and root dentin thickness than WT
mice. The length of the root has a significant impact upon the
long-term viability of the dentition.58 Abnormal molecular
signaling during root development can result in dentin dysplasia.
The phenotype of dentin dysplasia type I encompasses thinner
dentin and shorter root malformations. These abnormalities may
be associated with early tooth loss.59 The phenotype resulting
from CREB3L1 deficiency is evident in bone development, but the
impact on tooth development is relatively mild. It may be due to
the fact that tooth development is regulated by multiple
transcription factor regulatory networks.2 In a similar vein, it was
previously reported that the deletion of the Indian hedgehog (Ihh)
in the Wnt1+ lineage resulted in skeletal malocclusion. Never-
theless, no notable alterations in the teeth or dentition were

discerned.60 These phenomena may be attributed to the existence
of a robust compensatory mechanism governing tooth develop-
ment, which deserves further investigation.
CREB3L1 possesses a bZIP domain61 suggesting that CREB3L1

can repress or activate its target genes. Our results demonstrated
that deficiency of CREB3L1 significantly decreased the expression
of ECM proteins DMP1 and DSPP, and impaired the ability of
mDPCs to differentiate into odontoblasts and form mineralized
nodules. ATAC-seq and RNA-seq analyses were subsequently used
to explore the function of CREB3L1 in epigenetic and transcrip-
tional regulation. The closed regions in CREB3L1-deficient mDPCs
were analyzed to be involved in the development of the
connective tissue and skeletal system, consistent with previous
studies in global knockout mice,55,56 It is noteworthy that
deficiency of CREB3L1 was predicted to exhibit abnormal
craniofacial development, which supports our in vivo observations
of tooth and bone phenotypes.
In terms of transcriptional regulation, CREB3L1 deficiency

downregulated genes associated with response to ER stress and
protein production. Consistent with previous reports that CREB3L1
functioned as a transducer of endoplasmic reticulum stress and
was involved in the proper synthesis of proteins.24 In addition to
the direct transcriptional regulation of Dmp1 and Dspp, sequencing
data and in vitro studies have now provided new evidence that
CREB3L1 downregulation significantly affects protein secretion.
This perspective is a complement to previous studies that have
focused primarily on transcriptional regulation or chromatin
accessibility modification during odontoblastic differentiation.9,62,63

CREB3L1 functions primarily as a transcription factor, regulating
downstream target gene expression at the transcriptional level to
facilitate their functions. Therefore, its modulation of protein
secretion may occur indirectly through specific proteins that
participate in protein transport. Combining the ATAC-seq and
RNA-seq data, TMEM30B was identified as a potential downstream
target of CREB3L1. TMEM30B, also known as CDC50B belongs to
the cell division control protein (CDC) family.25 The CDC50 family
was predicted to be located primarily at the endoplasmic
reticulum, Golgi, or plasma membrane in the cytoplasm and has
been reported to be involved in the function of lipid transport
activity.26,64 In our study, TMEM30B was also exclusively located in
the cytoplasmic compartment in the odontoblasts. The absence of
TMEM30B impaired the secretion of extracellular matrix proteins
and suppressed the mineralization capacity of odontoblasts,
implying that it may be responsible for the protein export. This
was confirmed that overexpression of TMEM30B partially rescued
the extracellular supernatant proteins in CREB3L1-deficient
mDPCs. The reduction of intracellular protein levels attributed to
TMEM30B deficiency is probably a consequence of decreased
protein transportation. This hypothesis necessitates additional
exploration. Overexpression of TMEM30B in CREB3L1-deficient
cells did not rescue DMP1 and DSPP expression, whereas
overexpression of CREB3L1 in TMEM30B-deficient cells rescued
DMP1 and DSPP expression, indicating that CREB3L1-induced
reduction of DMP1 and DSPP is not caused by TMEM30B. These
findings demonstrate that TEME30B served as a novel molecule
for protein secretion, and a downstream target of CREB3L1, which
was also necessary for odontoblastic differentiation.
Several limitations are present in this study. The first is the lack

of in vivo experiments to evaluate the efficiency of protein
synthesis in WT and cKO mice. The provided information only
described the changes in the amount of proteins present in either
extracellular supernatant or intracellular proteins but does not
specifically elucidate which proteins have been altered. Further
studies are required to understand how TMEM30B mediates
protein secretion in mDPCs.
In summary, CREB3L1 participates the dentinogenesis, and

regulated the protein biosynthesis directly and protein secretion
indirectly. The compromised ability of protein secretion caused by
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CREB3L1 deficiency is partially ascribed to the deprivation of
TMEM30B.

MATERIALS AND METHODS
Animals husbandry
C57BL/6 wildtype (WT) mice were purchased from the Hubei
Provincial Center for Disease Control and Prevention (Hubei CDC).
E15.5, E18.5, PN0.5, PN2.5, PN 3W, and PN 8W) mice were
collected for subsequent experiments.
Creb3l1f/f mice bearing loxP sites flanking in introns 2 and 4 of

the Creb3l1 (Stock No: T019448) were generated by GemPharma-
tech Co. Ltd. using the CRISPR/Cas9 system. The Wnt1-cre mice
(Stock NO. N000275) were obtained from the Jackson Laboratory.
Creb3l1f/f mice were crossed with Wnt1-cre mice to generate Wnt1-
cre; Creb3l1f/w mice. Then by mating Wnt1-cre; Creb3l1f/w mice with
Creb3l1f/f mice, the obtained Wnt1-cre; Creb3l1f/f (cKO) mice were
used as the CREB3L1 deficient group, and the Creb3l1f/f and
Creb3l1f/w littermates were used as the control group. The
genotype of the transgenic mice was identified by conventional
PCR analysis of genomic DNA extracted from mouse tails. For the
floxed Creb3l1 allele: F-primer, 5’-CTGTGCTCATGCCAACACACA-3’,
and R-primer, 5’-TGCAAGAACAGCCAGCAGTCT-3’, the product size
of wild type Creb3l1 was 291 bp, and the mutant was 395 bp. For
the Wnt1-Cre transgene: F-primer, 5’- GCCTGCATTACCGGTC-
GATGC-3’, and R-primer, 5’- CAGGGTGTTATAAGCAATCCC-3’, the
product size of Wnt1-Cre transgene was 481 bp. All mice used in
this study were C57BL/6 background strain and were bred and
maintained under specific pathogen-free (SPF) conditions at the
State Key Laboratory Breeding Base of Basic Science of
Stomatology, Hubei Province & the Key Laboratory of Oral
Biomedicine (Wuhan University), Ministry of Education (Hubei-
MOST KLOS & KLOBM). Both female and male mice were included
in the analysis. All mouse related experiments were performed in
accordance with the guidelines and approved by the Institutional
Animal Care and Use Committees at the School and Hospital of
Stomatology of Wuhan University (protocol no. S07923090B).

RNAscope in situ hybridization
RNAscope 2.5 HD Reagent Kit-RED (Cat No. 322350; Advanced Cell
Diagnostics, Newark, CA, USA) was used to detect Creb3l1 mRNA
expression in situ in paraffin sections of E15.5, E18.5, and PN 2.5
mice molar according to the manufacturer’s instructions. The
Creb3l1 probe (Cat No. 585951; Advanced Cell Diagnostics, Newark,
CA, USA), Dmp1 probe (Cat No. 441171), Dspp probe (Cat No.
448301), negative probe (Cat No. 310043), and positive probe (Cat
No. 313911) were purchased from Advanced Cell Diagnostics.

Micro-computed tomography and histomorphometric analyses
The mandibles harvested from the PN 8W Creb3l1f/f and Wnt1-cre;
Creb3l1f/f mice, were fixed immediately in the 4% paraformalde-
hyde (PFA; Biosharp, Hefei, China) at 4 °C for 24 h and then the
residual paraformaldehyde was removed through running water.
The mandibles of each genotype (n ≥ 5) were scanned via a
Micro-CT system (SkyScan1276, Bruker, Belgium). Then we used
the NRecon (Bruker) to reconstruct the mandibles. Mimics 19.0
was utilized to complete the virtual reconstruction. The Data-
viewer software (Bruker) was utilized to adjust the three-
dimensional orientations of the first molar assuring that each
first molar presented a similar two-dimensional orientation, and
to measure the thickness of dentin, the length of crown and root.
To evaluate the bone density, the regions of interest (ROI) in the
mandibles were limited to the crown dentin or root dentin, and
the quantitative analysis was calculated by CTAn (Bruker).

Immunofluorescence staining (IF) of tissues and cells
The mandibles collected from PN 0.5 or PN 3W mice were fixed
individually in 4% paraformaldehyde (PFA; Biosharp, Hefei, China)

overnight at 4 °C and decalcified in 10% EDTA (pH 7.4) for 3 days
or 4 weeks. Then the samples were dehydrated through a graded
ethanol series and embedded in paraffin. Sagittal sections of
mandibles were cut at 6 μm thickness using a Leica RM2265
paraffin microtome and then placed in microscope slides. To make
an accurate comparison among groups, a uniform standard was
developed. For molars, sections with the largest dental pulp and
visible apical foramen were chosen. The sections were depar-
affinized in the xylene, rehydrated using descending grades of
ethanol solutions, and then rinsed in phosphate-buffered saline
(PBS) for 3 × 5min. For antigen retrieval, we immersed the
sections in 10 mM citrate buffer (pH 6.0) and then used a
microwave to heat the sections for 15min followed by cooling to
room temperature. Cells on coverslips were fixed with 4%
paraformaldehyde (PFA; Biosharp, China) for 10 min at room
temperature. The cells were treated with TritonX-100 to increase
membrane permeability. Tissue slides or cells were blocked with
2.5% bovine serum albumin solution (BSA; Sigma-Aldrich, St Louis,
MO, United States) at 37 °C for 60min and incubated with primary
antibodies at 4 °C overnight. The primary antibodies included anti-
CREB3L1-N (F-8) (sc-514635, 1:50, Santa, CA, USA) or anti-
TMEM30B (ab185944, 1:100, Abcam, Cambridge, UK). Then Alexa
Fluor 594 or 488 -conjugated secondary antibody (ANT029,
ANT024, 1:200, AntGene, Wuhan, China) was added to the
sections for 1 h at 37 °C. Then slides were rinsed in PBS for
3 × 5min. For single immunofluorescence staining, samples were
counterstained with 4’,6-diamidino-2-phenylindole (DAPI; ZSGB-
BIO, Beijing, China) for visualization of the nuclei.
The kit with tyramide signal amplification technology (RC0086-

23RM, Record Biological Technology, Shanghai, China) was also
utilized to perform single or double IF staining. The primary
antibodies included anti-DMP1 (3844-100,1:100, BioVision, CA,
USA), anti-DSPP (bs-8557R, 1:200, Bioss, Beijing, China), anti-
CREB3L1 (11235-2-AP, 1:100, Proteintech, Wuhan, China), or anti-
TMEM30B (ab185944, 1:100, Abcam, Cambridge, UK). Finally, the
sections were observed and photographed using a fluorescence
microscope (Carl Zeiss, Oberkochen, Germany).

Quantification of intracellular and extracellular supernatant
proteins
The intracellular proteins were collected, and the volume and the
number of cells were recorded. The extracellular supernatant
proteins were harvested from the cell culture supernatant and the
volume was recorded. The intracellular and extracellular super-
natant protein concentrations were measured and standardized
using a BCA Protein Assay Kit (23225, Thermo Fisher Scientific,
Rockford, Illinois, USA). The protein mass was obtained by
multiplying the protein concentration by the volume.

Treatment with protein synthesis inhibitor
Equal amount of mDPCs-Cas9, sgCreb3l1_A8-4, and sgTmem30b_60
cells were cultured in 12-well plates. Cycloheximide (CHX) (Sigma-
Aldrich, St Louis, MO, USA) was dissolved in DMSO. When CHX was
applied, the culture medium was removed from the culture dish and
complete culture medium with CHX solution was added to the dish
(the final concentration, 1 μg/mL). The initial cells without CHX
served as control. The cells treated with CHX for 24 h were used as
the experimental group. Total protein from all groups was collected
for cell counting and measuring the concentration to obtain the
final total amount of protein.

The detailed protocols of the following experiments are provided
in the Supplementary materials and methods

Hematoxylin and eosin staining (HE)
Immunohistochemistry (IHC)
Scanning electron microscope (SEM)
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Cell culture and differentiation induction
Western blot analysis
Total RNA isolation and quantitative reverse transcription
PCR assay
Alizarin Red S Staining
Assay for transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq) library preparation
Analysis of ATAC-seq library
RNA-Seq Library Generation and Data Analysis
Binding and Expression Target Analysis (BETA)
siRNA transfection
Overexpression of Flag-Tmem30b and Flag-Creb3l1
Dual luciferase activity assay
Statistical analysis
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