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Accurate runoff forecasting is of great significance for water resource allocation flood control and 
disaster reduction. However, due to the inherent strong randomness of runoff sequences, this task 
faces significant challenges. To address this challenge, this study proposes a new SMGformer runoff 
forecast model. The model integrates Seasonal and Trend decomposition using Loess (STL), Informer’s 
Encoder layer, Bidirectional Gated Recurrent Unit (BiGRU), and Multi-head self-attention (MHSA). 
Firstly, in response to the nonlinear and non-stationary characteristics of the runoff sequence, the 
STL decomposition is used to extract the runoff sequence’s trend, period, and residual terms, and a 
multi-feature set based on ‘sequence-sequence’ is constructed as the input of the model, providing 
a foundation for subsequent models to capture the evolution of runoff. The key features of the input 
set are then captured using the Informer’s Encoder layer. Next, the BiGRU layer is used to learn the 
temporal information of these features. To further optimize the output of the BiGRU layer, the MHSA 
mechanism is introduced to emphasize the impact of important information. Finally, accurate runoff 
forecasting is achieved by transforming the output of the MHSA layer through the Fully connected 
layer. To verify the effectiveness of the proposed model, monthly runoff data from two hydrological 
stations in China are selected, and eight models are constructed to compare the performance of the 
proposed model. The results show that compared with the Informer model, the 1th step MAE of the 
SMGformer model decreases by 42.2% and 36.6%, respectively; RMSE decreases by 37.9% and 43.6% 
respectively; NSE increases from 0.936 to 0.975 and from 0.487 to 0.837, respectively. In addition, the 
KGE of the SMGformer model at the 3th step are 0.960 and 0.805, both of which can maintain above 
0.8. Therefore, the model can accurately capture key information in the monthly runoff sequence and 
extend the effective forecast period of the model.

Keywords  Monthly runoff forecast, Multi-step forecast, Seasonal and Trend decomposition using Loess, 
Informer, Bidirectional gated recurrent unit, Multi-head self-attention

Global climate change, human activities, and changes in subsurface conditions have increased the uncertainty 
of hydrological processes, which further increases the difficulty of runoff forecasting, resulting in the inability 
of traditional runoff forecasting models to meet the requirements of modern water governance systems within 
the practical accuracy range1,2. Previously, not all models and methods could fully capture the runoff variability 
process; therefore, the accurate forecast of runoff remains a significant challenge3–5.

Through years of research, scientists have developed some research techniques for runoff forecasting rooted 
in data-driven and process-driven models6. The process-driven runoff forecasting model is constructed based 
on a thorough knowledge of the hydrological process mechanism in the watershed and predicts future runoff 
by simulating hydrological cycle components such as rainfall, evaporation, and soil moisture content7. However, 
these methods are built with idealized assumptions and approximate substitutions, resulting in too many state 
equations, parameters, errors, and computationally large problems. The data-driven runoff forecasting model 
based on data is more satisfying for runoff forecasts due to its relative simplicity, less data required for modeling, 
and better forecast performance, among other advantages8. Therefore, scholars further widely use models based 
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on data-driven machine learning models9,10. Although machine learning methods can capture nonlinear features 
in runoff sequences, they are prone to local optima and overfitting due to their shallow structure11. Therefore, 
some scholars adopt optimization algorithms for parameter optimization to avoid such situations12. Adnan, et 
al.13 proposed a support vector machine (SVM) model that incorporates a new hybrid firefly algorithm-particle 
swarm optimization (FFAPSO), which can accurately estimate dissolved oxygen. Samantaray, et al.14 used the 
salp swarm algorithm (SSA) to optimize the hyperparameters of SVM, and compared to traditional methods, 
SVM-SSA achieved better prediction accuracy. Adnan, et al.15 used ELM combined with various advanced 
metaheuristic algorithms to simulate groundwater level fluctuations, and the results showed that this strategy 
can effectively improve forecast accuracy. Although these methods can significantly improve the performance of 
the model, they still have some limitations. To overcome these problems, deep learning methods have gradually 
become the mainstream and hot topic in the field of research in recent years, such as deep belief networks 
(DBN)16, temporal convolutional networks (TCN)17, and Transformer18. Guo, et al.19 combined the physical 
mechanism with the deep learning model to effectively improve the forecasting accuracy of the model. Qiao, et 
al.20 proposed a hybrid forecast model for rainfall-runoff simulation and multi-step runoff forecast that is based 
on random forest (RF), improved aquila optimizer (IAO), and TCN. Wei, et al.21 evaluated the effectiveness of 
Transformer, long short-term memory (LSTM), and gated Recurrent Unit (GRU) models for predicting daily 
runoff at the experimental station. Yin, et al.22 suggested a data-driven rainfall-runoff method according to 
the Transformer, and the outcomes proved the Transformer model has superior transmission capabilities and 
is more adaptable than the LSTM. Considering the limitations of a single model, scholars usually improve the 
model’s structure to improve the model’s training capacity in processing feature signals and enhance the model’s 
predictive accuracy even further. Ikram, et al.23 integrated the reptile search algorithm (RSA) and weighted mean 
of vectors optimizer (INFO), with two deep learning models, effectively improving the prediction accuracy of 
daily water temperature. For example, Hu, et al.24 used a combination CNN-LSTM model to forecast runoff, and 
the simulation results outperformed those of using a single model. Li, et al.25 combined random search (RS), 
LSTM, and Transformer techniques to simulate the flooding process using this integrated model. Jia, et al.26 
suggested a prediction model incorporating a bidirectional long short-term memory (BiLSTM) model and an 
MHSA technology, and they found that MHSA can further extract critical information in the sequence. Tu, et 
al.27 used GRU-Informer to predict ROP (rate of penetration) and found that the model can capture both short-
term and long-term time dependencies. Gao, et al.28 suggested a new seq2seq model and combined it with the 
attention mechanism to improve prediction accuracy. Ren, et al.29 integrated Informer with encoder forest (EF) 
and applied the model to predict novel stock prices. Ribalta Gené, et al.30 combined the self-encoder and feed-
forward neural network to predict future sediment deposition. Shi, et al.31 obtained the WGformer model by 
integrating Weibull Gaussian and Informer and kernel mean square error loss, effectively improving the speed 
and accuracy of wind speed prediction. Inspired by the above literature, this study integrates Informer’s Encoder 
layer, BiGRU, and MHSA for forecasting monthly runoff.

Research has shown that deep learning models’ capacity for forecasting is significantly affected by the data 
quality when faced with uncertain forecast tasks32. For this reason, researchers tend to combine models with data 
decomposition techniques, such as empirical mode decomposition (EMD)33, variational mode decomposition 
(VMD)34, and STL35, aiming to diminish the series’ non-stationarity to explore the data potentially more 
profoundly and thereby enhancing the prediction models’ performance. Qi, et al.36 combined EMD, LSTM, and 
attention mechanism (AM), and the findings revealed that the technique performed better than other comparison 
models. Zhang, et al.37 preprocessed the daily runoff series using VMD and complementary ensemble empirical 
mode decomposition (CEEMD). Chen, et al.38 applied the VMD-GRU model to predict short-term wind power, 
which was able to mitigate the effects of uncertainty in wind power. Fang, et al.39 combined multivariate variant 
mode decomposition (MVMD) with Transformer, and the results showed that the MVMD-Transformer model 
performed better than other models.

In hydrology, runoff sequences, due to their inherent strong stochasticity, result in crucial information, such 
as intrinsic trends and periodicity, that are often overlooked and not effectively utilized in direct prediction. 
A fundamental restriction of time-frequency signal decomposition methods is their difficulty in effectively 
interpreting the extracted frequency components. In contrast, STL can handle various types of seasonality and is 
not impacted by data anomalies, assuring the series’s robustness and achieving satisfactory feature extraction40. 
Wu, et al.41 successfully captured the trend and residual components of the data using STL technology. Xu, 
et al.42 used the STL technology to decompose the runoff time series step by step, extracted the prediction 
samples from the trend, seasonal, and residual components obtained, and then used the LSTM model to predict 
these components. Currently, scholars mainly focus on the “decomposition-reconstruction” forecasting model, 
which improves the precision of the forecast model to some degree but ignores the potential influence of runoff 
evolution characteristics (such as periodicity and trend) on the forecasted outcomes. Therefore, to increase runoff 
forecasting precision and prolong the effective forecasting period, this study adopts the STL decomposition 
technique to extract the intrinsic features of runoff sequences, to explore the effects of the periodicity and trend 
of runoff sequences on runoff forecasting, intending to increase forecast accuracy.

Influenced by the above approaches to research, this study suggests a novel SMGformer multi-step runoff 
forecast model. The intrinsic features of the original runoff sequence are extracted using STL decomposition and 
then predicted using the MGformer model. The following sums up this paper’s primary contributions:

(1) Introduce STL decomposition technology to extract the period, trend, and residual features of the original 
runoff sequence, and construct a multi-feature set of “sequence-sequence” as the model input. This method can 
better integrate information from different features, capture the multidimensional characteristics of runoff data, 
overcome the limitations of a single runoff sequence input, and more efficiently extract the feature patterns of 
runoff sequences.
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(2) A novel MGformer model is designed, which concatenates the Informer’s Encoder layer, with BiGRU 
to effectively capture the before and after dependencies in the sequence, overcoming the problem of one-way 
information flow in traditional Informer. The output of BiGRU is optimized through MHSA, further emphasizing 
the influence of key information. This hierarchical structure enables each component to leverage its advantages, 
thereby improving forecast accuracy.

(3) The proposed model is applied to monthly runoff forecast under two different hydrological conditions, 
and it is found that the SMGformer model exhibited better predictive performance among multiple competitive 
models such as Informer and Transformer, and could extend the effective forecast period.

The remainder of the paper is structured as follows: Section  “Methodology” presents the methodology 
used for monthly runoff prediction. Section “Case studies” presents the case study. Section “Analysis of results” 
presents the analysis of the results. Section “Discussion” presents a discussion of the results. Section “Conclusion” 
summarizes the whole paper.

Methodology
STL
STL is an additive filtering method proposed by Cleveland, et al.43 to break down a time series into additive 
filtering with trend, seasonal, and residual components, which is characterized by the ability to obtain solid trend 
and seasonal components and a high level of immunity to transient anomalies in the data. Unlike traditional 
decomposition methods, STL provides more robust components for decomposing time series with outliers. It 
can handle any type of seasonality, user-controlled smoothing in trend cycles, robustness to outliers, and the 
ability to allow seasonal components to vary over time44. These characteristics enable it to better understand the 
evolutionary features of runoff data and provide good learning conditions for subsequent model predictions. 
The formula is as follows45:

	 Yt = Tt + St +Rt� (1)

where Yt stands for the original time series; Tt stands for the trend component of the time series; St stands for 
the seasonal component of the time series; and Rt stands for the residual component of the time series, that is 
the residual component.

Informer
The Informer model is an enhanced model based on the Transformer suggested by Zhou, et al.46, which has 
been extensively utilized in time series predicting tasks in finance, energy, transportation, and other fields47. The 
model consists of three core modules: an embedding module, an encoder module, and a decoder module, which 
work together to enhance the accuracy of the forecast48. The structure of Informer is schematically seen in Fig. 1. 
The following is the model implementation procedure49:

The input Xt
feed of the Informer model includes the feature scalar uti, the location-encoded information PE, 

and the global timestamp SE with the following expression:

	
PE(pos, 2j) = sin

(
pos

(2Lx)
2j/dmodel

)
� (2)

	
PE = (pos, 2j + 1) = cos

(
pos

(2Lx)
2j/dmodel

)
� (3)

	
Xt

feed = αuti + PE(Lx(t−1)+i) +
∑

p
[SE(Lx(t−1)+i)]p� (4)

where i∈{1,…, Lx};j∈{1,…,dmodel
2 }; Lx is the input sequence’s length; dmodel is the feature dimension of the input; 

and α is a factor that balances the size between the scalar mapping and the local/global embedding.
In the encoder module, the Informer innovates ProbSparse self-attention. This method efficiently identifies 

and focuses on dominant features in a sequence, significantly reducing computational time complexity and 
memory requirements while maintaining prediction accuracy50.

Defining the standard for measuring sparsity: the KL divergence of attention probability p(kj|qi) and 
uniformly distributed q(kj|qi) = 1

LK
. Determine whether qi is sparse or uniform by calculating KL divergence.

	
KL(q||p) = ln

∑L

l=1
eqik

T
i /

√
d − 1

L

∑L

j=1
qik

T
i /

√
d− lnL� (5)

Removing the constant, the sparsity metric may be described as:

	
M(qi,K) = ln

∑L

l=1
eqiK

T
i /

√
d − 1

L

∑L

j=1
qik

T
j /

√
d� (6)

The number of the dominant query is u = c∗ lnLk. The definition of ProbSparse self-attention is:

	 A(Q,K, V ) = Softmax(Q̄KT/
√
d)V � (7)
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In addition, the encoder module employs the distillation operation of self-attention distilling. This technique 
drastically reduces the time dimension of the input sequences and further optimizes the model’s efficiency. The 
distillation process from layer j to layer j + 1 is as follows:

	 Xt
j+1 = MaxPool(ELU(Conv1d([Xt

j]AB)))� (8)

where Conv1d denotes a one-dimensional filter, ELU represents the activation function, and MaxPool represents 
the maximum pooling layer.

The decoder module, on the other hand, employs a generative decoding strategy, which allows the model 
to generate all predictions in a single step centrally, thus simplifying the prediction process and increasing 
efficiency51.

	 Xt
feed_d = Concat(Xt

token,X
t
0) ∈ R(Ltoken+Ly)dmodel � (9)

where Xt
feed_d denotes the input to the decoder module (decoding layer); Xt

token denotes the known sequence 
before the target sequence; Xt

0 denotes the target sequence.

BiGRU
GRU is a neural network for predicting time series proposed by Chung, et al.52 and developed from recurrent 
neural network (RNN). The structure of the GRU unit is relatively simplified. GRU consists of two gates: a reset 
gate and an update gate. The reset gate controls how much past information contributes to the current update, 
and the update gate determines how much the current input affects the state of the update38. Compared with 
other complex sequence processing models (such as LSTM), GRU has fewer parameters and faster training 
speed while maintaining the ability to deal with long-distance dependencies. The structure of GRU is seen in 
Fig. 2. Here is how GRU is specifically implemented:53:

	 zt = σ(Wzxt + Uzht−1)� (10)

	 rt = σ(Wrxt + Urht−1)� (11)

	 h̃t = tanh(rt · Uht−1 +Wxt)� (12)

Fig. 1.  Schematic structure of Informer.
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	 ht = (1− zt) · h̃t + zt · ht−1� (13)

where zt, rt are the update gate output and reset gate output at moment t, respectively; xt is the input variable 
at moment t; ht, ht−1 are the hidden layer outputs at the current and previous moments, respectively; h̃t is the 
backfill hidden state vector at moment t; σ is the sigmoid activation function; Wz, Wr, W, Uz, Ur, U are the weight 
matrices.

In time series analysis, the current state may be affected by both past and future states. The BiGRU model is 
an improved model that builds on the GRU, which consists of a forward GRU and an inverse GRU to capture 
information more comprehensively by processing data in both directions54. This particular bi-directional 
structure allows the state at each point in time to take into account both previous and future information, 
enabling the model to predict and analyze the data more accurately, thus increasing the model’s comprehension 
of the data55. Figure 3 illustrates the basic principle of the BiGRU model.

MHSA
The MHSA is a crucial technique in deep learning, which maps inputs into different linear spaces by introducing 
multiple attention heads, computes attention independently within each space, and finally fuses the results of 
these attentions56. This method elevates the model’s ability to represent complex features. When dealing with 
data containing noise or outliers, the MHSA can automatically adjust the weights to reduce the impacts of these 
negative factors and enhance the accuracy of the prediction and the diversity of the information processed57. The 
following are the specific steps of the MHSA58, and its general process is seen in Fig. 4.

Assuming that the input weight matrix X=[x1,x2,…xn], the query vector Q, the key vector K, and the value 
vector V are obtained by a cubic linear transformation which is implemented as follows:

	 Q = XWq, K = XWk, V = XWv� (14)

where Wq, Wk, and Wv are weight matrices.

Fig. 2.  Schematic structure of the GRU.
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For every head, the attention calculation procedure yields a single feature. The computation process of its 
output is the following:

	
Attention(Q,K, V ) = softmax(

QKT

√
dk

)V � (15)

where dk represents the dimension of the query vector in k.
Next, the output of each attention is spliced to obtain the final value, which is implemented as follows:

	 MHSA(Q,K, V ) = Concat(head1, . . . , headn)W0� (16)

where W0 is the output projection matrix, Concat denotes splicing, and headi denotes the output of each head.

The proposed SMGformer model
In this study, the SMGfomer runoff forecast model is developed, which learns the intrinsic features of runoff 
sequences by integrating multiple structures to get more precise forecast outcomes. First, the original runoff data 
are preprocessed by the STL decomposition method, which decomposes them into trend, period, and residual 
terms and constructs a multi-feature input set based on “sequence-sequence”, which integrates the original runoff 
sequences with their decomposed multi-feature sequences to provide a more comprehensive input dataset for 
the model. This step aims to reduce the nonlinear characteristics of the data so that the model more precisely 
captures the cyclical and trending nature of the runoff. The core structure of the predictive model building 
phase consists of three main components: the Informer’s Encoder layer, the BiGRU layer, and the MHSA layer. 
These components are connected serially to form a robust learning framework. The model first processes the 
input data through Informer’s Encoder layer, which is responsible for capturing and extracting critical features 
in the sequence. These features are then learned and extracted through the BiGRU layer to efficiently capture 
the sequence data’s temporal relationships, thereby enriching the model’s comprehension of variation in time 
series. Next, the output of the BiGRU layer is processed using the MHSA layer, which enhances the model’s 
emphasis on different parts of the sequence through parallel computation to realize the weight allocation among 
features. Finally, in the output layer stage, the fully connected layer transforms to get the MHSA layer’s output 
final monthly runoff projection. The overall structure of the model suggested by the model is seen in Fig. 5, and 
the specific steps are as follows:

Step 1: Extract the raw runoff data’s trend, period, and residual terms using the STL decomposition.
Step 2: Combine the decomposed trend, period, and residual terms and the original runoff sequence into a 

multi-feature input set to provide a rich information source for the model.
Step 3: Use the Informer’s Encoder layer to perform feature extraction on the normalized multi-feature input 

set to capture the critical information in the sequence.
Step 4: The BiGRU layer is introduced to learn further and extract the features, capturing the temporal 

dependency of the sequence data through a two-way learning mechanism.
Step 5: The BiGRU layer’s output is processed using the MHSA layer to realize the weight allocation among 

features.

Fig. 3.  Schematic framework of BiGRU.
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Step 6: Finally, the MHSA layer’s output is transformed into a forecast result through the Fully Connected 
Layer and reverse normalized to generate the final monthly runoff forecast value.

Case studies
Overview of the dataset
This study uses monthly runoff data from the Hongshanhe station in the Heihe River basin in Northwest China 
and the Chashang station in the Fen River basin in North China. The Heihe River basin is the second largest 

Fig. 4.  Schematic diagram of the framework of the MHSA.
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inland in northwest China, located in the central part of the Hexi Corridor. It is the largest inland river basin in 
the western part of Gansu and Mongolia, with a total length of 821 km and a basin area of about 142,900 km2. 
Fen River Basin is the second largest tributary of the Yellow River Basin, located on the eastern edge of the Loess 
Plateau, with a total length of 716 km and a basin area of 39,741 km2.

As shown in Table  1, there are significant differences in the maximum, minimum, average, center, and 
variance of runoff data between the two stations. This is because the northwest region of China usually has 
scarce rainfall, a dry climate, and high and complex terrain; The North China region has relatively more rainfall, 
mild climate, relatively flat terrain, and less variation. Considering the significant differences in rainfall, climate, 
elevation, and other aspects between the northwest and northern regions of China, Hongshanhe station and 
Chashang station are selected as case studies. Hongshanhe station and Chashang station are affected by the 
monsoon climate, with significant differences in precipitation and drastic changes in runoff. By studying the 
runoff patterns at Hongshanhe station and Chashang station, we can better understand the runoff characteristics 
under different geographical and climatic conditions, thereby verifying the applicability and robustness of the 
proposed model under different hydrological conditions, and providing reference value for water resource 
management and planning in different regions. This study selects the measured monthly runoff data from 
1960 to 2004 at Hongshanhe station and 1958–2016 at Chashang station. The selected datasets are divided into 
training datasets, validation datasets, and test datasets, of which 80% are training datasets, 10% are validation 
datasets, and 10% are test datasets. The basic information of the dataset is shown in Table 1. The partitioning 
results of the dataset are shown in Table 2. A schematic diagram of the watersheds where the two stations are 
located is shown in Figs. 6 and 7. The measured monthly runoff sequence of the two stations is shown in Fig. 8.

Site Minimum(m3/s) Maximum(m3/s) Mean(m3/s) Median (m3/s) Variance (m3/s)

Hongshanhe 0.04 6.1 0.83 0.23 1.18

Chashang 5.0 972.0 47.6 24.0 5566.20

Table 1.  Basic information about the monthly runoff dataset.

 

Fig. 5.  Monthly runoff forecast model of the suggested SMGformer.
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Experimental settings
To assess the effectiveness of SMGformer, eight models are selected to compare with it in this study, including 
LSTM, GRU, Transformer, Informer, SInformer, Gformer, SGformer, and MGformer models. LSTM, GRU, 
Transformer, and Informer, which are widely used as benchmark models, are used to measure the basic 
performance of SMGformer; SInfomer, Gformer, SGformer, and MGformer are used to evaluate the improvement 
effect of SMGformer on complex sequence modeling by combining STL decomposition, MHSA, and other 
strategies. These comparisons aim to reveal the superiority of SMGformer in predictive performance. Among 

Fig. 6.  Schematic diagram of the Heihe River Basin.

 

Site Time Scale Number of training sets Number of validation sets Number of test sets

Hongshanhe 1960–2004 Monthly 432 54 54

Chashang 1958–2016 Monthly 566 71 71

Table 2.  Dataset partitioning results.
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them, the SInfomer, Gformer, SGformer, and MGformer models are shown in Table 3. The model input part Yt 
stands for the original runoff sequence, Tt stands for the trend term, St stands for the period term, and Rt stands 
for the residual term.

Due to the significant impact of the head_size in the Informer model on the forecast results, we select the 
head_size of 6, 8, and 10 for comparative experiments. Table 4 shows the predictive performance evaluation 
indicators of Informer for different head_sizes of two stations. The results indicate that when the head_size is 
8, both experimental stations have the best predictive results. Therefore, set the head_size of the Informer to 8. 
Reference papers47,59,60, set the batch_size of Informer to 32, Encoder_1ayers to 2, Decoder_1ayers to 1, and 
d_model to 512. Reference papers61,62, set the hidden_size of LSTM and GRU to 265. To maintain consistency 
in experimental conditions, synchronize the corresponding parameters of other models. The other parameter 
settings for Informer and other models are shown in Table 5.

Evaluation metrics
In this study, we utilized the following metrics measures to evaluate and analyze the models’ performance: mean 
absolute error (MAE), root-mean-square deviation (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), and 
Kling-Gupta efficiency coefficient (KGE). MAE and RMSE assess the error magnitude between forecasted and 

Fig. 7.  Schematic diagram of the Fenhe River Basin.
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actual values. The closer the MAE and RMSE values are to 0, the smaller the forecast error and the higher the 
forecast accuracy. NSE and KGE are used to measure the performance of hydrological forecast models. Generally 
speaking, the closer the values of NSE and KGE are to 1, the better the fitting effect of the model. The following 
defines these four metrics:

	
MAE =

1

n

n∑
i=1

|q̂i − qi|� (17)

Site Head MAE RMSE NSE KGE

Hongshanhe

6 0.273 0.332 0.908 0.813

8 0.204 0.277 0.936 0.915

10 0.210 0.280 0.934 0.905

Chashang

6 22.082 32.487 0.486 0.708

8 21.630 32.453 0.487 0.716

10 22.481 32.915 0.473 0.702

Table 4.  Results of predictive evaluation indicators for different head values.

 

Model Input Core structure

SInformer (Tt, St, Rt, Yt) Informer

Gformer (Yt) Encoder(Informer) + BiGRU

SGformer (Tt, St, Rt, Yt) Encoder(Informer) + BiGRU

MGformer (Yt) Encoder(Informer) + BiGRU + MHSA

SMGformer (Tt, St, Rt, Yt) Encoder(Informer) + BiGRU + MHSA

Table 3.  Description of the experimental model.

 

Fig. 8.  Schematic diagram of the original sequence.
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Model

Parameter settings

Parameter Value

STL Period 12

LSTM

Hidden_layers 2

Hidden_size 256

Learning rate 0.001

Epochs 100

Optimizer Adam

GRU

Hidden_layers
Hidden_size
Learning rate
Epochs
Optimizer

2
256
0.001
100
Adam

Transformer

Encoder 2

Decoder 1

Batch_size 32

Early stopping 7

Loss function MSE

Epochs 100

Head_size 8

d_model 512

Informer/ 
SInformer

Encoder 2

Decoder
Batch_size
Early stopping
Loss function
Epochs

1
32
7
MSE
100

Head_size 8

d_model 512

Gformer/ SGformer

BiGRU_layers 2

Hidden_size 256

Encoder 2

Batch_size 32

Early stopping 7

Loss function MSE

Epochs 100

Head_size 8

d_model 512

MGformer/ 
SMGformer

BiGRU_layers 2

Hidden_size 256

Encoder 2

Batch_size
Early stopping
Loss function
Epochs
Head_size

32
7
MSE
100
8

d_model 512

MHSA_head_size 2

Table 5.  Parameter settings of the models.

 

Scientific Reports |        (2024) 14:23550 12| https://doi.org/10.1038/s41598-024-74329-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
RMSE =

√√√√1

n

n∑
i=1

(q̂i − qi)
2� (18)

	

NSE = 1−

n∑
i=1

(qi − q̂i)
2

n∑
i=1

(qi − q̄i)
2
� (19)

	 KGE = 1−
√
(α− 1)2 + (β − 1)2 + (R− 1)2� (20)

whereqiis the observed runoff,q̂iis the forecasted runoff;q̂iis the average of observed runoff; q̄iis the average 
of forecasted runoff;α = σ (qi/q̂i)is variability bias;β = µ (qi/q̂i)is the mean bias; R is the linear correlation 
coefficient; and αβ represents the standard deviation and the mean, respectively.

Analysis of results
This section details the SMGformer model and the eight benchmark models’ forecast outcomes. The original 
runoff sequences are modeled using different methods based on the above description. To validate the reliability 
and accuracy of the suggested SMGformer integrated forecast model, this paper analyzes and discusses the 
forecast results from two perspectives: one-step and multi-step.

The model’s forecast procedure consists of three phases: training, validation, and testing. The training set is 
used to train the model, the validation set is used to tune the model’s hyperparameters, and the test set is used to 
evaluate the model’s performance. Therefore, the results of the test set are discussed in this paper.

Model input
Due to the uncertainty and ambiguity of the runoff sequences, this study uses STL to decompose the runoff 
sequences to extract their intrinsic features. The STL decomposition decomposes the monthly runoff sequences 
of Hongshanhe and Chashang stations into trend, period, and residual terms, respectively, as shown in Fig. 9.

Figure 9 shows that the trend, period, and residual terms of the monthly runoff series extracted from the 
STL decomposition possess different complexities. The trend series reveals its long-term evolution direction, 
which is manifested by the increase or decrease of runoff volume; the period series reflects the repetitive pattern 
over some time, and this regular fluctuation helps the model to deeply understand the characteristics of runoff 
within a specific period; the residual series represents the randomly changing part of the runoff series, and 
its fluctuation is directly related to the precision of the overall runoff forecast. Together, these three features 
constitute the complex dynamic of the monthly runoff sequence, reflecting its multidimensional characteristics.

One-step prediction results
To confirm the suggested SMGformer model’s efficacy in runoff forecasting, this paper compares the SMGformer 
model with eight benchmark models (LSTM, GRU, Transformer, Informer, SInformer, Gformer, SGformer, 
MGformer), and the outcomes of the evaluation indexes are seen in Table 6.

Analyzing Table 6, the following conclusions can be obtained:
(1) Informer has relatively high accuracy compared to Transformer, GRU, and LSTM. For Hongshanhe and 

Chashang stations, in comparison to Transformer, GRU, and LSTM, the Informer has the biggest NSE and KGE, 

Fig. 9.  STL decomposition diagram.
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the smallest MAE, and the RMSE. To further improve the quality of the model, this paper improves Informer. By 
integrating the Informer’s Encoder layer and BiGRU, the Gformer model is obtained, and the Gformer is made 
better to capture the long-term dependence in time sequence data. For Hongshanhe station, the NSE and KGE of 
Gformer are as high as 0.951 and 0.943, respectively. Compared with Informer, the MAE decreases by 17.6%, and 
the RMSE decreases by 11.9%. For Chashang station, the MAE and RMSE of Gformer decreased by 1.6% and 
8.9%, respectively, compared to Informer; both NSE and KGE improved significantly. This improvement indicates 
that Informer’s Encoder layer effectively extracts global features in the runoff sequences, while BiGRU captures 
local dependencies in the runoff sequences through its bidirectional loop structure. This combination realizes 
the effective fusion of global and local features, enabling the Gformer model to comprehensively understand the 
intrinsic structure and dynamic changes of time series data. The MGformer model is obtained by adding MHSA 
to Gformer, which improves the model’s power to handle complex sequence features. At Hongshanhe, compared 
with Gformer, MGformer reduces 20.2% in MAE and 18.0% in RMSE and increases NSE from 0.951 to 0.967 
KGE from 0.943 to 0.970. For the Chashang station, compared with Gformer, MGformer reduces the MAE and 
RMSE, respectively, by 2.9% and 4.5%. There is an improvement of 9.7% on NSE and 4.5% on KGE. The above 
results indicate that further introducing the MHSA based on Gformer can effectively enhance the predictive 
precision of the model.

(2) To improve the quality of model input data, this paper adopts the STL decomposition technique to pre-
process the runoff sequences to extract the deep intrinsic features of the runoff sequences and constructs a 
multi-feature set containing the trend, the period, the residuals, and the original runoff sequences, to realize the 
model input of the “sequence-sequence” method. The results show that the prediction accuracies of SInformer, 
SGformer, and SMGformer models based on multi-feature inputs significantly outperform those of Informer, 
Gformer, and MGformer models, which only rely on the input of raw runoff sequences. At Hongshanhe station, 
the NSE and KGE of SGMformer were as high as 0.975 and 0.978, respectively, and the MAE and RMSE were 
reduced by 11.9% and 14.0%, respectively, compared with MGformer. Compared to Gformer, SGformer has 
1.3% and 0.7% higher NSE and KGE and 11.9% and 13.5% lower MAE and RMSE, respectively. Compared 
to Informer, SInformer had a 6.3% and 6.5% decrease in MAE and RMSE, respectively, and an increase in 
NSE and KGE. For Chashang station, the MAE and RMSE of SMGformer are 33.6% and 35.1% lower than 
MGformer; NSE increases from 0.631 to 0.837; and KGE increases from 0.762 to 0.908. Compared to Gformer, 
the MAE and RMSE of SGformer decreased by 20.1% and 19.0%, respectively, and both NSE and KGE improved 
significantly. Compared with Informer, SInformer’s MAE and RMSE decreased by 3.7% and 8.7%, while NSE 
and KGE enhanced by 17.5% and 4.3%, respectively. Thus, the STL decomposition technique and the SInformer, 
SGformer, and SMGformer models based on the “sequence-sequence” inputs can significantly enhance the 
precision of runoff forecasting, which thoroughly verifies the efficiency of the STL decomposition technique and 
the multi-feature inputs.

To visualize the research results in Table  6 and to compare the different models’ performance in runoff 
forecasting, bar charts, radar charts, line graphs, scatter plots, and Taylor diagrams are used to show the 
differences in the performance of each model.

Figure 10 displays the RMSE and MAE metrics of each model in the form of bar charts, and it is evident 
that the SMGformer model has the smallest RMSE and MAE values. Figure 11 presents each model’s NSE and 
KGE metrics in the form of a radar chart, where the center of the radar chart represents the starting point and 
multiple axes radiate outward from the center. Each axis corresponds to a model, and specific symbols are used 

Site Model MAE RMSE NSE KGE

Hongshanhe

SMGformer 0.118 0.172 0.975 0.978

MGformer 0.134 0.200 0.967 0.970

SGformer 0.148 0.211 0.963 0.950

Gformer 0.168 0.244 0.951 0.943

SInformer 0.191 0.259 0.945 0.925

Informer 0.204 0.277 0.936 0.915

Transformer 0.224 0.319 0.916 0.912

GRU 0.219 0.307 0.921 0.909

LSTM 0.217 0.316 0.917 0.880

Chashang

SMGformer 13.714 18.307 0.837 0.908

MGformer 20.664 28.202 0.613 0.762

SGformer 17.014 23.926 0.721 0.773

Gformer 21.283 29.545 0.575 0.729

SInformer 20.836 29.645 0.572 0.747

Informer 21.630 32.453 0.487 0.716

Transformer 23.537 34.589 0.418 0.638

GRU 22.713 33.509 0.453 0.679

LSTM 22.384 34.345 0.426 0.637

Table 6.  Results of evaluation metrics for the models.
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to label each model’s NSE and KGE values. The closer these symbols are to the boundary of the radar plot, 
the closer the NSE and KGE values converge to 1, meaning that the model predictions are closer to the actual 
observations. It can be observed in the figure that the symbols representing the SMGformer model are located 
near the boundary, indicating that its prediction ability is extremely excellent. This result proves that the model 
suggested in this research significantly reduces the abnormal fluctuations in the forecast outcomes.

Figures 12 and 13 show the predicted values of the eight models for the Hongshanhe and Chashang stations. 
It is clear from the figures that the statistical dispersion between predicted and measured values of the LSTM, 
GRU, and Transformer is relatively high compared to other models. The trend line of the improved Gformer and 
MGformer predicted values is close to the fluctuation trend of the measured values by and by. Compared with 
the Informer, Gformer, and MGformer models, the SInformer, SGformer, and SMGformer model effectively 
improves the fit of the series. Among them, forecast and observed values’ trend lines are the same. This indicates 
that the SMGformer model is more accurate in capturing variations in the runoff sequence and dramatically 
improves the model’s predictive ability.

Figures S1and S2 in the supplementary materials display the scatter density plots of measured and forecasted 
flows for different prediction models, where R2 is the coefficient of determination, which indicates the proportion 
of changes in the dependent variable y that can be explained by independent variable x. It can be observed that 
the SMGformer model has the highest predicted and measured fit, close to 1. This result confirms the reliability 
of the suggested model.

Figures 14 presents the Taylor plots of the predicted results for each model testing stage. The horizontal and 
vertical axes in the Taylor plot represent NSE, the radial lines represent KGE, the dashed lines represent RMSE, 

Fig. 11.  Radar plot of NSE and KGE results.

 

Fig. 10.  Results of evaluation metrics for MAE and RMSE.
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and the symbols represent each model. When NSE is closer to 1, the azimuth of the model icon is smaller and 
the RMSE radius is smaller. The closer the model icon is to the observation point, the closer the forecasted results 
of the model are to real values. From the figure, it can be seen that the SMGformer model has the best forecast 
results.

In summary, this research reveals the positive impacts of model structure improvement and model inputs on 
runoff forecast accuracy by comparing and analyzing the above nine models. Gformer achieves the synergistic 
capture of global and local features by combining Informer’s Encoder layer with BiGRU. MGformer further 
enhances the processing of complex sequence features by introducing the mechanism of multiple attention 
capability. In addition, the combination of the STL decomposition technique and multi-feature input strategy 
significantly improves the model’s forecasting performance. These results validate the importance of model 
structure improvement and input data preprocessing and provide effective strategies and methods for runoff 
sequence forecasting.

Multi-step forecast results
To verify the suggested SMGformer model’s advantage in multi-step forecasting, this paper compares the 
SMGformer model with the above models. Table 7 lists the specific evaluation metrics of different models in 
months 1, 2, and 3.

From the forecast results in Table 7, it is evident that as the time step increases, the models’ forecast errors 
progressively rise, and the increasing trend is different for each model. At Hongshanhe and Chashang stations, 
compared to the other eight models, the SMGformer has the smallest MAE and RMSE and the largest NSE 
and KGE at step lengths of 2 and 3. Compared with Transformer, GRU, and LSTM, the Informer has a flatter 
decreasing accuracy trend at step lengths 2 and 3, which indicates that Informer performs better in long series 
forecast. At the 2th step, the SMGformer model’s MAE and RMSE decrease by 21.8% and 15.5%, respectively, 
and the NSE and KGE improve by 1.0% and 1.0%, respectively, in contrast to MGformer at the Hongshanhe 
station. Compared with SInformer, the SMGformer model’s RMSE and MAE are 29.4% and 42.5% lower, 
respectively, the NSE increases from 0.946 to 0.973, and the KGE increases from 0.922 to 0.971, respectively. 
At Chashang station, in contrast to the MGformer model, the MAE and RMSE of the SMGformer decreased 
by 34.2% and 34.5%, and NSE and KGE improved by 52.7% and 16.4%, respectively. The MAE and RMSE of 
the SMGformer model decreased by 38.7% and 31.8% compared to the SInformer model; the NSE increased 

Fig. 12.  Forecast results of various models at Hongshanhe station.
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from 0.557 to 0.794, and the KGE increased from 0.711 to 0.845. At the 3th step, at the Hongshanhe station, 
the SMGformer model demonstrates significant improvements over both SInformer and MGformer. Compared 
to SInformer, the SMGformer’s MAE and RMSE have decreased by 40.5% and 28.4%, respectively, while the 
NSE and KGE have improved by 3.4% and 4.8%. In contrast to MGformer, the SMGformer’s MAE and RMSE 
have decreased by 22.4% and 11.8%, with the NSE rising from 0.957 to 0.967, and the KGE increasing from 
0.95 to 0.96. At Chashang station, compared with the SInformer model, the SMGformer’s MAE and RMSE are 
decreased by 37.1% and 29.1%, and NSE and KGE are enhanced by 46.7% and 34.8%, respectively. Compared 
to MGformer, the SMGformer’s MAE and RMSE are decreased by 35.7% and 33.4%, respectively, and the NSE 
is improved from 0.449 to 0.755, and the KGE is improved from 0.676 to 0.805. These results indicate that the 
model improvement and the multi-feature input strategy increase the effective foresight period of the forecast.

Figures 15 and 16 show the violin plots of the forecasted and observed values of the nine models at two 
stations at steps 2th and 3th, which clearly show that the kernel density curves of the measured runoff sequences 
are characterized by multiple peaks with flat and broad peak shapes, concentrated data and large deviation 
values, which indicate that the measured sequences have intense volatility. Meanwhile, the SMGformer model 
proposed in this study has a kernel density plot trend that agrees with the observed data, which indicates that 
the model has a better forecast performance and proves the effectiveness of the SMGformer model in improving 
the effective foresight period of the model.

Figures S3 and S4 in the supplementary materials show the two metrics, NSE and RMSE, respectively. It is 
evident that the evaluation performance of each model decreases from 1th step to 3th step, but the decrease of 
the SMGformer model is more moderate, which shows that in the 3th step, our proposed SMGformer model 
still has good data fitting ability. SMGformer has the smallest overall forecast error and the slightest decrease 
in accuracy as the prediction point moves back. Among them, the Transformer significantly decreases in the 
third step forecast process, which may be due to the high computational complexity and memory consumption 
of the Transformer model caused by its self-attention mechanism secondary calculation when processing long 
sequences, which may limit the model’s multi-step forecast ability63. In addition, the dynamic decoding process 
of the Transformer results in slow inference speed when inferring long sequence outputs, which may also affect 
multi-step forecast accuracy64.

Fig. 13.  Forecast results of various models at Chashang station.
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Discussion
Improvement of the model input end
To further validate the effectiveness of the “sequence sequence” multi-feature input based on STL decomposition, 
we explain it from two perspectives: computational complexity and prediction accuracy. Taking single-step 
forecast as an example, an item-by-item sequence forecast model (STL-MGformer, STL-Informer) is constructed 
to test the effectiveness of the multi-feature sequence prediction model (SMGformer, SInformer) in improving 
the input end. Item-by-item sequence forecast is achieved by separately forecasting the trend sequence, periodic 
sequence, and residual sequence obtained from STL decomposition, and then superimposing the forecast results 
of each sequence to obtain the final prediction result. Table 8 shows the predictive evaluation indicators of the 
model, and Table 9 shows the running time of the model.

By comparing the performance of SMGformer and SInformer in Table 6 with the item-by-item sequence 
forecast models STL-MGformer and STL-Informer in Table 8 at two sites, respectively. It can be observed that 
compared to the STL-MGformer model, SMGformer has reduced MAE and RMSE at both stations, while 
NSE and KGE have improved. Similarly, compared to the STL-Informer model, SInformer showed improved 
performance at both sites. In addition, from Table 9, it can be seen that compared to the sequential forecast 
model, SMGformer and SInfomer have reduced their running time at Hongshanhe station by 64.9% and 60.3%, 
respectively, and at the Chashang station by 54.2% and 60.2%, respectively. These results demonstrate that 
compared to decomposing and forecasting item-by-item before stacking, the multi-feature input approach is 
more efficient for feature extraction of complex time series while improving prediction accuracy.

In summary, the “sequence-sequence” multi-feature input method based on STL decomposition significantly 
improves the prediction accuracy of the model and greatly reduces computational complexity by effectively 
integrating different feature information. These results indicate that using a “sequence-sequence” based multi-
feature input method can better integrate information from different features, capture the multidimensional 
characteristics of data, and enable SMGformer to predict complex time series data more efficiently and accurately.

Improvement of the model structure end
In the model structure of this study, we propose a new model structure MGformer to enhance the accuracy of 
runoff sequence forecast. The traditional Informer model is mainly based on one-way information flow, using 
only past data to predict future data, which means that it only considers information from past time points 
during the encoding stage. To overcome this limitation, we concatenate the Informer’s Encoder layer with the 
BiGRU model, enabling the model to simultaneously capture the before and after dependencies in the sequence. 
In addition, to further emphasize the influence of key information, we use MHSA to optimize the output of 
BiGRU, thereby achieving more accurate forecasts.

Fig. 14.  Taylor plots of evaluation indicators for each model.
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By concatenating the Informer’s Encoder layer, BiGRU layer, and MHSA layer, the MGformer model 
significantly improves the accuracy of forecast. To verify the effectiveness of the MGformer model’s structural 
improvement, taking single-step forecast as an example, we design two new hybrid models: The Informer-
Transformer model and the Transformer-Informer model. Specifically, the Informer-Transformer model 
concatenates the Informer model with the Transformer model, while the Transformer-Informer model 
concatenates the Transformer model with the Informer model. The forecasted results of the model are shown 
in Table 10.

From Table 10, it can be seen that compared with the hybrid models Informer-Transformer and Transformer-
Informer, the MGformer model has multiple advantages. Firstly, MGformer combines the feature extraction 
capability of the Informer’s Encoder layer, the pre - and post-dependency capture capability of the BiGRU layer, 
and the key information attention of the MHSA. This design is more effective in capturing complex data features. 
The experimental results also confirmed the superiority of this structure. For example, at Hongshanhe station, the 
MAE and RMSE of MGformer are 0.134 and 0.200, respectively, significantly better than Informer-Transformer 
(0.221 and 0.324) and Transformer-Informer (0.211 and 0.289). At Chashang station, the MAE and RMSE of 
MGformer are 20.664 and 28.202, respectively, which are also better than Informer-Transformer (22.846 and 
33.322) and Transformer-Informer (23.719 and 34.766). The NSE and KGE of the MGformer models in the 
two experimental stations are also higher than those of the mixed model. These results indicate that although 
hybrid models can also capture more information, MGformer achieves higher prediction accuracy by designing 
a hierarchical structure that allows each component in the model to leverage its strengths.

In summary, compared to hybrid models, the MGformer model improves the internal structure of the model 
and fully utilizes the advantages of the Informer’s Encoder layer, BiGRU, and MHSA to achieve more accurate 
predictions.

Conclusion
This paper proposes a new model for monthly runoff forecasting called SMGformer. The model first uses STL 
to extract the raw runoff sequence’s trend, period, and residual features. Then, these features are combined with 

Fig. 15.  Violin plot of multi-step forecast results for the Hongshanhe station.
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Site Model Run time(s)

Hongshanhe

SMGformer 11.53

SInformer 13.82

STL-MGformer 32.87

STL-Informer 34.75

Chashang

SMGformer 18.18

SInformer 14.12

STL-MGformer 39.69

STL-Informer 35.46

Table 9.  Running time of the model.

 

Site Model MAE RMSE NSE KGE

Hongshanhe
STL-MGformer 0.127 0.181 0.969 0.972

STL-Informer 0.201 0.274 0.938 0.917

Chashang
STL-MGformer 16.370 24.175 0.743 0.813

STL-Informer 21.256 30.800 0.538 0.724

Table 8.  Results of predictive evaluation indicators for the model.

 

Fig. 16.  Violin plots of multi-step forecast results for the Chashang station.
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the raw runoff sequence to create a multi-feature input set. Next, the critical information of this feature set is 
captured using the Informer’s Encoder layer. Subsequently, the temporal dependence of the sequence data is 
captured through the bidirectional learning mechanism of the BiGRU layer, and the output of the BiGRU layer 
is optimized using the MHSA layer. Finally, the output of the MHSA layer is transformed into the final forecast 
result through the fully connected layer. The following conclusions are drawn in this paper:

(1) The STL decomposition technique is used to analyze the runoff sequence, aiming at reducing the non-
stationarity of the runoff series and extracting the trend, period, and residual features of the runoff sequence 
to construct a multi-feature input set based on the intrinsic features of the runoff sequence. This input method 
enhances the model’s potential to mine the inherent characteristics of runoff and more accurately captures 
the evolutionary characteristics of the runoff sequence, thereby providing strong technical support for runoff 
forecast and analysis.

(2) A proposed MGformer forecast model integrates three critical layers in tandem: the Informer’s Encoder 
layer, the BiGRU layer, and the MHSA layer. In this way, the advantages of each critical layer are integrated, 
the learning ability of the intrinsic characteristics of runoff is emphasized, the utilization rate of the model on 
runoff time-series characteristics is enhanced, the limitations of a single model in predicting strongly fluctuating 
runoff sequences are reduced, and the effective foresight period of the model is prolonged, to realize the efficient 
forecasting capability of the model.

(3) To verify the model’s capacity for generalization, data sets from two experimental stations are applied for 
experimental validation. The outcomes demonstrate the SMGformer’s superior performance. At the Hongshanhe 
station, the mean MAE of the 1th, 2th, and 3th steps is 0.12, and the mean RMSE is 0.18, which are significantly 
lower than the error outcomes of the comparison model, and the NSE and KGE of step 3 are as high as 0.967 
and 0.960, respectively. At the Chashang station, compared with the Informer deep learning model, the MAE 
and RMSE forecast results of the 1th, 2th, and 3th steps are reduced by 36.6% and 43.6%, 41.7% and 38.6%, 
and 44.7% and 39.0%, respectively. This outcome shows that the suggested SMGformer model can extend the 
effective foresight period of runoff forecasting.

(4) Although the proposed new SMGformer model provides a new perspective for runoff forecasting and 
related fields, there are still some limitations that need to be addressed in future research. For example, this 
study does not consider the impact of factors such as rainfall and evaporation on runoff forecast. In addition, 
the model is only validated based on data from two experimental stations, and future research should include 
more experimental stations under different geographical and climatic conditions to ensure the robustness and 
generality of the model. Finally, this study only applies the model to monthly runoff forecasting, and future 
research should attempt to extend it to handle different time scales, such as daily or seasonal forecasting. These 
improvements will help further extend the effective forecast period of runoff forecasting.

Data availability
The data are available from the corresponding author on reasonable request.
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