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Abstract
The growing use of artificial neural network (ANN) tools for computed tomography angiography (CTA) data analysis
underscores the necessity for elevated data protection measures. We aimed to establish an automated defacing
pipeline for CTA data. In this retrospective study, CTA data from multi-institutional cohorts were utilized to annotate
facemasks (n= 100) and train an ANN model, subsequently tested on an external institution’s dataset (n= 50) and
compared to a publicly available defacing algorithm. Face detection (MTCNN) and verification (FaceNet) networks
were applied to measure the similarity between the original and defaced CTA images. Dice similarity coefficient (DSC),
face detection probability, and face similarity measures were calculated to evaluate model performance. The CTA-
DEFACE model effectively segmented soft face tissue in CTA data achieving a DSC of 0.94 ± 0.02 (mean ± standard
deviation) on the test set. Our model was benchmarked against a publicly available defacing algorithm. After applying
face detection and verification networks, our model showed substantially reduced face detection probability
(p < 0.001) and similarity to the original CTA image (p < 0.001). The CTA-DEFACE model enabled robust and precise
defacing of CTA data. The trained network is publicly accessible at www.github.com/neuroAI-HD/CTA-DEFACE.

Relevance statement The ANN model CTA-DEFACE, developed for automatic defacing of CT angiography images,
achieves significantly lower face detection probabilities and greater dissimilarity from the original images compared to
a publicly available model. The algorithm has been externally validated and is publicly accessible.

Key Points
● The developed ANN model (CTA-DEFACE) automatically generates facemasks for CT angiography images.
● CTA-DEFACE offers superior deidentification capabilities compared to a publicly available model.
● By means of graphics processing unit optimization, our model ensures rapid processing of medical images.
● Our model underwent external validation, underscoring its reliability for real-world application.

Keywords Artificial intelligence, Computed tomography angiography, Data anonymization, Image processing
(computer-assisted), Neural network (computer)
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Graphical Abstract

• The developed ANN model 
(CTA-DEFACE) automatically 
generates facemasks for CT 
angiography images. 

• CTA-DEFACE offers superior 
deidentification capabilities 
compared to a publicly 
available model.

• By means of graphics 
processing unit optimization, 
our model ensures rapid 
processing of medical 
images.

• Our model underwent 
external validation, 
underscoring its reliability for 
real-world application.

CCTA-DEFACE enables robust and precise 
defacing of CTA images 

Deep learning-based defacing tool 
for CT angiography: CTA-DEFACE
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A case for defacing with our model (a) versus an open-source benchmark model (b).

Background
Computed tomography angiography (CTA) plays a crucial
role in evaluating patients with vascular malformations,
aneurysms, and tumors, and notably in diagnosing vessel
occlusion in acute ischemic stroke. Machine/deep learn-
ing technology is increasingly applied to CTA to assess
cervical artery anatomy [1] and stenosis [2], radiomics
signatures of carotid plaques [3] and to develop auto-
mated tools for detecting vessel occlusions [4–7]. This last
task often relies on large datasets acquired through data-
sharing initiatives. Additionally, the clinical use of such
tools may necessitate the sharing of patient images,
emphasizing the need for robust data protection
protocols.
A critical aspect of deidentifying medical images is the

removal or distortion of identifiable facial features [8–10].
While numerous defacing tools are available for magnetic
resonance imaging [11–13], they are less available for
computed tomography (CT) or positron emission tomo-
graphy [14–16].
We developed a neural network-based approach for

defacing CTA images (CTA-DEFACE), based on the nnU-
Net framework [17] and compared our CTA-DEFACE
model against the publicly available facemask generator
function from the ICHSEG library [18].

Methods
Dataset
This retrospective multicenter study was approved by the
local ethics committee. CTA data from two cohorts for
model training and a third distinct cohort for testing was
used. Fifty patients previously treated at Heidelberg Uni-
versity Hospital (cohort 1) and 50 patients from three
primary/secondary care hospitals of the regional stroke
consortium Rhein-Neckar with acute teleneurology/tele-
radiology coverage through the Heidelberg University
Hospital (cohort 2), were used for model training. These
patients were diagnosed with acute ischemic stroke and
CTA-confirmed vessel occlusion. Testing involved 50
patients who underwent CTA for suspected acute
ischemic stroke at Bonn University Hospital’s Department
of Neuroradiology (cohort 3).
Cohorts 1 and 2 were partitioned equally for a balanced

representation of each cohort in both training processes.
Scanner and acquisition parameters are depicted in Sup-
plementary Table 1, and patient demographics are in
Supplementary Tables 2 and 3.

Study design
Figure 1 shows the flowchart of model training and test-
ing. The state-of-the-art nnU-Net was used for training,
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automatically configuring hyperparameters based on the
dataset characteristics [17]. The model was trained on
NVIDIA DGX A100 (NVIDIA, Santa Clara, CA, USA)
using 2 A100-SXM4 graphics processing units (GPUs) of
40GB each with AMD EPYC 7742 64-Core Processor and
1 TB RAM. The inference runtimes for predictions were
measured on a local workstation with an Intel Xeon E5/
Core i7 3.1 GHz CPU and NVIDIA TITAN RTX GPU.

Model development
To train the CTA-DEFACE model, the entire training
dataset (n= 100) was divided into two equal and disjoint
sets from both HD and FAST cohorts (n= 50 each). Face
mask generation for CTA data was done in Slicer 3D
(version 5.4.0), annotating soft face tissue from forehead
to chin, including the nose, lips, and masseter muscles. An
initial nnU-Net was trained on 20% of the training set (ten
patients each from cohorts 1 and 2). Subsequently, this

model predicted facemasks from the remaining 80% of the
training set and the complete test set. These predictions
were manually refined to generate ground truth face-
masks. The final nnU-Net training was done using the
entire CTA dataset (n= 100). The resulting predicted
facemasks on the external test set (cohort 3), were com-
pared with the ground truth.

Face detection, recognition, and validation
To validate our model, we utilized the publicly available
CT defacing tool “ct_face_mask” from the “ICHSEG”
package in R [18] for comparative analysis. Predicted
facemasks from ICHSEG and our model on the test set
were replaced with the 10th percentile value of the ori-
ginal image to represent void space. The processing time
for face segmentation was measured for both methods.
CTA images from the test set were visualized in Slicer

3D (version 5.4.0) with “CT-Muscle” preset. Rendered

Fig. 1 Flowchart of the procedures for CTA-DEFACE and model training and external testing
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images were captured from an anterior viewpoint for the
original image and the defaced versions with ICHSEG and
CTA-DEFACE. Examples of each algorithm are illustrated
in Supplementary Fig. 1.
Unlike classical segmentation tasks, defacing algorithms

cannot be compared with traditional metrics like dice
similarity coefficient (DSC) due to the lack of actual
ground truth. Therefore, to compare ICHSEG and CTA-
DEFACE, we employed two neural networks from pre-
vious studies [16, 19]. Face detection in rendered images
was conducted using a multitask cascaded convolutional
neural network (MTCNN) [20], which integrates three
convolutional neural network structures for face recog-
nition, bounding box regression, and facial landmark
localization. Further validation involved quantifying the
face identifiability of CTA images before and after defa-
cing. If a face was detected by MTCNN, FaceNet [21] was
used to extract the face embedding vector to verify whe-
ther the face matched the rendered original image. Face
embedding vectors were calculated by FaceNet on the
rendered original CTA image and after defacing with
ICHSEG and CTA-DEFACE models. We calculated the
Euclidean distance, a measure of similarity, between the
embeddings of the original CTA image and the images
produced by two defacing strategies (less distance repre-
senting a greater similarity).

Statistical analysis
Statistical analyses were performed using Python (version
3.8.13) and R (version 4.0.5). The performance of each
model was assessed on the cohort 3 test set. Face detec-
tion probabilities, calculated on the captions of rendered
images, underwent analysis using a nonparametric
Friedman rank sum test with a post-hoc pairwise

Wilcoxon signed-rang exact test with Bonferroni correc-
tion. Euclidian distance for face embedding vectors was
computed to examine similarities. Paired t-tests compared
the defacing algorithms. If normal distributions were met,
descriptive statistics were provided in terms of mean and
standard deviation.

Results
CTA-DEFACE model characteristics
The facemask generated by CTA-DEFACE covers soft
tissue and skin from the forehead (above the frontal sinus)
to the chin (at the level of hyoid bone), which includes soft
tissue around the eyes, nose, masseter muscles, and lips.
In cases where external devices are present, such as pro-
tective glass or an intubation tube, they are also depicted
by the segmentation mask. In contrast, the ICHSEG
library’s “ct_face_mask” function predicts a rectangular
prism covering the mouth and nose (Fig. 2).

Segmentation and face recognition metrics
The CTA-DEFACE model achieved a DSC of 0.94 ± 0.02
(mean ± standard deviation) on ground truth facemasks.
For each test case, the average face segmentation time was
0.2 ± 0.1 min (mean ± standard deviation) with the CTA-
DEFACE model and 36.3 ± 9.2 min with ICHSEG.
Faces were detected by the MTCNN network on 42/50

(84%, 95% confidence interval: 71–93%) of original images
without defacing, 37/50 (74%, 95% confidence interval:
60–85%) of images defaced with ICHSEG, and 31/50
(62%, 95% confidence interval: 47–75%) of images defaced
with CTA-DEFACE (Fig. 3).
Face embedding vectors after defacing with our model

showed a significantly increased distance from the original
image (Fig. 4).

Fig. 2 An illustrative case from the test set for CTA-DEFACE (a) and the “ct_face_mask” function from the ICHSEG library (b). Illustrations are rendered
images of CT volumes in Slicer 3D software with the “CT-Muscle” preset. Left: predicted segmentation masks. Right: volume rendering after subtracting
the facemask and replacing it with the 10th percentile of the HU value of the image to represent empty air. Eyes are blurred for anonymization purposes
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Discussion
Reidentification of individuals in brain imaging is highly
accurate using face-recognition software [8–10], posing
challenges for head CT data in both research and clinical
applications. We developed a defacing model (CTA-
DEFACE) for CTA data, based on the state-of-the-art seg-
mentation algorithm nnU-Net [17], which automatically
generates an anatomical facemask from the forehead to the

chin covering the facial soft tissue. We compared our model
to a publicly available defacing function “ct_face_mask” from
the ICHSEG library [18], which uses a rectangular prism to
cover the mouth and nose. The CTA-DEFACE model
resulted in significantly lower face detection probabilities
and higher dissimilarity to the original image compared to
ICHSEG. Furthermore, our model deidentified patient faces
faster by leveraging GPU parallel computation.

Fig. 3 Face detection probabilities by multitask cascaded convolutional neural network (MTCNN) on the rendered CTA images are illustrated in boxplots
for the original CTA volume image (left), defaced image with ICHSEG (center) and defaced image with CTA-DEFACE (right). Undetected faces were
excluded. The number of detected faces is indicated next to each method (on the right). Nonparametric Friedman rank sum test with post-hoc pairwise
comparison using Wilcoxon signed rand exact were calculated. CTA, Computed tomography angiography, *p= 0.04, ***p < 0.001, ****p < 0.0001

Fig. 4 Euclidian distance of face embedding vectors between the original CTA images and defaced images (ICHSEG versus CTA-DEFACE) are shown as
boxplots. Lower values indicate greater similarity to the original image. The paired t-test p-value between groups is displayed in the top left. CTA,
Computed tomography angiography
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The performance of defacing algorithms is difficult to
compare with traditional metrics such as DSC since an
actual ground truth does not exist. Recent algorithms
for CT data have already adopted an “anatomical”
approach by segmenting facial soft tissue [14], but
comparing the correctness of these segmentations of
those algorithms is not meaningful. We chose ICHSEG
for comparison due to its different defacing strategy
[18]. When segmentation masks were replaced by void
space, our model revealed significantly lower face
detection probabilities and higher dissimilarity to the
original image, suggesting that removing more anato-
mical facial features than only mouth and nose is
necessary for robust de-identification.
The application of machine learning models in the

medical field, particularly for the head and neck, remains
limited. Examples include automated detection of brain
hemorrhage [22, 23] and intracranial thrombus in vessels
[22–25]. Similar limitations affect defacing tools, as the
inclusion of facial features depends on various technical
factors such as: (i) scanned area, (ii) slice thickness, (iii)
presence of foreign materials like eye protection, (iv)
motion artifacts, (v) beam-hardening, and (vi) patient
positioning. These factors need to be addressed when
applying automated defacing tools.
With respect to data protection regulations, the inte-

gration of automated defacing tools into workflows or
preprocessing pipelines of commercially available stroke
detection programs should consider the fact that defacing
medical images removes a substantial portion of facial tis-
sue, altering image characteristics (Supplementary Fig. 2).
Therefore, to integrate the CTA-DEFACE model or other
defacing protocols into automated stroke detection pipe-
lines, it may be necessary to either retrain the stroke
detection models on defaced volumes or perform defacing
in the postprocessing.
This study has limitations. First, the number of patients

is limited, albeit from different cohorts. The effective
de-identification capability of CTA-DEFACE was
demonstrated on an external dataset obtained from a
different CT vendor. However, a larger dataset is neces-
sary to further evaluate the reproducibility of our results.
Second, only CTA data was addressed. Future studies
should validate our model including unenhanced and
other contrast-enhanced head/neck CT protocols.
In conclusion, our results show that the CTA-DEFACE

model effectively segments and removes facial soft tissue
from CTA images faster than a publicly available CT
defacing method, resulting in significantly lower face
detection probabilities and higher dissimilarity to the
original image. Future research should evaluate the
potential of training algorithms (e.g., stroke algorithms)
on defaced data.

Abbreviations
ANN Artificial neural network
CT Computed tomography
CTA Computed tomography angiography
DSC Dice similarity coefficient
GPU Graphics processing unit
MTCNN Multitask convolutional neural network

Supplementary information
The online version contains supplementary material available at https://doi.
org/10.1186/s41747-024-00510-9.

Additional file 1: Supplementary Table 1: Computed tomography
angiography imaging features are depicted. Supplementary Table 2:
Patient demographics in Cohort 1, 2 and 3 for CTA-DEFACE model training
and testing. Pearson’s chi-squared test was used for comparing categorical
variables and Kruskal Wallis test was used for comparing continuous
variables between the training and test set. Supplementary Table 3:
Patient demographics in Cohort 1, 2 and 3 for CTA-BET model training and
testing. Pearson’s chi-squared test was used for comparing categorical
variables and Kruskal Wallis test was used for comparing continuous
variables between the training and test set. Supplementary Fig. 1:
Representative cases for face detection are illustrated for rendered CTA images
(from top to bottom: original CTA image, ICHSEG defacing, CTA-DEFACE
defacing). The anterior point-of-view for image acquisition was maintained in
each image, without considering head rotations. The probabilities of face
detection by multitask cascaded convolutional neural network (MTCNN) are
provided below the images, with “N/A” indicating that no face was detected.
Eyes are blurred for anonymization purposes. Supplementary Fig. 2: Two cases
demonstrating false-positive predictions by the automated vessel occlusion
network (referred to as VO-ANN in this study) are displayed. In these cases, VO-
ANN generated a bounding box (depicted in green) indicating a left internal
carotid artery (ICA) occlusion. Both cases underwent visual examination by a
radiologist with 5 years of experience. In the first case, the bounding box
captured the low-contrast enhancement of the left internal jugular vein (IJV), with
no occlusion observed in the left internal (ICA) or external carotid artery (ECA). In
the second case, the bounding box depicted an area with calcified carotid
plaque (no occlusion, no high-grade stenosis). These false-positive predictions
were not observed after defacing with our CTA-DEFACE model, while
reappearing after defacing with the ICHSEG model.
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