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Development and validation of a multimodal
deep learning framework for vascular
cognitive impairment diagnosis

Fan Fan,1,5 Hao Song,1,5 Jiu Jiang,2 Haoying He,1 Dong Sun,1 Zhipeng Xu,1 Sisi Peng,1 Ran Zhang,1 Tian Li,1

Jing Cao,1 Juan Xu,1 Xiaoxiang Peng,3 Ming Lei,4 Chu He,2,* and Junjian Zhang1,6,*
SUMMARY

Cerebrovascular disease (CVD) is the second leading cause of dementia worldwide. The accurate detec-
tion of vascular cognitive impairment (VCI) in CVDpatients remains an unresolved challenge.We collected
the clinical non-imaging data and neuroimaging data from 307 subjects with CVD. Using these data, we
developed a multimodal deep learning framework that combined the vision transformer and extreme
gradient boosting algorithms. The final hybrid model within the framework included only two neuroimag-
ing features and six clinical features, demonstrating robust performance across both internal and external
datasets. Furthermore, the diagnostic performance of our model on a specific dataset was demonstrated
to be comparable to that of expert clinicians. Notably, ourmodel can identify the brain regions and clinical
features that significantly contribute to the VCI diagnosis, thereby enhancing transparency and interpret-
ability.Wedeveloped an accurate and explainable clinical decision support tool to identify the presence of
VCI in patients with CVD.

INTRODUCTION

Vascular cognitive impairment (VCI) is a recognized disease entity that encompasses a varying severity of cognitive impairments predomi-

nantly caused by cerebrovascular pathologies, spanning from mild cognitive impairment (MCI) to dementia.1 Epidemiological findings indi-

cate that vascular dementia (VD) constitutes approximately 15%–30% of dementia cases, ranking second only to Alzheimer’s disease (AD).2 In

China, MCI associated with vascular factors prevails, constituting around 42% of all MCI cases.3 With growing evidence suggesting a critical

role for vascular interventions in dementia management,4 early and accurate VCI diagnosis becomes imperative for crafting prevention and

therapeutic strategies in cerebrovascular disease (CVD).

Diagnosing VCI is complex, hinging on the outcomes of clinical evaluation, structural magnetic resonance imaging (sMRI), and neuropsy-

chological tests.5 Nevertheless, achieving an accurate diagnosis of VCI based on these assessments remains challenging even for experi-

enced neurologists. Currently, due to the lack of reliable VCI biomarkers, clinical evaluation typically necessitates a comprehensive medical

history, neurological physical examination, and laboratory tests, further complicating clinical diagnosis. Additionally, sMRI plays a pivotal role

in the VCI diagnosis. However, the relationship between neuroimaging markers of vascular brain injury, such as white matter hyperintensity

(WMH), infarcts, and enlarged perivascular spaces (EPVSs), and the cognitive decline remains not entirely elucidated.6 Besides, such MRI-

visible lesions exclusively reflect the late and irreversible stages of cerebrovascular pathology. The neuropsychological tests of VCI patients

content typically encompass both global and five domain-specific cognitive functions,1 the complexity of which demands specially trained

professionals. However, due to the unequal distribution of health resources, primary care institutions and economically underdeveloped

areas often lack such professionals.7 Moreover, subjective bias on the part of assessors can substantially impact the outcomes of neuropsy-

chological assessments.8 Hence, an efficient and easily generalizable model is crucial for the assessment of cognitive impairment in patients

with CVD.

Artificial intelligence (AI) technology can develop disease-related assessment models by analyzing interactions and complex associations

within large datasets.9 It has shown significant potential in dementia-related classification tasks, enhancing the accuracy and efficiency of de-

mentia diagnosis and providing reliable support for clinical neurologists.10,11 Currently, most research has concentrated on employing ma-

chine learning (ML) approaches to distinguish between individuals with normal cognition and AD patients (including those with MCI and
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dementia), due to its prevalence in dementia diagnosis.12–14 However, its utilization in the realm of VCI research is still limited. Given the

significance of neuroimaging in the VCI diagnosis, certain recent studies have used conventional ML methods with neuroimaging data to di-

agnose VCI.15–17 For instance, one of the studies developed a support vector machine (SVM) model leveraging the sMRI and quantitative

electroencephalography features of subjects to discriminate VCI with no dementia from normal controls, achieving a classification accuracy

with an area under the receiver operating characteristic curves (AUC) of 0.72. Notably, feature extraction of images and classifier construction

are two separate steps in conventional ML,18,19 demanding considerable time andworkforce. Deep learning (DL) is a branch of ML that unifies

feature extraction and classifier construction, enabling the automatic acquisition of high-throughput image features in a task-orientedmanner

without requiring experts to participate in the process.20 With the swift advancement of DL techniques, the transformer algorithm, proposed

in recent years, has also gained widespread application in image-related tasks. In comparison to convolutional neural network, a DL method

commonly used in computer vision tasks, the self-attentionmechanism in transformer possesses the advantage of efficiently capturing global

information of the input image.21 Several recent studies have shown that transformer has exhibited exceptional performance in neuroimag-

ing-based AD classification tasks.22,23 However, there is currently a lack of research on applying the transformer algorithm to the diagnosis

of VCI.

Recent advancements indicated that incorporating multimodal data into DL models can enhance the performance of dementia diag-

nosis.14,24 Furthermore, a study using an unsupervised ML method for predicting subcortical vascular cognitive impairment (SVCI) demon-

strated that the model achieved optimal performance when combining diffusion-weighted imaging (DTI) and resting-state functional MRI

(rs-fMRI) data.25 However, an efficient model developed utilizing routine assessment data collected during CVD patient visits is still lacking.

Hence, we developed a multimodal DL framework based on the T1-weighted MRI, T2-fluid-attenuated inversion recovery (FLAIR) MRI, and

routine clinical assessment data. Our strategy offers evidence that an automated AI-based method could function as a clinical tool for the

accurate diagnosis of VCI.

RESULTS
Demographics

To build the multimodal DL framework, we recruited a total of 307 subjects, of which 40.1% were female and the median age was 61 [56–67]

years. To further validate the model performance, additional 157 patients were recruited as an external dataset, with females accounting for

41.4% and the median age of 67 [62–70] years. Moreover, to facilitate group analysis, we defined the subjects with VCI as the VCI group, and

the CVD patients with normal cognition as the CVD-NCgroup. Detailed demographic information of the VCI and CVD-NCgroups is shown in

Table 1. In both datasets, compared to the CVD-NC group, the VCI group had higher age and lower education years, Mini-Mental State Ex-

amination (MMSE) scores, and Montreal Cognitive Assessment (MOCA) scores, with statistically significant differences. There were no signif-

icant differences in sex and body mass index between the two groups.

Performance of the multimodal DL model

Three separate models were employed for diagnosing VCI, including the sMRI-only model, clinical non-imaging model, and hybrid model.

The sMRI-only model, constructed based on the vision transformer (ViT) network, demonstrated robust performance in diagnosing VCI

(Table S1). Interestingly, we observed that the model performed better when T1 images were used as input compared to T2-FLAIR images

(Figures 1A and 1B), with the AUCs of 0.905 [0.834–0.963] and 0.861 [0.769–0.938], respectively. Similarly, the area under the precision-recall

curve (AP) exhibited comparable values, with 0.901 [0.819–0.969] and 0.828 [0.708–0.940], respectively.

In the clinical non-imagingmodel, we utilized fiveML algorithms: extremegradient boosting (XGBoost), logistic regression (LR),multi-layer

perceptron (MLP), SVM, and random forest (RF). The AUCs andAPs of these fivemodels trained for the task of diagnosing VCI were as follows:

0.927 [0.874–0.974]/0.936 [0.886–0.976], 0.880 [0.808–0.940]/0.900 [0.829–0.953], 0.891 [0.821–0.953]/0.899 [0.821–0.963], 0.850 [0.768–0.921]/

0.881 [0.806–0.942], and 0.865 [0.780–0.941]/0.859 [0.763–0.948]. XGBoost demonstrated superior performance, prompting us to select it for

constructing the hybrid model. Figures 1C and 1D show the receiver operating characteristic (ROC) and precision-recall (PR) curves of the five

ML models, and all performance metrics of these five models are provided in Figure S1.

The final hybrid model was constructed by combining the ViT and XGBoost models. The ROC curve and PR curve are shown in Figures 1E

and 1F, and all performance metrics are provided in Table S1. We found that when fusing the T1 image features with clinical features and

inputting them to the XGBoost model, it showed superior performance in diagnosing VCI compared to the sMRI-only model with input of

the T1 image and the clinical non-imaging model. The AUC and AP were 0.965 [0.923–0.993] and 0.972 [0.940–0.994], respectively. Further-

more, when fusing the T2-FLAIR image features and clinical features simultaneously, the model still demonstrated excellent diagnostic per-

formance, with the AUC and AP of 0.953 [0.903–0.992] and 0.964 [0.926–0.992], respectively. Notably, the fusion of T1, T2-FLAIR, and clinical

features showed the best model performance, with the AUC and AP reaching 0.972 [0.934–0.997]/0.979 [0.951–0.997].

Utilizing Shapley additive explanations (SHAP) analysis, we ranked all imaging and non-imaging features in descending order of their

contribution to the VCI diagnosis (Figure S2). Consecutive models were then constructed by gradually increasing the number of features

based on the order of feature ranking. Figure 2A shows the trends of AUC and AP values for the consecutive models. It can be observed

that the model performance increased steeply when the first several features were sequentially added and gradually stabilized with slight

fluctuations when more features were added subsequently. Ultimately, we selected the top eight features as the inputs for constructing

the hybrid model. As shown in Figure 2B, all performance metrics of the final model achieved a comparable level to the hybrid model

with all input features, where the AUC and AP were 0.964 [0.920–0.998] and 0.963 [0.920–0.997], respectively.
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Table 1. Demographic information

Characteristics

Model construction dataset External validation dataset

VCI group (n = 154) NC group (n = 153) p value VCI group (n = 74) NC group (n = 83) p value

Age (years) 64 [58–68] 59 [55–63.5] <0.001 68.5 [66–71] 63 [60–69] <0.001

Female, n (%) 58 (37.7%) 65 (42.5%) 0.389 30 (40.5%) 35 (42.2%) 0.837

Education (years) 9 [7–10] 12 [10–14] <0.001 10 [9–12] 12 [10–14] <0.001

BMI (kg/m2) 23.92 G 2.67 24.07 G 2.63 0.626 24.94 G 2.84 25.61 G 2.90 0.147

MOCA (scores) 18 [13–20.25] 26 [24–27] <0.001 22 [20–23] 25 [24–27] <0.001

MMSE (scores) 25 [20–27] 29 [28–30] <0.001 26 [25–28] 28 [27–29] <0.001

Note: Continuous variables were expressed as mean G standard deviation or median (interquartile range) and compared using independent-sample t test or

Mann-Whitney U test between two groups. Categorical variables were expressed as counts (%), and chi-squared test was used for frequency comparison between

two groups.

Abbreviations: VCI, vascular cognitive impairment; NC, cerebrovascular disease with normal cognition; BMI, body mass index; MOCA, Montreal Cognitive

Assessment; MMSE, Mini-Mental State Examination.

ll
OPEN ACCESS

iScience
Article
Interpretability of the multimodal DL model

Our developed model possesses the capability to automatically identify the important brain regions associated with VCI from whole-brain

sMRI and visualized them to generate class activation maps (CAMs). In Figure 3, we presented themean CAMs generated by the ViT network

constructed for the VCI diagnosis, which were displayed in two-dimensional form from three different perspectives (i.e., coronal, axial, and

sagittal planes). Notably, it was observed that the highlighted brain regions in CAMs generated based on T1 image features were not iden-

tical to those generated based on T2-FLAIR image features. Furthermore, we quantified the contribution of T1 and T2-FLAIR image features

to the VCI diagnosis within each brain region as two sets of importance scores. The top 10 anatomical regions with the highest contribution of

T1 and T2-FLAIR image features to the VCI diagnosis were listed in Figures 4A and 4B, respectively, accounting more than 40% of the total

importance score of all brain regions. Specifically, these regions comprise cerebellar vermis, bilateral cerebellar hemispheres, bilateral ante-

rior cingulate gyrus, bilateral orbital frontal lobe, right superior parietal gyrus, and right amygdala. The importance scores of 116 anatomical

regions in AAL atlas were listed in Table S2. Additionally, although themodel identified the important brain regions associated with VCI, they

were not entirely identical across different subjects. The CAMs of partial VCI subjects are shown in Figure S3.

To provide an interpretable diagnostic model for clinical neurologists, we utilized the SHAP method to explain the output of the hybrid

model after feature reduction by calculating the contribution of each feature to the VCI diagnosis. As shown in Figure 5, the contribution of

sMRI-derived features and various non-imaging features to the final hybridmodelwas evaluated utilizing the averageSHAP values in descend-

ing order. It was found thatMRI diagnosticmodel (MRDM)-T1 score,MRDM-T2 score, and useof antiplatelet drugswere the threemost impor-

tant features for diagnosing VCI, followed by education years, carotid artery stenosis, leukocyte counts, age, and diastolic blood pressure.

Furthermore, to explore the relationship between the sMRI-derived features generated by the ViT model and the neuroimaging markers

potentially associated with VCI, we analyzed the association between MRDM scores and the neuroimaging markers of small vessel disease

(SVD) using the spearman rank correlation test. As shown in Figure S4, both MRDM-T1 and MRDM-T2 scores have positive correlations with

Fazekas scores, number of lacunes, basal ganglia (BG)-EPVS scores, and centrum semiovale (CSO)-EPVS scores. Among them, Fazekas scores

exhibited the strongest correlations with MRDM-T1 (r = 0.564, p < 0.001) and MRDM-T2 scores (r = 0.584, p < 0.001), while CSO-EPVS scores

showed weak correlations with them (r = 0.382, p < 0.001; r = 0.308, p < 0.001).
External validation of the final hybrid model

To validate the performance of the final hybrid model after feature reduction, 157 subjects were recruited as an external dataset. For external

validation, the final model demonstrated an AUC and AP of 0.902 [0.859–0.941] and 0.900 [0.848–0.943], respectively, which were marginally

below those observed in the internal dataset. However, this discrepancy did not reach statistical significance (DAUC = 0.061, p = 0.074), indi-

cating that the final hybrid model performed excellently in both internal and external validations.
Diagnostic performance of the model and clinicians

To assess whether the performance of our models can be on par with the diagnostic performance of expert clinicians for VCI, we normalized

the clinicians’ average confidence scores for randomly selected cases from an external dataset to a scale of 0–1, aligning themwith themodel-

predicted probabilities. Based on this, we calculated the performance metrics for clinicians diagnosing VCI. As shown in Figures 6A and 6B,

the performance of the hybrid model was slightly higher than that of the neurologists (AUC: 0.893 [0.812–0.960] vs. 0.845 [0.750–0.921],

p = 0.437; AP: 0.891 [0.801–0.959] vs. 0.762 [0.624–0.898]). Similarly, the diagnostic performance of the sMRI-only model using T1/T2-FLAIR

inputs was higher than that of the radiologists (AUC: 0.841 [0.738–0.926]/0.843 [0.749–0.930] vs. 0.757 [0.642–0.854], p = 0.252/0.186;

AP: 0.774 [0.620–0.914]/0.773 [0.636–0.921] vs. 0.699 [0.544–0.839]) (Figures 6C and 6D). These results indicate that ourmodel at leastmatched
iScience 27, 110945, October 18, 2024 3



Figure 1. Performance of the multimodal deep learning model

(A and B) The ROC and PR curves of the sMRI-only model. The AUC values and AP values were utilized to evaluate the performance of the sMRI-only model with

the T1 and T2-FLAIR images as inputs.

(C and D) The ROC and PR curves of the clinical non-imaging model. To determine the optimal clinical non-imaging model, the AUC and AP values of five

machine learning models were compared.

(E and F) The ROC and PR curves of the hybrid model. Different combinations of sMRI-derived features and clinical variables were input into the XGBoost model,

andmodel performance was evaluated by calculating AUC and AP values. sMRI, structural magnetic resonance imaging; AUC, area under the receiver operating

characteristic curve; AP, area under the precision-recall curve; XGB, extreme gradient boosting; LR, logistic regression; MLP, multi-layer perceptron; SVM,

support vector machine; RF, random forest; ROC, receiver operating characteristic; PR, precision-recall; FLAIR, fluid-attenuated inversion recovery; VCI,

vascular cognitive impairment.

ll
OPEN ACCESS

iScience
Article
the diagnostic ability of the clinicians. Additionally, we assessed the inter-rater agreement among the clinicians’ confidence scores (Figure S5).

We found strong consistency among the neurologists’ assessments (r = 0.69G 0.02), whereas only moderate consistency was found among

the radiologists (r = 0.55 G 0.05). This suggests that clinicians’ diagnoses vary more when less clinical information is available.

DISCUSSION

In this study, we developed a hybrid model based on multimodal inputs, building upon a sMRI-only model and a clinical non-imaging model.

After feature reduction based on feature importance ranking, the final hybrid model inputted only two sMRI-derived features and eight non-

imaging features, showing excellent performance in the VCI diagnosis across both internal and external datasets. To augment the interpret-

ability of the models, we identified the brain regions and clinical variables that contribute most to the VCI diagnosis. Moreover, in a randomly

selected subset of cases, the diagnostic performance of our models is on par with that of expert clinicians.
4 iScience 27, 110945, October 18, 2024



Figure 2. Feature reduction of the hybrid model

(A) The AUC and AP values of the XGBoost model with various numbers of features. According to the contribution of each feature to the VCI diagnosis in

descending order, sequential forward selection was performed from 33 pre-selected features.

(B) Accuracy, sensitivity, specificity, F1-score, AUC, and AP of the hybrid model with 8 features and 33 features. AUC, area under the receiver operating

characteristic curve; AP, area under the precision-recall curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; XGBoost, extreme gradient boosting; VCI,

vascular cognitive impairment.
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Neuroimaging is now an indispensable aspect of VCI clinical assessment, particularly with various advancedMRI sequences such as DTI, rs-

fMRI, and perfusion-weighted imaging.26 However, the expensive and time-consuming advanced MRI scanning significantly increases the

financial burden on patients, making it challenging to promote their use in medical institutions at all levels. Therefore, our model only utilized

sMRI data, aiming to substantially reduce MRI examination time and alleviate the stress on patients caused by prolonged examinations. Pre-

vious studies usually inputted only sMRI T1 images to AD diagnostic models.13,27 This might be attributed to the consideration of hippocam-

pal and temporal lobe atrophy as imaging markers of AD, with these features being more easily identifiable in T1 imaging.28 However,
Figure 3. Average CAM generated on test subjects by ViT

CAMs generated by the ViT model on colin27 average brain template consistently highlighted high-risk brain regions associated with VCI, when T1 and T2-FLAIR

images were input to the model, respectively. The color red indicates a higher contribution of the highlighted brain regions to the diagnosis of VCI, whereas the

color blue indicates a comparatively lower contribution to the VCI diagnosis. CAM, class activation map; ViT, vision transformer; VCI, vascular cognitive

impairment; FLAIR, fluid-attenuated inversion recovery.

iScience 27, 110945, October 18, 2024 5



Figure 4. Top 10 anatomical brain regions ranked by their contribution to the VCI diagnosis

The contribution of T1 (A) and T2-FLAIR (B) image features to the VCI diagnosis within each brain region was quantified by calculating the importance scores,

respectively. The top 10 brain regions collectively represented more than 40% of the total importance score of all brain regions. VCI, vascular cognitive

impairment; FLAIR, fluid-attenuated inversion recovery.

ll
OPEN ACCESS

iScience
Article
neuroimaging features related to VCI, such as WMH, were more easily identifiable in T2-FLAIR imaging.29 Therefore, we incorporated both

the T1 and T2-FLAIR sequence data in this model, aiming to extract comprehensive high-level image features through DL networks, thereby

achieving higher diagnostic accuracy. This study employed the ViT algorithm to construct a DL model based on image data, which could

effectively isolate VCI in CVD patients, suggesting that ViT may have advantages in image-based VCI classification task. VCI is a highly het-

erogeneous syndrome, characterized by various neuroimaging features in its sMRI. These features potentially present in any region of the

brain, emphasizing the significance of considering the interrelationships among different brain regions in neuroimaging. ViT can utilize

the self-attention mechanism to capture long-range spatial dependencies in the images,30 thus effectively extracting the image features

related to VCI. Furthermore, considering that sMRI data consist of many slices with continuous spatial positional relationships, we used

3D images as the input to the ViT network instead of 2D images, a choice that has been proven to be effective in previous studies.31

Due to the diverse and complex pathophysiology and influencing factors of VCI,4 a combination of imaging and other clinical variables

(e.g., age, vascular risk factors, etc.) is required to enhance the diagnostic accuracy of VCI. Therefore, our hybrid model, which combined

sMRI data with clinical non-imaging data, demonstrated higher classification accuracy in diagnostic task compared to the sMRI-only model.

Nevertheless, in contrast to several dementia diagnostic models using complex and subjective neuropsychological tests or expensive whole-

genome sequencing,24,32 our multimodal VCI diagnostic model relied exclusively on routine clinical variables collected during CVD patient

visits; these variables can be collected through rapid questionnaires, physical measures, and simple blood tests. Moreover, in the absence of

established guidelines or consensus on feature selection for the VCI diagnostic model, determining the optimal number of features is chal-

lenging. Although more features may provide comprehensive information for the classification model, an excessive inclusion may compro-

mise themodel’s clinical applicability, and non-causal associations between features and outcomesmay reduce the diagnostic accuracy.33 To
Figure 5. Final model explanation by the SHAP method

SHAP analysis was utilized to rank the contribution of eight imaging and non-imaging features in the final hybrid model to the diagnosis of VCI. The left plot

demonstrates the mean absolute SHAP values, and the right plot illustrates the distribution of SHAP values. All features are sorted in descending order of

the mean absolute SHAP values. SHAP, Shapley additive explanations; VCI, vascular cognitive impairment.
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Figure 6. Diagnostic performance of clinicians and models

Six neurologists and five radiologists performed clinical assessments of 80 randomly selected cases, providing confidence scores (0–100) for each case, where

higher scores indicated a greater probability of the VCI diagnosis. The confidence scores from neurologists and radiologists were averaged separately to

produce a single consensus confidence score for each case. By averaging the confidence scores, we calculated the diagnostic performance of the average

neurologist and radiologist.

(A and B) The ROC and PR curves for the average neurologist and the hybrid model.

(C and D) The ROC and PR curves for the average radiologist and the sMRI-only model. The AUC and AP values were utilized to compare the diagnostic

performance of the average neurologist with the hybrid model and the average radiologist with the sMRI-only model, respectively. AUC, area under the

receiver operating characteristic curve; AP, area under the precision-recall curve; sMRI, structural magnetic resonance imaging; VCI, vascular cognitive

impairment; ROC, receiver operating characteristic; PR, precision-recall.
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address these limitations, the least absolute shrinkage and selection operator and SHAP methods were utilized to assist feature reduction.

Our final model only included eight features, performedwell both in internal and external validation, andmight be easily generalized tomed-

ical institutions at all levels.

The ML approach was usually characterized as a ‘‘black box,’’ lacking the ability to provide direct explanations for the outputs of the

models.34 Such lack of transparencymay foster uncertainty and doubt among clinicians about the reliability of model outcomes, consequently

impacting clinical decision-making processes. In this study, the gradient-weighted CAM and SHAP methods were employed to interpret the

sMRI-only model and the final hybrid model, respectively.

Our study explained the validity of DL models by highlighting the brain regions related to the VCI diagnosis by leveraging CAMs, offering

potential evidence for the underlying pathophysiology of VCI. Cognitive deficits in VCI patients manifest variably due to the involvement of

various brain regions.35 Early studies revealed the correlation between executive dysfunction and cortical thinning as well as reduced gray

matter volume in the prefrontal lobe of VCI patients.36,37 In addition, a variety of studies utilizing DTI and rs-fMRI have detected white matter

microstructural damages and functional brain abnormalities in the prefrontal lobe of SVCI patients, which interrupt the prefrontal-subcortical

loop that results in specific cognitive impairments.38 Our findings indicated that the prefrontal lobe harbors several brain regions crucial for

VCI diagnosis, suggesting that DL networks might be able to effectively identify VCI by extracting image features related to prefrontal lobe

structural damage from sMRI. Emerging evidence suggested that the cerebellum, apart from its established role in in sensorimotor control,

plays a pivotal role in a wide spectrum of cognitive and affective functions.39 A recent study demonstrated that mild VCI is associated with

anatomical atrophy of specific cerebellar regions involved in cognitive functions and reduced functional connectivity with the striatum.40

Moreover, an autopsy-based study found that the incidence of cerebellar microbleeds and microinfarcts significantly increased in patients

with VD.41 Another experimental study further explored the mechanisms of cerebellar damage following chronic cerebral hypoperfusion.42
iScience 27, 110945, October 18, 2024 7



ll
OPEN ACCESS

iScience
Article
Consistent with the aforementioned evidence, several anatomical regions of the cerebellum showed pronounced contribution to the VCI

diagnosis in our report, further emphasizing the role of the cerebellum in cognitive processes of CVD patients. Notably, our model also high-

lighted the importance of the amygdala and partial regions of the parietal lobe in the VCI diagnosis, a finding supported by limited prior

research. An earlier study showed that the parietal cortex in moderate to severe VCI patients was thinner compared to mild VCI patients.43

Furthermore, it was observed that the best radiomic features associated with the diagnosis of SVCI without dementia were in four anatomical

regions, including the right amygdala.15 In general, our findings might provide an expanded perspective for further exploring the structural

and functional changes of the brain regions related to VCI. It is noteworthy that the discriminative brain regions identified by CAMs varied

among different subjects, potentially related to the presence of different regions of pathological brain damage in different subjects. This sug-

gested that our developed model could achieve individualized localization of VCI-related brain regions, providing auxiliary guidance for cli-

nicians in formulating individualized diagnosis and treatment plans. Furthermore, the sMRI-derived features generated by our model showed

a positive correlation with multiple neuroimaging markers of SVD, supporting the notion that SVD is one of the most prevalent pathological

mechanisms underlying VCI.44

In the final hybrid model, SHAP analysis showed that MRDM-T1 and MRDM-T2 scores exerted a greater impact on diagnosing VCI than

traditional demographic and vascular risk factors, underscoring the value of neuroimaging in VCI diagnosis. Notably, the use of antiplatelet

drugs demonstrated a diagnostic relevance akin toMRDM-T2 scores. Currently, there are controversial results on the role of antiplatelet drugs

in VCI prevention andmanagement. A systematic review found that antiplatelet therapymight serve as a preventive strategy for patients with

a risk of VD.45 However, Kwan et al. indicated there is insufficient evidence supporting the antiplatelet therapy for preventing cognitive decline

in non-demented patients with cerebral SVD.46 Our findings found that patients taking antiplatelet drugs have a higher likelihood of being

diagnosed with VCI, presumably related to their comorbid CVD and other vascular risk factors, which are key etiologies of VCI. Age and ed-

ucation level significantly contribute to the VCI diagnosis, aligning with established risk factors for dementia. Additionally, diastolic blood

pressure emerged as an important feature captured by the model. A large sample study found a cross-sectional association between higher

diastolic blood pressure and impaired cognitive status, supporting our findings.47 Interestingly, leukocyte counts contribute to the VCI diag-

nosis. Inflammation may be one of the underlying pathophysiological mechanisms of VCI.48 A recent meta-analysis indicated that inflamma-

torymarkers can be used to differentiate between VDandADpatients, with higher levels of inflammatorymarkers associatedwith a higher risk

of VD.49 As a peripheral inflammatory marker, leukocyte counts may be associated with the presence of VCI, and our results provide clinical

evidence supporting this hypothesis. Further research is needed to validate this association.

In conclusion, we have developed a multimodal DL framework to identify VCI fromCVD patients based on routine neuroimaging and clin-

ical non-imaging data collected during patient visits. Our model demonstrated excellent ability to diagnose VCI in both internal and external

validations and was further validated against the assessment results from expert clinicians. Furthermore, themodel is explainable, with the ViT

network highlighting the brain regions associated with VCI, and SHAP analysis identified features that contributemore significantly to the VCI

diagnosis, providing additional clinical evidence for further exploration of risk factors and brain pathological changes related to VCI.

Limitations of the study

Our study had several limitations. First, while ML modeling necessitates extensive datasets, no standard is currently available for calculating

the sample sizes needed to development of ML models. Despite constructing this model with a modest dataset size of 307 subjects, we miti-

gated overfitting risks through well-performed internal cross-validation and external validation, suggesting an appropriate sample size may

provide sufficient power for exploring the VCI diagnostic model. Second, the model was developed based on a population from the central

China, and its generalizability to the entire Chinese population or even the global population was unclear. Third, according to the diagnostic

criteria for VCI, cognitive impairments-mixed AD or other pathological changes still existed among the included VCI subjects. Therefore, our

model might default to diagnosing these types of patients as VCI. Since mixed dementia is quite common, future work may establish a multi-

label classification model based on this study, which can identify different pathological types of dementia within the same individual.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MRIConvert software Version 2.0.8 https://idoimaging.com/

MIPAV software Version11.0.7 https://mipav.cit.nih.gov

ANTs Version 2.4.3 http://stnava.github.io/ANTs

FSL software Version 6.0.3 http://www.fmrib.ox.ac.uk/fsl/

MedCalc software Version 20 https://www.medcalc.org

GraphPad Prism software Version 8.0.2 https://www.graphpad.com/

Python Version 3.8.0 https://www.python.org/

PyTorch Version 1.8.0 https://pytorch.org/

Matplotlib Version 3.7.1 https://matplotlib.org/

numpy Version 1.24.3 https://numpy.org/

XGBoost Version 2.0.3 https://xgboost.readthedocs.io/

scikitlearn Version 1.0.2 https://scikit-learn.org/

Other

Origin code This study https://doi.org/10.5281/zenodo.13151114
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

In this study, we recruited 154 patients whomet the inclusion criteria for VCI and 153CVDpatients with normal cognition from theDepartment

of Neurology of Zhongnan Hospital of Wuhan University and Shuiguohu Street Community Health Service Center between August 2019 and

April 2023. All subjects underwent clinical assessment and imaging examinations in Zhongnan Hospital of Wuhan University.

The diagnosis of VCI was established by a panel of three experienced neurologists based on the following inclusion criteria: (1) age 50-75

years; (2) education of 6 years or more; (3) neuropsychological assessments revealing a Montreal Cognitive Assessment (MoCA) score < 24

points or impairment in any one of the five major cognitive domains (including executive function, attention, memory, language, and visuo-

spatial function), with or without compromised activities of daily living; (4) MRI findings meeting one of the following50: (i) one or more large

vessel infarcts, single infarct in an extensive or key brain region (thalamic or basal ganglia); (ii) multiple lacunar infarcts outside the brainstem,

1-2 lacunes combined with extensive white matter lesions or located in key brain regions, or extensive and confluent white matter lesions

(Fazekas score > 1); (iii) intracerebral hemorrhage in key brain regions, two or more intracerebral hemorrhages; (5) exclusion of other specific

causes of hemorrhage, cortical and watershed infarction, hydrocephalus, and white matter lesions, such as multiple sclerosis. In addition, the

inclusion criteria for CVD patients with normal cognition were as follows: (1) age 50-75 years; (2) education of 6 years or more; (3) neuropsy-

chological assessments indicating global cognitive function and all five major cognitive domains were normal; (4) MRI results providing ev-

idence of CVD, such as any severity of SVD and stroke.

Subjects meeting the following criteria were excluded: (1) history of stroke within 3 months; (2) other neurological disorders that cause

cognitive impairment, such as AD, dementia with Lewy bodies, Parkinson’s disease, post-traumatic dementia, brain tumors, or central nervous

system infections; (3) epilepsy, depression, or psychiatric disorders; (4) conditions that would interfere the completion of neuropsychological

tests, such as severe visual impairment, hearing impairment , aphasia, or physical dysfunction; (5) inability to cooperate in completing theMRI

examination.
External validation

A dataset consisting of 74 VCI subjects and 83 CVD subjects with normal cognition recruited fromGeneral Hospital of the Yangtze River Ship-

ping and Third People’s Hospital of Hubei Province between August 2022 and April 2024 was utilized for the external validation. The inclusion

and exclusion criteria were identical to those of the model construction dataset.
Ethical statement

The study was approved by the Ethics Committee (Approval number: 2020185) and has been registered with ClinicalTrials.gov (Registration

number: NCT04999813). All subjects signed informed consent form in accordance with the Declaration of Helsinki.
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METHOD DETAILS

Neuropsychological assessments

All subjects underwent comprehensive neuropsychological tests, administered by the same senior neuropsychologist, with the assessment

results quality-controlled by two additional neuropsychologists. The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assess-

ment (MOCA) were employed to evaluate global cognitive function. Considering the MOCA’s higher accuracy in diagnosing vascular mild

cognitive impairment than the MMSE,51 we relied on MOCA results as one of the criteria for diagnosing VCI. The Hopkins Verbal Learning

Test, Verbal Fluency Test, and Clock Drawing Test were employed to measure subjects’ memory, language, and visuospatial functions,

respectively. Attention was assessed by the Symbol Digit Patterns Test and Trajectory Making Test-A (TMT-A), while executive functioning

was appraised through the Victoria Stroop Test and TMT-B. Additionally, the Hamilton Depression Rating Scale (HAMD) was employed to

evaluate the severity of depression, and subjects with an HAMD score > 17 were excluded from participation in this study. The Activities

of Daily Living (ADL)/Instrumental Activities of Daily Living (IADL) scale was employed to assess the independence in daily living of all subjects.

MRI protocol

Neuroimages were acquired in this study using a 3.0T magnetic resonance imaging (MRI) scanner with a 32-channel array coil (Siemens

Healthcare, Erlangen, Germany). Padding was used to limit the subject’s head movement during the scanning process.

T1-weighted images were acquired with a sagittal three-dimensional magnetization prepared rapid gradient echo sequence, the param-

eters were: reception time (TR) = 6.7 ms, echo time (TE) = 2.26 ms, inversion time (TI) = 900 ms, flip angle = 9�, field of view (FOV) = 224 3

256 mm, voxel size = 1 3 1 3 1 mm, sagittal slices number = 176.

T2-FLAIR images were acquired using the inversion recoveryMATRIX sequence with the following parameters: TR = 6,000ms, TE = 388ms,

TI = 2200 ms, flip angle = 120�, echo sequence length = 848, bandwidth = 781 Hz/pixel, FOV = 5123 512 mm, voxel size = 0.53 0.53 1 mm,

sagittal slices number = 160.
Assessment of SVD neuroimaging markers

Neuroimaging markers of small vessel disease (SVD) included recent small subcortical infarct, whit matter hyperintensity (WMH), lacune,

enlarged perivascular spaces (EPVS), cerebral microbleed, and brain atrophy.52 WMH, lacune, and EPVS were assessed by two well-trained

neuroradiologists who were blinded to this study. Evaluation of these three biomarkers was performed on T1 and T2-FLAIR imaging. WMH

was defined as the white matter region with high signal on T2-FLAIR imaging, which could appear as isointense or hypointense in T1 imaging.

The degree of WMH was visually assessed on T2-FLAIR imaging using the Fazekas scores, scored separately for periventricular WMH and

deep WMH. The total Fazekas score was the sum of periventricular WMH and deep WMH, ranging from 0 to 6.53 Lacune was defined as a

subcortical roundor oval fluid-filled cavity, with a signal similar to cerebrospinal fluid (CSF), presenting a hyperdense rimon T2-FLAIR imaging,

and ranging from 3 to 15 mm in diameter. The number of lacunes was recorded. EPVS were defined as a region with signal intensity identical

to that of CSF, consistent with the course of penetrating vessels, and exhibiting a linear or round/ovoid shape, typically with a diameter smaller

than 3 mm. The number of EPVS was recorded and graded. EPVS were categorized into centrum semiovale (CSO) and basal ganglia (BG)

based on the brain topography. EPVS was graded according to the EPVS counts: 0 = no EPVS, 1 = 1�10 EPVS, 2 = 11�20 EPVS, 3 =

21�40 EPVS, and 4 = >40 EPVS.54 Microbleed and recent small subcortical infarct were not evaluated in this study because the subjects

did not undergo scanning with DWI sequence and SWI sequence. Furthermore, as cerebral atrophy was not a specific biomarker of

SVD,29 it was likewise not evaluated in this study.
Data collection and preprocessing

All subjects underwent standardized collection of the clinical non-imaging data and sMRI data. As shown in Table S3, the clinical non-imaging

data encompassed demographic, medical history, personal and family history, daily habits, physical measures, and laboratory tests. More-

over, the sMRI data consisting of T1 and T2-FLAIR images. All types of data were batch pre-processed by professional computer data analysts.

For the non-imaging data, we initially included all data from subjects in the baseline information collection, encompassing continuous,

categorical, and hierarchical data types. Subsequently, we conducted an initial screening of all data, manually removing redundant variables

with clinical meaninglessness (e.g., name, ID number, time of testing, etc.) with the participation of clinicians in this study. Variables with more

than 20% missing values were excluded to minimize bias resulting from missing data. The remaining variables with missing values were

imputed with the median (for continuous variables) or mode (for categorical variables). To make the textual data applicable to the ML algo-

rithms, we employed Z score normalization for continuous variables and utilized one-hot encoding to create new binary labels for the cate-

gorical variables. We then utilized the least absolute shrinkage and selection operator (LASSO) algorithm with ten-fold cross-validation to

restrict the number of variables.55 Ultimately, the diagnostic model included 31 clinical non-imaging variables.

Additionally, all sMRI data underwent preprocessing using a standardized pipeline, which included image format conversion, anterior

commissure (AC)-posterior commissure (PC) correction, image registration, skull stripping, image resampling, and resolution adjustment.

To facilitate program script processing, we initially converted the images of the T1 and T2-FLAIR sequences from the original Dicom format

to theNIFTI format usingMRIConvert software (https://idoimaging.com/). AC-PC correctionwas then applied to all images usingMIPAV soft-

ware (https://mipav.cit.nih.gov), thereby eliminating positional bias present in the subject scans during the experiment.20 The T1 images were

aligned to the Colin27 template using Advanced Normalization Tools (ANTs) (http://stnava.github.io/ANTs), and the T2-FLAIR images were
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aligned to the already aligned T1 images to correct for global linearity error. Furthermore, Brain Extraction Tool (BET) in the FSL software

package (http://www.fmrib.ox.ac.uk/fsl/) was employed to remove the skull from the T1 images, and the generated masks were utilized to

remove the skull from the T2-FLAIR images. Finally, all images were resampled to standardize voxel spacing to 1 mm x 1 mm x 1 mm, and

images were resized to achieve identical spatial voxel resolution of 181 x 217 x 181. Throughout the image cropping process, only the mean-

ingless zero-valued background regions were removed, preserving the complete structural information of the brain.

Model development

We utilized DL and conventional ML algorithms to develop a set of diagnostic models for VCI based on multimodal data. These models

perform a classification task to determine whether a subject belongs to class 0 (CVD with normal cognition) or class 1 (VCI). The multimodal

framework comprises three separate models: an sMRI-only model, a clinical non-imaging model, and a hybrid model. To input the sMRI fea-

tures into the hybridmodel in textual form, we denoted the probability that a subject was diagnosedwith VCI through the sMRI-onlymodel as

the MRI Diagnostic Model (MRDM) score. Furthermore, the data from the model construction dataset, which comprises the Zhongnan Hos-

pital and the community health service center, were randomly divided, with 80% utilizing for training and remaining 20% forming the test set.

The random seeds were consistent across all models. To reduce overfitting to a specific dataset and construct a more generalized model, we

partitioned the training set randomly into five equal-sized subsets and performed a five-fold cross-validation. The grid search technique was

employed to search for the optimal hyperparameters. Subsequently, the test set data were input into the model with the optimal hyperpara-

meters to evaluate the model’s performance. Additionally, an external dataset was used for model testing (external validation).

sMRI-only model

We employed pre-processed whole-brain sMRI as input to develop a classification model based on the Vision Transformer (ViT). The archi-

tecture of the ViT backbone is shown in Figure S6. Specifically, the input images were initially split into identical patches, with N=HWD/P2

denoting the number of produced patches, where H, W, and D represented the height, width, and depth of each input image, respectively,

and P3P3P represented the resolution of each patch. The dimensions of the patches were reduced to E dimensions by a linear projection

layer, resulting in transformed linear features represented in the form of a matrix as X˛RN3E. The features of each patch were subsequently

combined with positional encoding to obtain spatial information. Furthermore, the features with spatial information were input to the Trans-

former encoder to generate the deep features of networks. Transformer encoder served as the core structure of the ViT, comprising alter-

nating Multi-head Self-Attention (MSA) layer and Multi-Layer Perceptron (MLP). Layer normalization was applied to the input features before

each MSA layer and MLP. The MSA layers were employed to capture interactions between the features of all normalized patches. The MSA

consists of multiple Self-Attention (SA) modules which were connected in series by channels. Each SA had three learnable weight matrices,

which were the query (WQ), key (WK), and value (WV). We projected the input features X onto the above weight matrices to obtain three

matrices for Q, K, and V (Q =XWQ, K = XWK, and V = XWV), the features output from each SA module could be expressed as:

Z = softmax

 
QKTffiffiffiffiffiffi
Eq

p
!
V:

The feature matrices formed by each SA were summed and linearly processed to generate the features output from the MSA. These fea-

tures underwent dimensionality reduction by theMLP. The operations within the encoder were then repeated, and this process was iterated L

times. The final MLP conducted the classification of the corresponding subjects based on the deep features output from the Transformer

encoder. It should be noted that we inputted the T1 and T2-FLAIR images as different variables to the ViT model, and finally generated

two sets of MRDM scores, namely MRDM-T1 scores and MRDM-T2 scores.

Clinical non-imaging model

To delineate the contribution of clinical information other than neuroimaging in the VCI diagnosis, we developed a conventional ML

classification model utilizing clinical non-imaging data. To simulate the clinical setting of a CVD patient visit, the input variables in the clinical

non-imaging model include only routine tests other than neuropsychological tests, owing to their accessibility and objectivity in clinical

assessment. Although the AD biomarkers such as apolipoprotein E ε4 allele, b-amyloid, and tau proteins have been proposed as potential

correlates with VCI in several studies, these correlations lack validation in a broader body of research. Moreover, these tests are costly and

impractical for routine use, thus, we excluded them from themodel development. Five conventional ML algorithms were utilized to construct

the clinical non-imagingmodel, comprising logistic regression (LR), SVM, random forest (RF),MLP, and eXtremegradient boosting (XGBoost).

Ultimately, the performance of all models was computed, and the model exhibiting the best performance was chosen as the foundation for

the subsequent model construction.

Hybrid model

In addition to the two independent models described earlier, we integrated sMRI and clinical non-imaging features into a comprehensive

hybridmodel. Feature fusion was achieved by combining theMRDM scores computed from the sMRI-only model with other clinical variables.

The concatenated feature vectors were then input into a conventional ML classifier. TheML classifier was selected from the algorithmwith the

best performance among the clinical non-imaging models. Consequently, the final hybrid model was formed by combining the ViT and a
14 iScience 27, 110945, October 18, 2024
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conventional ML model. Moreover, to investigate the extent to which the features of different sMRI sequences influenced the hybrid model

performance, the following combinations of features were input to the hybrid model: (1) sMRI T1 features and clinical variables; (2) sMRI T2-

FLAIR features and clinical variables; and (3) sMRI T1 features, sMRI T2-FLAIR features, and clinical variables, respectively.
Model interpretability and feature reduction

To validate the interpretability of DL model, we utilized the Gradient-weighted Class Activation Mapping (Grad-CAM) method to conduct

brain regions visualization analysis on the features extracted from the ViT network.56 Specifically, the ViT network performed feature extraction

and category prediction on input images. The associations between disease classification and image regions were then established by back-

propagating gradients. This process generated class activationmaps (CAMs) for each subject, highlighting the significant brain regions asso-

ciated with VCI. To further analyze, the CAMs from all subjects were averaged to obtain an average CAM. The anatomical automatic labeling

(AAL) atlas57 was overlaid on the average CAM and extracted voxel values (ranging from 0-1) from 116 brain regions. The importance score

was calculated by determining the ratio of the sum of voxel values to the number of voxels in each brain region, and then normalized to a

range between 0 and 1 for consistency. Finally, two sets of importance scores for the 116 brain regions were generated based on T1 and

T2-FLAIR image features, respectively.

Moreover, to analyze the interpretability of theMLmodel, we utilized the Shapley Additive exPlanations (SHAP) algorithm. SHAP, a game-

theory based approach that can be applied to interpret anyMLmodel, which achieved this by computing the Shapley value for each individual

feature of a given training sample.58 Utilizing SHAP, a more comprehensive understanding of the underlying factors driving the predictions of

model could be obtained, thereby enhancing the interpretability of the ML model. To identify the number of features in the final model, we

firstly ranked a total of 33 features, including MRDM-T1 scores, MRDM-T2 scores, and 31 clinical variables, inputted to the hybrid model in

descending order based on their Shapley values. Next, a sequential forward selection strategy was employed to reduce the number of fea-

tures.59 Specifically, consecutiveMLmodels were constructedwith sequentially added features based on their contribution to themodel, and

the performance of each model were evaluated. In this process, the stopping point was determined when there was no significant improve-

ment in model performance with further increase in the number of features. Afterwards, the final hybrid model was constructed based on the

filtered features, and SHAP analysis was utilized to re-rank the contribution of each feature to the model.
Expert clinicians validation

In clinical practice, the diagnosis of VCI is conducted through a comprehensive assessment by practicing clinicians based on the patient’s

clinical data. Consequently, to further validate the performance of the model, we invited a team of experts comprising six neurologists

and five radiologists to participate in the diagnostic task for a subset of cases from an external dataset. The expert clinicians were presented

with 80 randomly selected cases from the external dataset, comprising 35 VCI and 45 CVDwith normal cognition cases. The neurologists were

provided with data for these cases, including imaging data (T1 and T2-FLAIR images) and non-imaging data (demographics, health history,

physical measures, daily habits, laboratory tests, and neurological tests). The radiologists were provided with only the imaging data (T1 and

T2-FLAIR images), age, sex, and education years. They were required to provide confidence scores for each case, on a scale from 0 to 100,

where higher scores indicated a greater probability of the VCI diagnosis. To assess the overall diagnostic performance of the clinicians, the

confidence scores from the six neurologists and five radiologists were averaged, respectively. We then calculated the diagnostic performance

of the neurologists and radiologists separately using the average confidence scores.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

In the descriptive analysis of textual data, continuous variables with normal distribution were expressed as meanG standard deviation, those

with skewed distribution asmedian [interquartile range], and categorical variables as counts (percentage). For continuous variables, indepen-

dent sample t-test or Mann-Whitney U test was employed to compare the differences of baseline characteristics between VCI group and con-

trol group. Chi-square test was employed to compare the categorical variables in the two groups regarding baseline characteristics. Spear-

man’s rank correlation was employed to analyze the relationship between neuroimaging markers of SVD andMRDM scores predicted by the

ViT model. To evaluate model performance, the accuracy, sensitivity, specificity, and F1-score (harmonic mean of recall and precision) were

calculated for each model prediction. The formulas for accuracy, sensitivity, specificity and F1 score were TP+TN
TP+TN+FP+FN,

TP
TP+FN,

TN
FP+TN, and

2�TP
2�TP+FP+FN, respectively. Additionally, the receiver operating characteristic curves (ROC) and precision-recall curves (PR) were generated,

and the AUC and the area under the precision-recall curves (AP) were calculated for each ROC and PR curve. Among these metrics, AUC

and AP served as the primary indicators for assessing model performance. The 95% confidence intervals (CIs) for model evaluation metrics

were generated with 1000 bootstrap sets. The difference between AUCs was analyzed utilizing the non-parametric method of Delong60 in

MedCalc software, version 20 (https://www.medcalc.org). To evaluate the inter-rater agreement among clinicians’ confidence scores for a

specific set of cases, the clinicians’ scores were conducted pairwise Pearson correlation analysis.61 We also calculated the average pairwise

correlation coefficient and its 95% confidence interval. The significance level for all statistical analyses were 0.05.
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Hardware and software for model development

All sMRI and non-imaging data processing, as well as the proposed transformer-based multimodal DL framework were implemented on an

Ubuntu workstation with a single NVIDIA GTX TITAN GPU. The ViT model was developed using PyTorch (version 1.8.0) in Python (version

3.8.0), the matplotlib library (version 3.7.1) and numpy (version 1.24.3) in Python were used for generating graphs of the analyzed results

and vectorized numerical computation, respectively. Each ML model was developed using the scikitlearn library (version 1.0.2) and in python

(version 3.8.0). Additionally, MedCalc (version 20) was performed to complete other elementary statistical analyses.
16 iScience 27, 110945, October 18, 2024
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