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To identify genetic influences on subfoveal choroidal thickness of older adults using a genome-
wide association study (GWAS). We recruited 300 participants from the population-based Korean 
Longitudinal Study on Health and Aging (KLoSHA) and Korean Longitudinal Study on Cognitive 
Aging and Dementia (KLOSCAD) cohort studies and 500 participants from the Bundang age-related 
macular degeneration (AMD) cohort study dataset. We conducted a GWAS on older adult populations 
in the KLoSHA and KLOSCAD cohorts. Single nucleotide polymorphisms (SNPs) associated with 
choroidal thickness were identified with P values < 1.0 × 10−4 in both the right and left eyes, followed 
by validation using the Bundang AMD cohort dataset. This association was further confirmed by a 
functional in vitro study using human umbilical vein endothelial cells (HUVECs). The ages of the cohort 
participants in the discovery and validation datasets were 73.5 ± 3.3 and 71.3 ± 7.9 years, respectively. 
In the discovery dataset, three SNPs (rs1916762, rs7587019, and rs13320098) were significantly 
associated with choroidal thickness in both eyes. This association was confirmed for rs1916762 
(genotypes GG, GA, and AA) and rs7587019 (genotypes GG, GA, and AA), but not for rs13320098. The 
mean choroidal thickness decreased by 56.7 μm (AA, 73.8%) and 31.1 μm (GA, 85.6%) compared with 
that of the GG genotype of rs1916762, and by 55.4 μm (AA, 74.2%) and 28.2 μm (GA, 86.7%) compared 
with that of the GG genotype of rs7587019. The SNPs rs1916762 and rs7587019 were located close to 
the FAM124B gene near its cis-regulatory region. Moreover, FAM124B was highly expressed in vascular 
endothelial cells. In vitro HUVEC experiments showed that the inhibition of FAM124B was associated 
with decreased vascular endothelial proliferation, suggesting a potential mechanism of choroidal 
thinning. FAM124B was identified as a susceptibility gene affecting subfoveal choroidal thickness in 
older adults. This gene may be involved in mechanisms underlying retinal diseases associated with 
altered choroidal thickness, such as age-related macular degeneration.
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Choroidal vascular structure and its alterations are associated with various retinal diseases, such as age-related 
macular degeneration (AMD), polypoidal choroidal vasculopathy (PCV), and central serous chorioretinopathy 
(CSC)1–4. The development of the enhanced depth imaging (EDI) technique of spectral-domain optical coherence 
tomography (SD-OCT) has enabled clinicians to discern details of choroidal structure and accurately measure 
its thickness5,6. Using the SD-OCT EDI mode, a subfoveal choroidal thickness (SFCT) analysis demonstrated 
that PCV presented with thickening of the choroid, whereas exudative AMD showed choroidal thinning7. 
Similarly, as clinicians continue to focus on the choroidal layer in retinal diseases, the term “pachychoroid” has 
been introduced to describe a spectrum of diseases characterized by clinically significant choroidal thickening 
with dilated large choroidal vessels and overlying choriocapillaris8.
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Recent genome-wide association studies (GWAS) have identified susceptibility genes for AMD, PCV, and 
CSC. Notably, single nucleotide polymorphism (SNP) rs1061170 in the complement factor H (CFH) gene 
located on chromosome 1q31 was reported in 20059–11. Subsequently, numerous SNPs and genes, including 
ABCA1, APOE, ARMS2/HTRA1, B3FALTL, CFI, C2, C3, COL4A3, GATA5, LIPC, MMP9, TIMP3, TNFRSF10A, 
and VIPR2, were discovered using GWAS12–19. Furthermore, efforts to correlate susceptibility genes (genotypes) 
and clinical phenotypes have been increasing. Mori et al. reported a shared genetic susceptibility between PCV 
and macular neovascularization secondary to CSC17. Mori noted that the ARMS2, CFH, COL4A3, and B3GALTL 
genes have been recognized as susceptibility genes for CSC development and mentioned that these four genes 
are also associated with AMD susceptibility. Thee et al. from the EYE-RISK consortium analyzed AMD features 
and macular thickness following the harmonization of genetic data19. Their findings suggested that risk 
variants at ARMS2/HTRA1 exhibit an increased risk of late AMD progression, with phenotypes resembling the 
complement pathway variants. Since retinal and choroidal morphological changes are linked to disease patterns 
and visual outcomes, exploring the potential association between genetic discoveries and structural phenotypes 
is crucial. Changes in choroidal thickness are a critical feature of retinal diseases, including AMD, and are likely 
to be involved in their pathogenesis. However, no GWAS has targeted choroidal thickness.

Therefore, in this study, we investigated genetic influences affecting the SFCT using a GWAS in an older 
adult population-based cohort, identified susceptibility genes affecting choroidal structure, and validated the 
association using an AMD cohort. Our previous study using the KLoSHA-Eye study cohort revealed that SNPs 
in CFH gene (Y402H, rs1061170) is a genetic risk factor associated with choroidal thinning in eyes of the normal 
elderly population23. In this subsequent study, our goal is to identify the genes influencing the choroidal thickness 
within the population cohort using GWAS and compare these findings with the previous Bundang AMD 
cohort to uncover potentially relevant SNPs that could impact the choroid and contribute to the development 
of AMD.  Additionally, we conducted a functional experiment using human umbilical vein endothelial cells 
(HUVECs) to investigate the in vitro effects of the altered expression of associated genes.

Materials and methods
The Institutional Review Board (IRB) of the Seoul National University Bundang Hospital (SNUBH) approved 
this study, which adhered to the principles of the Declaration of Helsinki (IRB No. B-1812/510-107). Written 
informed consent was obtained from all the participants.

Discovery dataset
We used the data of two population-based longitudinal cohort studies, which enrolled Korean elderly adults aged 
more than 60 years: the Korean Longitudinal Study on Health and Aging (KLoSHA) and Korean Longitudinal 
Study on Cognitive Aging and Dementia (KLOSCAD)21,22. All participants underwent comprehensive 
baseline ophthalmic examinations, including best-corrected visual acuity, intraocular pressure, auto kerato-
refractometry, optical biometry with axial length calculation (IOL Master; Carl-Zeiss Meditec, Dublin, CA, 
USA), and spectral domain optical coherence tomography (SD-OCT; Heidelberg Engineering, Heidelberg, 
Germany). Two independent retinal specialists (H.M.K. and Y.J.P.) manually measured the SFCT using the EDI 
mode each time, and the average SFCT was analyzed. The SFCT was measured as the vertical perpendicular 
distance from the innermost hyperreflective line of the choroid-scleral interface to the hyperreflective line of 
Bruch’s membrane. The left and right eyes were analyzed separately. Out of 454 individuals in the 2nd KLoSHA 
enrollment, 250 (55%) received eye examinations, including OCT. In the Yongin County KLosCAD enrollment, 
250 out of 660 patients (38%) also completed these eye examinations, including OCT, resulting in a combined 
total of 500 patients. According to our previous study, 70 patients with ocular pathologies were excluded from 
the 500 participants who underwent the evaluations, resulting in a final count of 430 participants22. 75 patients 
with cognitive disorders and 55 patients unable to measure SFCT accurately were also excluded. Finally, a total of 
300 participants were included in this study (Fig. 1). We excluded patients with significant myopia or hyperopia 
(axial length exceeding 26 mm or less than 22 mm), high intraocular pressure (greater than 21 mmHg), self-
reported glaucoma history, and combined ocular pathologies, including age-related macular degeneration, 
epiretinal membrane, diabetic macular edema, and diabetic retinopathy found on OCT infrared imaging, which 
may affect subfoveal choroidal thickness.

Validation dataset
For the validation dataset, we used the Bundang AMD cohort20,23. This cohort included Korean adults aged more 
than 50 years who were initially diagnosed with non-exudative or exudative AMD in Seoul National University 
Bundang Hospital (SNUBH). A total of 500 participants were enrolled, and detailed ophthalmic assessments were 
performed, including color fundus photography and SD-OCT (Heidelberg Engineering, Heidelberg, Germany). 
Similar to the study dataset, two independent retinal specialists (H.M.K. and Y.J.P.) manually measured the 
subfoveal choroidal thickness each time, and the average SFCT was analyzed. Similarly, we excluded patients with 
significant myopia, high intraocular pressure, self-reported glaucoma history, and combined ocular pathologies 
other than AMD. In the validation dataset, only the right eye was used for the analysis.

GWAS analysis
GWAS genotyping was performed using the Illumina Human OmniExpress or Human Hap610-Quad bead 
chips. For replication, genotyping was performed using the MassArray platform (Sequenom) and TaqMan allelic 
discrimination probes (Applied Biosystems). A GWAS was conducted on choroidal thickness data from 300 
participants (left and right eyes). For the left eye, 300 participants were analyzed after excluding 23 patients 
without data on choroidal thickness. For the right eye, 300 participants were analyzed, excluding 28 patients 
without data on choroidal thickness. The analysis was performed using the PLINK software, selecting variants 
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based on genotyping mutations in more than 95% of samples, Hardy-Weinberg equilibrium (pHWE ≥ 10−6), 
and mutations present in more than 1% of all samples. An association study analyzed the choroidal thickness of 
the right and left eyes. Among the 590,000 SNPs examined, those with P < 10−4 in both the left and right eyes 
were extracted.

In silico analysis using open data source
The captured Hi-C data in the GM12878 cell line were visualized using the 3D Genome Browser from the 
YUE Laboratory (http://3dgenome.fsm.northwestern.edu/view.php). GTEx (https://gtexportal.org/home/) was 
used to identify interacting genes regulated by candidate SNPs and to analyze target gene expression using bulk 
RNA sequencing data across multiple tissues. The Protein Atlas (https://www.proteinatlas.org/) and Expression 
Atlas (https://www.ebi.ac.uk/gxa/home) were used to analyze cell type-specific RNA and gene expression data at 
the single-cell level. Single-cell-specific patterns were visualized by modifying the Tabula Sapiens data (https://
tabula-sapiens-portal.ds.czbiohub.org/).

HUVEC experiment
Cell culture
HUVECs (cat no. 4453, Sartorius, Germany) were purchased from Sartorius and used in the study. The cells 
were cultured in a cell incubator at a temperature of 37 °C and with 5% CO2. Endothelial Cell Growth Medium 
2 (EGM-2, cat no. C-22011, PromoCell, Germany) supplemented with 1% penicillin/streptomycin (cat no. 
L0018, BioWest, France) was used as the culture medium. The medium was replaced every 48 h, and the cells 
were passaged upon reaching 70–80% confluence. Cells passaged between two and five times were used in the 
experiments.

Small interfering ribonucleic acid (siRNA) Transfection
FAM124B (Human) 3 unique 27-mer siRNA duplexes (cat no. SR312644, OriGene, USA) were purchased from 
OriGene and used in the study. The sequences of the siRNAs were as follows: 5’- A U G U U C U A G A A A U G G A 
G U A C U G A C C-3’, 5’- G C A G U U U A A G G U U C A A G A G A U C G G C-3’, and 5’- G G C U U G A C C A U C A U A A A U U C 
U G A A C-3’. For transfection, Lipofectamine 3000 (cat no. L3000001, Invitrogen, USA) was purchased and the 
experiments were conducted according to the manufacturer’s instructions. Approximately 3–4 × 104 cells were 
seeded per well in an 8-well Lab-Tek II Chamber Slides (cat no. 154534, Thermo Scientific, USA). When the 
cells reached 70–90% confluence under conditions of 37 °C and 5% CO2, Lipofectamine 3000 reagent (0.15 and 
0.3 µL) and Opti-MEM medium (cat no. 31985070, Gibco, USA) were mixed according to the manufacturer’s 
instructions, along with 0.2 µg siRNA, 0.4 µL P3000 reagent, and 10 µL Opti-MEM medium in a 1:1 ratio. The 
mixture was then incubated at room temperature for 15 min. The resulting mixture was added to each well and 

Fig. 1. A flow diagram of enrolled participants in this study.
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incubated at 37 °C and 5% CO2 for 48 h. Immunofluorescence was performed 48 h after siRNA treatment, with 
the timing of the siRNA treatment as the reference point.

Immunofluorescence
The siRNA-treated HUVECs were fixed with a 4% paraformaldehyde solution at room temperature for 5 min 
and subsequently with 100% methanol at -20 °C for 5 min. After two washes with phosphate-buffered saline 
(PBS), the fixed cells were blocked using a blocking buffer (5% fetal bovine serum (FBS), 5% goat serum, 0.1% 
Triton-X 100, 0.02% sodium azide in PBS) at room temperature for 10 min. To detect FAM124B protein, an 
anti-FAM124B antibody (cat no. 21313-1-AP, Proteintech, Germany) was used, followed by Alexa Fluor 488 
goat anti-rabbit IgG secondary antibody (cat no. A-11008, Invitrogen, USA). To detect Ki67, an anti-Ki67 
antibody (cat no. STJ119231, St John’s Laboratory, UK) was used, followed by Alexa Fluor 594 goat anti-rabbit 
IgG secondary antibody (cat no. A-11012, Invitrogen, USA). The samples were observed under a fluorescence 
microscope (Axio imager M2, Carl Zeiss, Germany).

Cell migration and invasion assay
One million (1 × 106) HUVECs were seeded into each well of a six-well tissue culture plate containing 2 ml of 
M199 medium supplemented with 20% FBS and antibiotics. The cells were left to grow overnight to achieve 
nearly full coverage of the well. To inhibit cell proliferation, 5 µg/mL of mitomycin C (100 µL from a stock of 
100 µg/mL) was added to the medium 2 h before creating a scratch. An aseptic P-200 pipette tip was used to create 
a controlled scratch wound by drawing a line across the center of each well to simulate an artificial wound in the 
cell layer. Both the control and FAM124B siRNA knockdown transfections were performed immediately after the 
scratch was created. The plate was subsequently placed in a CO2 incubator for a 24-h period after transfection. 
The cells were then rinsed with PBS, stained using a 0.5% crystal violet solution, observed, photographed, and 
quantified using an inverted microscope. The migrated area was calculated by subtracting the area without cells 
at each time point from the area without cells at 0 h, and then dividing this area by the area without cells at 0 h.

Results
In total, 300 and 500 participants met the inclusion criteria for the KLoSHA/KLOSCAD discovery and 
Bundang AMD validation cohorts, respectively. The participants’ ages at the first visit in the cohort dataset 
were 73.5 ± 3.3 years and 71.3 ± 7.9 years, respectively. The sex ratios (male: female) were 153:147 (51%:49%) 
and 296:204 (59%:41%), respectively. The GWAS analysis revealed three SNPs were associated with subfoveal 
choroidal thickness: rs1916762 at chromosome 2 (intergenic, 24 kb from FAM124B and 44 kb from CUL3, left 
eye P = 6.55 × 10−5, right eye P = 9.13 × 10−6); rs7587019 at chromosome 2 (intergenic, 37 kb from FAM124B 
and 30  kb from CUL3, left eye P = 3.80 × 10−5, right eye P = 6.65 × 10−5); and rs13320098 at chromosome 
3 (intergenic, 81 kb from MIR466 and 288 kb from STT3B, left eye P = 2.24 × 10−5, right eye P = 8.68 × 10−6) 
(Table 1 and Fig. 2).

The discovery and validation cohort datasets were classified into three genotypes: reference/reference 
alleles, reference/alternative alleles, and alternative/alternative alleles (Tables  1 and 2). The average age and 
sex proportions did not differ significantly among the three genotypes in each cohort dataset (Table 2). The 
SFCT was significantly different between the rs1916752 and rs7587019 genotypes in both the discovery and 
validation datasets (P < 0.001). Meanwhile, the SFCT in the rs13320098 SNP was significantly different among 
the genotypes in the discovery cohort (P < 0.001), but not in the validation cohort (P = 0.149) (Table 2). No 
significant difference in the SFCT was observed between the left and right eyes within each genotype in the 
study cohort. Figure  3 summarizes the association between the SFCT and the genotypes of the three SNPs. 
Post-hoc analyses revealed that choroidal thickness significantly differed between the rs1916762 and rs7587019 
genotypes. However, there was no significant difference in choroidal thickness between the TT and TC genotypes 
of rs13320098 in the validation cohort (Fig. 3): rs1916762 GG 226.0 ± 35.0 μm (100.0%), GA 173.0 ± 31.5 μm 
(76.5%), and AA 147.4 ± 33.3 μm (65.2%); rs7587019 GG 226.6 ± 36.0 μm (100.0%), GA 172.4 ± 31.3 μm (76.1%), 
and AA 149.5 ± 34.6 μm (65.9%); and rs13320098 TT 169.1 ± 41.6 μm (100.0%), TC 171.1 ± 38.4 μm (101.1%), 
and CC 149.2 ± 43.2 μm (88.2%) (Table 2).

Because the two SNPs were non-coding variants, we investigated their chromosomal locations and utilized 
capture Hi-C data from the female B-cell lymphoblastoid cell line (GM12878) to identify specific genes regulated 
by these two SNPs. The rs1916762 and rs7587019 SNPs are located upstream of FAM124B and downstream of 
CUL3 (Fig. 4A). Both SNPs were positioned close to FAM124B, near its cis-regulatory region. The captured 

Chromosome 2 2 3

SNP rs1916762 rs7587019 rs13320098

Base pair 225,290,792 225,304,551 31,285,081

Reference Allele G G T

Alternative Allele A A C

P-value (Left eye) 6.55 × 10−5 3.80 × 10−5 2.24 × 10−5

P-value (Right eye) 9.13 × 10−6 6.65E x 10−5 8.68 × 10−6

Gene
(Intergenic)

24 kb from FAM124B
/ 44 kb from CUL3

37 kb from FAM124B
/ 30 kb from CUL3

81 kb from MIR466
/ 288 kb from STT3B

Table 1. GWAS results of SNPs with the greatest evidence of association for the subfoveal choroidal thickness.
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Hi-C data revealed interactions between rs7587019 and the starting exons, including the promoter regions, 
of FAM124B and CUL3, suggesting that rs7587019 may play a role in regulating FAM124B and/or CUL3 
expression. Moreover, single-tissue expression quantitative trait loci (eQTLs) for the two GTEx variants predicted 
interactions with FAM124B across multiple tissues. Additionally, these two variants were predicted to interact 
with a long non-coding RNA (pseudogene) located in and near the CUL3 gene (Table  3). Subsequently, we 
analyzed gene expression data, including bulk RNA sequencing, from the Protein Atlas to determine which gene 
among FAM124B and CUL3 is regulated by the two SNPs. While FAM124B is expressed in many tissues such as 
the breast, colon, heart muscle, and arteries, it is notably enriched in endothelial cells (Fig. 4B, C). Conversely, 
CUL3 is ubiquitously expressed in the cell nucleus and is particularly enriched in spermatids. Single-cell RNA 
sequencing from the Protein Atlas and Expression Atlas revealed that FAM124B is highly expressed in adipocytes 

Fig. 2. Manhattan plots of subfoveal choroidal thickness (SFCT) measurements in the right eye (A), and the 
left eye (B).
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Fig. 3. Association between the subfoveal choroidal thickness and the genotypes of three SNPs, rs1916762 
FAM124B; CUL3, rs7587019 FAM124B; CUL3, and rs13320098 MIR466;STT3B, in the discovery (study) 
dataset and the validation dataset.

 

SNP / Gene rs1916762 / FAM124B; CUL3

Cohort KLOSHA/KLOSCAD study AMD validation

Genotype GG GA AA P-value GG GA AA P-value

Number 122 136 42 208 229 63

Age (years) 73.3 ± 3.4 73.8 ± 3.1 73.0 ± 3.4 0.312 71.3 ± 7.8 71.5 ± 8.6 70.8 ± 7.9 0.810

Sex (M: F) 65 : 57 68 : 68 20 : 22 0.791 130 : 78 131 : 98 35 : 28 0.436

Subfoveal (µm) choroidal thickness

Left eye 220.7 ± 74.3 184.1 ± 66.9 162.6 ± 68.1 < 0.001
226.0 ± 35.0 173.0 ± 31.5 147.4 ± 33.3 < 0.001

Right eye 215.6 ± 62.2 184.3 ± 66.1 158.0 ± 58.7 < 0.001

SNP / Gene rs7587019 / FAM124B; CUL3

Cohort KLOSHA/KLOSCAD study AMD validation

Genotype GG GA AA P-value GG GA AA P-value

Number 130 131 39 216 224 60

Age (years) 73.5 ± 3.6 73.5 ± 3.4 73.4 ± 3.0 0.972 71.2 ± 8.1 71.6 ± 8.4 70.7 ± 7.8 0.693

Sex (M: F) 65 : 65 63 : 68 19 : 20 0.956 134 : 82 130 : 94 32 : 28 0.427

Subfoveal (µm) choroidal thickness

Left eye 217.5 ± 66.4 188.3 ± 65.6 158.6 ± 63.0 < 0.001
226.6 ± 36.0 172.4 ± 31.3 149.5 ± 34.6 < 0.001

Right eye 212.2 ± 59.1 185.0 ± 65.1 160.3 ± 60.1 < 0.001

SNP / Gene rs13320098 / MIR466;STT3B

Cohort KLOSHA/KLOSCAD study AMD validation

Genotype TT TC CC P-value TT TC CC P-value

Number 216 78 6 361 124 15

Age (years) 73.7 ± 3.4 73.3 ± 3.5 71.5 ± 4.2 0.219 71.2 ± 8.2 71.3 ± 8.3 74.6 ± 5.9 0.310

Sex (M: F) 99 : 117 41 : 37 3 : 3 0.208 207 : 154 82 : 42 7 : 8 0.138

Subfoveal (µm) choroidal thickness

Left eye 191.8 ± 73.4 162.1 ± 68.8 115.9 ± 25.1 < 0.001
169.1 ± 41.6 171.1 ± 38.4 149.2 ± 43.2 0.149

Right eye 188.9 ± 71.0 161.8 ± 62.9 94.9 ± 44.5 < 0.001

Table 2. Demographics and clinical characteristics of KLOSHA/KLOSCAD study cohort and AMD validation 
cohort.
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Fig. 4. Analyses of regulatory genes and target cells with rs1916762 and rs7587019 using the open database. 
(A) Schematic diagram depicting predicted interacting regions using the publicly available capture Hi-C 
visualization program (http://3dgenome.fsm.northwestern.edu/view.php) for two non-coding variants. (B) 
Data on high gene expression of FAM124B in top tissues. (C) Analysis of predominant cell types expressed 
in each tissue. Significant expression is indicated by the purple color. (D) Results of the single-cell expression 
analysis through Tabula Sapiens. The left panel depicts the distribution of cell types in a normal human, the 
middle panel shows cells sorted based on FAM124B expression, and the right panel highlights retinal vascular 
endothelial cells.
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and vascular and lymphatic endothelial cells. Single-cell RNA sequencing data from Tabula Sapiens revealed 
that FAM124B exhibited expression patterns in endothelial cells, erythroid progenitors, and mast cells, with a 
significant overlap observed in retinal vascular endothelial cells (Fig. 4D). Given the association of rs1916762 
and rs7587019 with choroidal thickness, we propose that FAM124B, which is specifically expressed in vascular 
endothelial cells, is a target gene for the regulation of choroidal thickness. To investigate the molecular expression 
and function of FAM124B in vascular endothelial cells, we used HUVECs, which showed high expression of 
FAM124B in the Protein Atlas. The fluorescence of FAM124B was well-localized in the cytoplasm around the 
nucleus (Fig. 5A). Depletion of FAM124B using siRNAs significantly reduced the expression of the proliferation 
marker Ki67 (Fig.  5B, C), suggesting that FAM124B enhances the proliferation of vascular endothelial cells. 
However, no significant differences in cell migration were observed between the two groups (Fig. 5D, E).

Angiogenesis includes multiple steps such as proliferation and migration of vascular endothelial cells, and 
the maturation and remodeling of blood vessels, driven by various angiogenic factors like VEGF, FGF, and 
TGFs24,25.  The Ras/MAPK pathway mainly regulates cell proliferation and gene expression, while the Rho 
GTPase pathway regulates cell migration by inducing the remodeling of the actin cytoskeleton and adhesion 

SNPs Interacting gene P-Value NES Tissue

rs1916762
(chr2_224426075_G_A)

FAM124B 2.1 × 10−9 -0.31 Lung

FAM124B 2.8 × 10−8 -0.29 Thyroid

AC073052.1 5.6 × 10−7 0.36 Colon - Transverse

AC073052.1 5.9 × 10−7 0.25 Thyroid

FAM124B 1.4 × 10−6 -0.29 Esophagus - Mucosa

FAM124B 4.4 × 10−6 -0.17 Artery - Tibial

AC073052.1 4.6 × 10−6 0.25 Nerve - Tibial

AC073052.1 2.7 × 10−5 0.34 Spleen

AC073052.1 3.8 × 10−5 0.24 Muscle - Skeletal

AC073052.1 3.8 × 10−5 0.24 Adipose - Subcutaneous

AC073052.1 7.1 × 10−5 0.32 Cells - Cultured fibroblasts

AC073052.1 1.1 × 10−4 0.19 Esophagus - Mucosa

rs7587019
(chr2_224439834_G_A)

FAM124B 1.4 × 10−10 -0.35 Lung

AC073052.1 1.9 × 10−9 0.31 Thyroid

FAM124B 2.4 × 10−9 -0.31 Thyroid

AC073052.1 4.8 × 10−9 0.45 Colon - Transverse

AC073052.1 7.5 × 10−9 0.36 Muscle - Skeletal

FAM124B 5.2 × 10−8 -0.52 Adrenal Gland

AC073052.1 4.4 × 10−7 0.3 Adipose - Subcutaneous

AC073052.1 5.1 × 10−7 0.35 Esophagus - Gastroesophageal Junction

AC073052.1 9.0 × 10−7 0.42 Spleen

AC073052.1 1.4 × 10−6 0.4 Cells - Cultured fibroblasts

AC073052.1 1.6 × 10−6 0.24 Esophagus - Mucosa

FAM124B 1.6 × 10−6 -0.32 Stomach

FAM124B 3.6 × 10−6 -0.17 Artery - Tibial

FAM124B 3.9 × 10−6 -0.32 Heart - Atrial Appendage

AC073052.1 7.4 × 10−6 0.21 Skin - Not Sun Exposed (Suprapubic)

AC073052.1 1.0 × 10−5 0.26 Skin - Sun Exposed
(Lower leg)

AC073052.1 1.4 × 10−5 0.26 Nerve - Tibial

AC073052.1 1.4 × 10−5 0.32 Stomach

AC073052.1 1.5 × 10−5 0.19 Lung

FAM124B 2.6 × 10−5 -0.26 Esophagus - Mucosa

AC073052.1 3.8 × 10−5 0.33 Colon - Sigmoid

FAM124B 3.9 × 10−5 -0.28 Colon - Sigmoid

AC073052.1 8.8 × 10−5 0.26 Artery - Tibial

AC073052.1 9.7 × 10−5 0.16 Whole Blood

Table 3. Single-tissue eQTLs for rs1916762 and rs7587019. The data was aligned to the GRCh38/h38 reference 
genome. NES, normalized effect size, is defined as the slope of the linear regression, and is computed as the 
effect of the alternative allele (ALT) relative to the reference allele (REF) in the human genome reference. 
AC073052.1 (ENST00000622296.1, chr2:224467803–224474500) is predicted as a long non-coding RNA 
(pseudogene) in and near the CUL3 gene.
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complexes24,26.  In our study, the increase in HUVEC proliferation by FAM124B is hypothesized to be due 
to its exclusive effect on cellular proliferation, without involvement in the mechanisms regulating the actin 
cytoskeleton or adhesion complexes through the Rho GTPase pathway and integrin signaling.

Discussion
We conducted GWAS to discover susceptibility genes associated with the subfoveal choroidal thickness in 
the population-based KLoSHA/KLOSCAD cohort, followed by validation in the Bundang AMD cohort. We 

Fig. 5. Subcellular localization of FAM124B and proliferation and migration of FAM124B-depleted human 
umbilical vein endothelial cells (HUVECs). (A) Immunofluorescence staining of HUVECs using anti-
FAM124B antibody (green). Scale bar size: 20 μm; 400x confocal microscopy (B) Expression pattern of the 
proliferation marker Ki67 in HUVECs after 48 h of treatment with control and FAM124B siRNAs. Scale bar 
size: 40 μm; 200x confocal microscopy (C) Relative proportion of Ki67-positive cells among DAPI-positive 
HUVECs after siRNA treatment. Each condition was measured in more than 600 cells in repeated experiments 
(P = 0.0075, unpaired t-test). (D) Cell migration assay in HUVECs after treatment with control and FAM124B 
siRNAs. Scale bar size : 100 μm ; 40x light microscopy (E) Relative proportion of cell migration area over time 
(area without cells at each time point subtracted from the area without cells at 0 h, divided by the area without 
cells at 0 h) in four repeated experiment.
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revealed that the SNPs rs1916762 and rs7587019 between the FAM124B and CUL3 genes (intergenic) affected 
SFCT, and the SFCT was significantly related to the genotypes.

Genetic analysis of pachychoroid spectrum diseases presenting with thickened choroid and choroidal 
vascular hyperpermeability has been conducted27. GWAS investigations have reported ARMS2/HTRA1, CFH, 
COL4A3, and B3GALTL as strong susceptibility genes for PCV and CSC16,17,19.  Choroid thinning is recognized 
as a key factor in the development of AMD. Our goal was to identify the genes associated with choroid thinning 
in the elderly to discover the genetic causes of AMD. Hence, it would be preferable to indicate that the AMD 
patient group was chosen as the validation set.

FAM124B is a protein-coding gene, and only a few studies have explored its role in human diseases. Li et 
al. demonstrated that FAM124B has a higher DNA methylation level in ER+/PR + breast cancer compared 
with ER-/PR- breast cancers28. One GWAS revealed that the SNP rs1523921 (intergenic between CUL3 and 
FAM124B) is associated with anorexia nervosa29. Another study reported that in patients with acute myeloid 
leukemia, FAM124B is associated with acute myeloid leukemia  (AML) prognosis30. At the molecular level, 
FAM124B was identified as a potential interacting partner of CHD7 and CHD8 (chromodomain helicase 
DNA binding domain) containing complex, and thus related to the pathogenesis of CHARGE syndrome and 
neurodevelopmental disorders31.

To the best of our knowledge, the FAM124B gene has not been directly associated with ocular diseases. In 
our study, we observed a potential association between the FAM124B gene and choroidal structure. To further 
investigate this hypothesis, we conducted an experiment using HUVEC. The results revealed that inhibition 
of FAM124B significantly reduced the expression of the proliferation marker Ki67, indicating the potential role 
of the FAM124B gene in enhancing the proliferation of vascular endothelial cells in the choroid. Overall, it 
appears plausible that individuals with alternative/alternative alleles (AA) in CUL3 and FAM124B exhibit thinner 
subfoveal choroidal thickness than those with reference/reference alleles (GG), considering that the two SNPs 
(rs1916762 and rs7587019) function as FAM124B cis-regulatory elements both in silico and experimentally.

CUL3 (E3 ubiquitin ligase Cullin 3) regulates cellular protein composition by providing target recognition 
and specificity to the ubiquitin-dependent proteasomal degradation pathway32. Moreover, CUL3 mutations cause 
familial hyperkalemic hypertension by affecting vascular tone and renal sodium transport33. CUL3 ubiquitin 
ligase maintains normal cardiovascular and renal physiology, and thus regulates blood pressure34. Furthermore, 
patients with diabetes and CUL3 dysfunction exhibit vasoconstriction by increased abundance of WNK3, RhoA/
ROCK activity, and phosphodiesterase 5, thereby enhancing sodium reabsorption, leading to increased risk of 
diabetic nephropathy35.

In clinical settings, previous studies have yielded conflicting findings regarding the association between 
choroidal thickness and systemic vascular diseases. Xu et al. highlighted that patients with diabetes mellitus 
presented with a slightly significant thickening of the subfoveal choroid, while those diagnosed with diabetic 
retinopathy were not characterized by choroidal thickness abnormalities36. Meanwhile, other studies showed 
reduction in the SFCT in patients with diabetes or diabetic retinopathy37–39. The Montrachet population-based 
study suggested that the SFCT is not an appropriate biomarker for cardiovascular diseases40. In our study, we 
propose that the vascular proliferation of FAM124B, known to affect systemic vascular diseases, is likely to affect 
choroidal thickness. Moreover, choroidal thickness in neovascular AMD or geographical atrophy is known to 
be significantly reduced compared to normal individuals41–43. Therefore, our study results are potentially useful 
for clinicians and researchers in targeting choroidal vascular proliferation as a mechanism of AMD treatment.

This study had certain limitations. We focused on SNPs with p-values < 1.0 × 10−4 identified in the GWAS, a 
threshold that is typically not accepted as a level of significance in standard GWAS investigations. By relaxing the 
threshold to 1.0 × 10−4 for each eye, we aim to identify a broader range of potentially relevant SNPs. Crucially, 
our method mandates that SNPs meet this threshold in both eyes, providing a safeguard against false positives 
that might occur by chance in only one eye. This bilateral consistency requirement improves the reliability of our 
findings. We believe that SNPs consistently associated across both eyes are more likely to be genuine genetic factors 
influencing choroidal thickness, thereby enhancing the biological significance of our results. We recognize that 
this approach may increase the likelihood of false positives compared to the conventional threshold. Thus, we 
stress the need for further validation and functional studies to confirm the biological relevance of the identified 
SNPs.Additionally, the discovery cohort consisted solely of individuals without retinal disease, whereas the 
validation cohort comprised patients with AMD. This distinction indicates that a direct comparison of the 
SFCTs between the discovery and validation datasets may not be perfectly aligned. Moreover, our investigation 
included an in vitro HUVEC experiment targeting the FAM124B gene, conducting siRNA transfection with 
the proliferation marker Ki67. The rationale for conducting the experiment with FAM124B siRNA transfection 
rather than CUL3 is as follows: (1) the intergenic location of the discovered single nucleotide variants (SNVs) 
is closer to FAM124B, suggesting a higher relevance, (2) in existing databases, CUL3 is associated with immune 
cells and shows high expression across all tissue types, while FAM124B displays a vascular-specific expression 
pattern. Additional proliferation markers, such as CD34 and, if necessary, CUL3 siRNA transfection, could be 
employed for further in vitro studies to elucidate the role of both genes in choroidal thickness.

In conclusion,  the FAM124B gene has been identified as a potential contributor to subfoveal choroidal 
thickness. The genotypes of the identified SNPs may be linked to variations in subfoveal choroidal thickness. 
Further studies are warranted to investigate the effect of genetic factors on choroidal thickness.

Data availability
Data availability statement (mandatory) : Raw data, functional analysis sources and descriptions will be provid-
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