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Abstract 

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the para-
site and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used 
to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution 
and burden of malaria in humans, enabling improved monitoring and control. Previous work has developed math-
ematical models and global maps for the suitability of temperature for malaria transmission. In this paper, existing 
temperature-based models are extended to include two other important bioclimatic factors: humidity and rainfall. 
This model is combined with fine spatial resolution climatic data to produce a more biologically-realistic global map 
of climatic suitability for Plasmodium falciparum malaria. The climatic suitability index developed corresponds more 
closely than previous temperature suitability indices with the global distribution of P. falciparum malaria. There is weak 
agreement between the Malaria Atlas Project estimates of P. falciparum prevalence in Africa and the estimates of suit-
ability solely based on temperature (Spearman Correlation coefficient of ρ = 0.24 ). The addition of humidity and then 
rainfall improves the comparison ( ρ = 0.62 when humidity added; ρ = 0.70 when both humidity and rainfall added). 
By incorporating the impacts of humidity and rainfall, this model identifies arid regions that are not climatically suit-
able for transmission of P. falciparum malaria. Incorporation of this improved index of climatic suitability into geospa-
tial models can improve global estimates of malaria prevalence and transmission intensity.
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Introduction
Plasmodium falciparum malaria poses an enormous 
health burden globally, with more than 200 million cases 
and 500,000 deaths per year. This burden is predomi-
nantly focussed in sub-Saharan Africa, where 90% of the 
continent’s population resides in P. falciparum malaria 
endemic areas [1]. The global impact of P. falciparum 

malaria has declined however, with unprecedented fund-
ing of both health systems and targetted malaria inter-
ventions (such as long-lasting insecticidal bed nets) 
resulting in a 30% reduction in cases from 2005 to 2015 
[1–3]. Due to varying environmental conditions and spa-
tially heterogeneous deployment and utilization of inter-
ventions, the intensity of malaria transmission, and hence 
the incidence of disease, varies substantially throughout 
endemic areas [4, 5]. High-resolution maps of malaria 
prevalence and incidence are therefore critical for meas-
uring progress in tackling malaria. These maps can also 
be powerful tools for advocacy, targetting interventions 
at locations where they can have the greatest impact, and 
as early warning systems to support health systems to 
deal with malaria outbreaks [6].

Spatial variation in malaria transmission intensity is 
driven by myriad factors, including: climate, land cover, 
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socioeconomic conditions, coverage of malaria interven-
tions [7, 8], and growing resistance to them [3, 9, 10]. 
Geostatistical models can be used to combine spatial 
estimates of these drivers, along with data on malaria 
prevalence and incidence from health systems and sur-
veys, into spatio-temporal surfaces of malaria prevalence 
and incidence [11–13]. As a correlative approach, geo-
statistical models do not explicitly capture the biologi-
cal processes and causal relationships that link these risk 
factors to malaria transmission. This reduces their abil-
ity to identify the hard limits of disease transmission, and 
their reliance on spatial correlation to describe disease 
risk means they have limited ability to predict malaria 
transmission potential in areas far away from existing 
data points [14]. The limitations of a purely geostatistical 
approach, including those that use bioclimatic covariates 
in the statistical framework, to mapping global malaria 
transmission intensity can be overcome by incorporat-
ing predictions from causal mathematical models of the 
major processes driving spatial variation in malaria trans-
mission [3, 12, 15, 16]. However, even with the inclusion 
of more appropriate bioclimatic variables in a mechanis-
tic model to identify suitable habitats for malaria trans-
mission, the ability to predict actual malaria transmission 
in these regions is fundamentally limited by access to 
reliable data on malaria interventions, antimalarial treat-
ments etc.

Over the last few decades, several attempts have been 
made to mathematically model the relative risk of malaria 
in different locations, with each model using a variety 
of methods and taking into account different factors (a 
review of some of these models can be found in Reiner 
et  al. [17]). These models can be applied to a variety of 
problems: knowing where malaria risk is highest allows 
treatment efforts and preventative measures to be applied 
in the areas where they are most needed. These models 
to predict how changes in local climate and environment 
may alter malaria risk. There is also a large body of work 
on dynamic mathematical models of malaria (see review 
by [18]) and agent-based modelling of malaria (reviewed 
by Smith et al. [19]).

Climatic suitability is critical requirement for malaria 
transmission, and a number of mathematical models 
have been developed to identify areas that are climati-
cally suitable or unsuitable for disease transmission [15, 
16, 20–22]. Attempts to generate global maps of cli-
matic suitability for P. falciparum malaria have typically 
focussed on a single aspect: temperature. The effect of 
temperature on the breeding cycle of Anopheles vectors 
and Plasmodium sporozoites is well documented [23–25] 
and is the cause of P. falciparum malaria’s tropical distri-
bution. Gething et al. [15] developed a global map of the 
temperature-based constraints on malaria transmission, 

using established mathematical models, and spatial data 
on average maximum and minimum air temperatures, 
and their seasonal variation. Weiss et  al. [16] extended 
this work by applying the same model to high tempo-
ral- and spatial-resolution observed temperature data 
derived from satellite imagery. Whilst these studies pro-
vide detailed estimates of suitability for malaria based 
on the direct impacts of temperature, they ignore the 
crucial impact of precipitation on both the availability of 
water bodies for mosquito larval habitat, and on humid-
ity, which has a major effect on mosquito survival. Con-
sequently, the global suitability indices provided by these 
previous studies are unable to identify areas that are too 
dry for malaria, potentially overpredicting the climatic 
limits of transmission. Furthermore, this shortcoming 
necessitates the inclusion of variables that character-
ize moisture conditions in subsequent malaria burden 
models.

This paper outlines the first global-scale mathemati-
cal model that quantifies the direct, combined, impact 
of temperature, humidity and precipitation of malaria 
suitability. This enables climatic suitability mapping for 
malaria globally, and with greater biological realism 
than previous studies. The resulting map can be used in 
global geostatistical modelling studies to improve global 
estimates of malaria burden, or used to predict the likely 
impacts of changing climates on suitability for malaria.

Methods and implementation
In this paper, a suitability index is developed for the 
transmission of P. falciparum that varies with tempera-
ture, humidity and rainfall. The modelling framework 
employs mathematical relationships between the envi-
ronmental metrics and the Anopheles mosquito life-cycle. 
The model also considers the mechanistic relationship 
between temperature and the development of infectious 
sporozoites living within infected mosquitoes. The equa-
tions that characterize the relationships were previously 
established in peer-reviewed publications, however this 
is the first time the three climatic factors have been inte-
grated into a single mathematical model. Critically, the 
input data for the models was produced using a well-
established, geographically consistent methodology, thus 
ensuring comparability of the results through time and 
space. Challenges associated with this research include 
data management on a large set of global-scale gridded 
datasets and computational intensity of the analysis.

Data
The mathematical model requires data on temperature, 
humidity and rainfall. All data was sourced from ERA5-
Land via the Copernicus programme, taking data points 
at intervals every 2  h between March 2022 and May 
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2023 at a nominal 10 km resolution: pixels spanning 0.1 
degrees of latitude/longitude [26].

Only the 2  m temperature variable was considered 
when measuring air temperature. Relative humidity was 
calculated by combining the air temperature data with 
the 2  m dewpoint temperature, and using the Magnus 
approximation:

where Dp is the dewpoint temperature (°C), T is the air 
temperature (°C) and RH is the relative humidity [27].

The variables of total precipitation and evaporation 
from open water surfaces excluding oceans were also 
used in later models. Since the data provided in the 
dataset was cumulative over 24 h periods, the difference 
between data points was used to approximate the total 
precipitation and evaporation in a 2 h period.

Temperature‑dependent model
A population model is formulated in a discrete-time 
framework to track mosquito infection and breeding 
dynamics, using techniques presented in Brady et  al. 
[28]. See Fig. 1 for an overview of the model structure 
at the pixel (point location) level, time-step level and 
cohort level. At each pixel a separate simulation is run 
(Step 1, Fig. 1). For a given pixel, a new cohort of mos-
quitoes is created at each 2 h timestep, ti (Step 2, Fig. 1). 

(1)M(x) = exp

(

17.625x

243.04 + x

)

(2)RH =
100M(Dp)

M(T )

For a given cohort, the population size and sporozoite 
development within the population is tracked at 2  hly 
intervals (Step 3, Fig.  1). To do this, Mi is defined as 
the population of the cohort i timesteps ( ti = 2i hours) 
after the adult phase of the mosquito life cycle com-
mences and additionally:

where g(T) is the death rate per day. This gives an ini-
tial size of 100 for the cohort, and the cohort population 
decreases according to the death rate tailored to working 
within two hour intervals, as each time interval repre-
sents 1/12 of a full day. As per Gething et al. it is assumed 
that g(T) is a function of temperature given by:

where T is the air temperature in degrees Celsius [15]. 
Based on previous studies involving Anopholes gambiae, 
this is a well-accepted function for the death rate within 
sensible temperature ranges [15, 29–31]. Equation (5) 
assumes that the death rate of mosquitoes is independent 
of mosquito age. This assumption is not far from reality, 
as mosquitoes often die from factors related to climatic 
variables long before age becomes a relevant factor in 
determining survival [29].

In Eq. (4), it was assumed that each cohort had a 
maximum lifespan of 33 days, or 396 time steps. This is 

(3)M0 = 100,

(4)Mi+1 = exp

(

−g(T )

12

)

Mi, i = 0, . . . , 395

(5)g(T ) =
1

−4.4 + 1.31T − 0.03T 2
,

Fig. 1  A flowchart describing the steps of initial temperature-based model. Starting with the raw inputs for each pixel of the map, many cohorts 
of mosquitoes are simulated, data is used to calculate the number of infected mosquitoes, this is then combined across all cohorts and pixels 
to produce a spatio-temporal map of malaria risk
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much longer than the typical mosquito lifespans seen in 
the wild [32], and allows for a reduction in the amount 
of computation needed; even under perfect conditions, 
cohort population will be extremely low past 33 days. 
That is, in the simulations after 33 days (396 timesteps) a 
cohort is no longer monitored and does not contribute to 
the total mosquito population.

The development of sporozoites within infected mos-
quitoes is dependent on temperature; sporozoite devel-
opment has been shown to reach completion roughly a 
constant number of degree days after incubation com-
mences [15]. One degree day is one day with the tem-
perature over the threshold by one degree. This threshold 
temperature varies depending on the parasite species. 
Here Tdev denotes the threshold temperature required for 
sporozoite development to occur, and ddev the number of 
degree days required for completion of sporozoite devel-
opment. With varying temperatures over time, full devel-
opment of the sporozoite occurs n days after infection, 
where n is the minimum positive solution to:

where H(·) is the Heaviside function.
The focus of this study was the parasite P. falciparum 

and the mosquito species An. gambiae sensu stricto. 
This allowed setting of Tdev = 16 and ddev = 111 , based 
on previous studies [15, 29, 33, 34]. In terms of the dis-
crete-time model, in each cohort, the sporozoite devel-
opment value Yi was also tracked (Step 3, Fig.  1). Here 
Yi represents the number of degree days passed. Once Yi 
reaches a critical threshold value of ddev , the sporozoite 
is considered to be fully developed. Using Tdev = 16 and 
ddev = 111 as above, sporozoite development was tracked 
according to the equations:

where Yi = 0 for i ≤ 23 in order to introduce an initial 
non-biting period of roughly two days shortly after the 
pupal stage ends. Although this non-biting period has 
been shown to vary with temperature, a uniform non-
biting period of two days was chosen as the non-biting 
period does not deviate far from a length of two days 
across temperatures which can sustain a mosquito popu-
lation [35]. During this non-biting period, no members 
of the population can become infected, so development 
of the sporozoite cannot occur. It is assumed that mem-
bers of the cohort become infected immediately after this 
non-biting period ends.

(6)
∫ n

0

H(T (τ )− Tdev)[T (τ )− Tdev]dτ ≥ ddev ,

(7)Yi = 0 i ≤ 23,

(8)Yi+1 =
max(0,Ti − 16)

12
+ Yi i > 23,

The number of infected mosquitoes in each cohort at 
each timestep was then calculated (Step 4, Fig. 1). After 
the initial non-biting period, it was assumed that 1% of 
the remaining cohort would become infected [36, 37]. It 
is acknowledged that this is a simplification of reality and 
possible extensions are discussed later in the discussion.

Once sporozoite development was complete (that 
is, when Y hit the critical value of 111 degree days), the 
population is classified as infectious. Here, Zi , represents 
the number of infected mosquitoes at timestep i, and was 
calculated as:

The next step of the model (Step 5, Fig. 1) involves col-
lating risk values across all time steps. Letting Zj,i be the 
value of Zi for the cohort starting on time step j, the final 
risk metric is then developed, risk(t) , at time step t by 
summing the values of Zi for all past cohorts correspond-
ing to the time step t. In other words:

A map was made (Step 6, Fig. 1) by visualizing the met-
ric, risk(t) , at each pixel on a global scale, thus creating a 
spatio-temporal map of malaria risk.

Temperature‑humidity model
The temperature-based model is now extended to con-
sider the effects of humidity. In accordance with the 
methods set out in Yamana and Eltahir in 2013 [30], this 
was done by a modification of the survival rate so that 
the surviving proportion over a single timestep was set to 
exp(−g(T )�t)S(h) , which is dependent on both the tem-
perature T and the relative humidity percentage h. Here 
�t is the time step of 2 h (=1/12 days). Specifically, S(h) 
was calculated as:

The factor S(h) is chosen so that humidity has no effect 
on survivability above an upper threshold hmax , but 
immediate death of the cohort occurs below a lower 
theshold hmin , and in between these values humidity has 
a linear dependence on the rate of surviving mosquitoes. 
Evidence from experiments on An. gambiae suggests that 
it is reasonable to set hmin = 5 and hmax = 42 , matching 
empirical estimates of survival at extremely low humidi-
ties [38, 39], and at humidities more commonly experi-
enced under field conditions [30].

(9)Zi =
{

0, Yi < 111,
0.01Mi, Yi ≥ 111.

(10)risk(t) =
t

∑

k=0

Zk ,t−k .

(11)S(h) =











0, h ≤ hmin

h− hmin

hmax − hmin
, hmin < h < hmax

1, h ≥ hmax
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Temperature‑humidity‑rainfall model
The temperature-humidity model is now extended to 
incorporate the effect of standing water availability by 
altering the initial size of each new cohort. Data on the 
amount of standing water in a given area is not feasible 
to collect, considering such bodies of water can appear 
and disappear quickly depending on the season, and can 
vary in size from large lakes to small puddles. For breed-
ing, An. gambiae prefer bodies of water that are tempo-
rary, contained and shallow, and which can be as small 
as footprints filled with water [40, 41]. It is considered 
that the amount of standing water in an area is linked 
to the amount of rainfall that area receives; this allows 
approximation of the transient amount of standing water 
without having to consider factors such as local geology. 
Linking the rainfall to mosquito breeding habits is a sen-
sible assumption to make, and is supported by associa-
tions between rainfall and malaria transmission found in 
other studies [42].

In order to simulate the amount of standing water 
in a given area, a variation of the method described in 
Parham et al. is used [43]. It is assumed that each pixel 
in the map contains an inverted cone with an inci-
dent angle of 90◦ , which holds all standing water in 
that region, see Fig.  2. The volume of water contained 
in this cone increases due to inputs from rainfall, and 
decreases due to loss from evaporation. Given a par-
ticular volume of water v, the area of water at the top 
of this volume can be calculated as a = (3

√
πv)

2
3 . Here 

a represents the total surface area of standing water in 
that pixel. Note that more generally, as the slope of the 
inverted cone increases (e.g., incident angle decreases), 
the surface area of standing water available for a given 
volume of water would decrease.

It is assumed that each cone has a maximum capacity 
V, with a corresponding maximum surface area A. In 

order to simulate the change in water volume, the fol-
lowing differential equation is used:

where p is the rate of rainfall (mm per day), and E is the 
rate of water volume loss due to evaporation. This gives 
the rate of water input equal to the rainfall rate multi-
plied by the area of the opening at the top of the cone, 
and the rate of water output equal to the evaporation rate 
multiplied by the exposed surface area of the water.

The temperature and humidity model described ear-
lier is then recomputed, but instead of setting the initial 
cohort size as a constant, it is set as follows:

which uses the water surface area a at time τ − τd . Here, 
κ is a constant of proportionality and τd is a delay intro-
duced in order to simulate the time between the start of 
the pupa stage (the last stage dependent on water) and 
the emergence of adult mosquitoes [23]. A linear depend-
ence is assumed between standing water surface area and 
the number of mosquitoes spawned. For An. gambiae, τd 
was taken to be 3 days [44, 45].

Model evaluation
Whilst it is not possible to evaluate the models of climatic 
suitability against equivalent empirical data, a positive 
correlation between the model estimate of suitability and 
the prevalence of malaria in Africa is expected. There-
fore, the Spearman correlation coefficient is computed 
between the suitability estimates and malaria preva-
lence estimates from the Malaria Atlas Project in 2020, 
over 289,912 pixels in Africa within the areas for which 
malaria prevalence estimates are available from the 
Malaria Atlas Project. The choice of the Spearman rank-
order correlation assumes a monotonic but not a linear 
relationship between the two quantities.

Results
In total, three models were run, testing the effect of the 
inclusion of different bioclimatic variables, as described 
above. Running each of the models assigns every pixel 
a measure of malaria risk, risk(t) , for each time step, by 
adding up all the infected mosquitoes across all cohorts 
at that time. This is dependent only on temperature in 
the initial model ( riskT ), but is dependent on tempera-
ture and humidity in the second model ( riskT ,H ), and 
is dependent on all three of temperature, humidity and 
rainfall in the final model ( riskT ,H ,P ). The output of each 
of these models is the same resolution as the input data, 
with each pixel having a side length of 0.1 degrees of 
latitude/longitude.

(12)
dv

dτ
= pA− aE,

(13)M0 = κa(τ − τd),

Fig. 2  Schematic diagram of the cone used for simulating standing 
water
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For all models the risk follows a seasonal pattern. This 
is most easily seen in the initial temperature based model, 
as this model gives a non-zero risk value to the most area, 
allowing how the measure of risk evolves over time to be 
more clearly seen. The results from this model are shown 
in Fig. 3.

While the results from this model highlight tempera-
ture dependence on malaria risk by displaying patterns 
such as seasonality, there are some obvious flaws in the 
results. Many arid areas, such as the Sahara or central 
Australia, show a significant level of risk during certain 
months under this model. In reality, however, it is prac-
tically impossible for mosquitoes to flourish in these 
environments, as mosquitoes require more humid envi-
ronments with readily available water sources in order to 
breed and develop.

Figure  4 represents results from the second model, 
which incorporated humidity as a factor in the calcula-
tions. From this figure, the same seasonality and general 
patterns from the temperature-based model can be seen 
at an initial glance. A closer look, however, reveals large 
regions in the middle of previously high-risk areas where 

risk drops to essentially zero. Such areas include north-
ern Africa, central Australia and the Arabian peninsula. 
All these areas are generally associated with high levels 
of aridity and as such would be unsuitable for mosquito 
habitation. Note that this work has focused on creating a 
suitability index for malaria transmission by An. gambiae, 
not all vectors capable of P. falciparum transmission—
there may be regions that the model has erroneously 
identified as suitable for malaria transmission due to this.

The third iteration of the model took rainfall into 
account as well. Figure  5 demonstrates the results from 
this iteration of the model. This allows differentiation of 
the risk in areas where temperature and humidity may be 
suitable, but where differences in rainfall patterns could 
lead to a relatively larger area for mosquito breeding and 
more suitable conditions for malaria vector development.

Using this model, the areas at relatively high risk seem 
to be smaller in area. Quantitatively speaking, these high-
risk areas also have a higher measure of risk, as can be 
seen by the increased measurement scale of Fig. 5 com-
pared to Figs.  3 and 4. This is not unexpected, since an 
area at the maximum water capacity produces cohorts 

Fig. 3  Global maps representing malaria risk based on temperature model ( riskT  ). Images represent seasonal averages for boreal Spring (top-left), 
Summer (top-right), Autumn (bottom-left) and Winter (bottom-right)
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with higher initial numbers than in the previous two 
models.

In this version of the model, again low risk measure-
ments in arid areas can be seen. There is also a higher 
weighting of risk in areas that are associated with tropi-
cal rainforest, such as Indonesia, the Amazon Basin, the 
Congo Basin and the coast of Western Africa. Areas typi-
cally associated with grasslands, such as Northern Africa, 
Eastern Africa and South Brazil, still show some level of 
risk, but this level is reduced relative to the model’s hot-
spots. This is especially noticeable in the months where 
these regions displayed the highest risk when using the 
previous model (boreal summer for Northern Africa, 
boreal winter for Eastern Africa and South Brazil).

The increase in relative risk of more moist areas such as 
rainforest can be seen more clearly in Fig. 6. This shows 
a comparison of the average results across all months for 
the three models and indicates the restriction placed on 
suitability by adding humidity and rainfall to the model, 
respectively.

There is weak agreement between the Malaria Atlas 
Project median estimates of P. falciparum prevalence 
in Africa and the estimates of suitability solely based 
on temperature (Spearman Correlation coefficient of 
ρ = 0.24 ). The addition of humidity and then rainfall 
improves the comparison ( ρ = 0.62 when humidity 
added; ρ = 0.70 when both humidity and rainfall added). 
Of course, there will be regions where P. falciparum 
prevalence is low where the models predict that the envi-
ronment is suitable for transmission. This is most nota-
ble for the temperature-only model where large parts of 
the Sahara desert are predicted to be suitable for malaria 
since the effect of low humidity (and low rainfall) are not 
taken into consideration.

Discussion
In this paper, a suitability index for the transmission of 
P. falciparum that varies with temperature, humidity and 
rainfall has been developed. The equations that charac-
terize the relationships have been established previously 
in the literature, but this is the first model to incorporate 

Fig. 4  Global maps representing malaria risk, based on temperature-humidity model ( riskT ,H ). Images represent seasonal averages for boreal Spring 
(top-left), Summer (top-right), Autumn (bottom-left) and Winter (bottom-right)
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all three factors into a single mathematical model. Global 
malaria suitability maps based on temperature only, tem-
perature and humidity, and temperature, humidity and 
rainfall have been presented.

There are several limitations of this work that should 
be acknowledged. Firstly, mosquitoes adapt to their envi-
ronment to take advantage of human housing for their 
own comfort. In this way, the temperature and humid-
ity that mosquitoes experience depends on the living 
conditions of humans in the area. Secondly, a suitability 
index for An. gambiae on a global scale has been con-
sidered here, however this species largely only exists in 
Africa. Hence, for regions outside Africa, the results pre-
sented here should be interpreted loosely to reflect the 
suitability for other Anopheles species (albeit with a dif-
ferent parameterization). In future, parallel models for 
major vector species could be developed; for example 
Anopheles funestus and Anopheles coluzzii in Africa and 
Anopheles stephensi in India (now also present in Africa). 
Thirdly, the notion that 1% of mosquitoes per time-step 
are infected is arbitrary and another approach could be 

to, for example, assume that by day 3 all mosquitoes have 
been infected.

A further improvement on the work presented would 
be to incorporate future environmental predictions so 
that trends in time can be assessed, including the effects 
of climate change. This would also allow the effect of 
climatic factors such as El Niño events that affect pre-
cipitation volumes to be assessed. Improvements to the 
humidity model could include modelling the nonlinear 
effects between the extreme humidity levels (see Eq. 11) 
while the standing surface area water model could be 
improved by considering location-dependent ‘flooding’. 
In the model implementation, the number of mosqui-
toes born at each timestep was either constant or lin-
early dependent on surface water available. It would 
be interesting to investigate the role of a spatially-var-
ying carrying capacity that controls the generational 
dependence of clutch size. Likewise, the model would 
be improved by incorporating contemporary, dynamic 
temperature data to better characterize its multifaceted 
relationship with vector ecology and the sporogonic 

Fig. 5  Global maps representing malaria risk, based on temperature-humidity-rainfall model ( riskT ,H,P ). Images represent seasonal averages 
for boreal Spring (top-left), Summer (top-right), Autumn (bottom-left) and Winter (bottom-right)
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cycle. Such an approach was taken by Weiss et al. [16], 
who utilized dynamic air temperature estimates that 
were modelled from satellite-imagery-derived land sur-
face temperature.

The model framework presented in this paper is highly 
flexible and can be readily coupled to other more detailed 
models, such as mosquito population dynamic mod-
els and malaria transmission models. While this would 
require thought on the nature of coupling of the models, 
it would no doubt provide interesting insight into malaria 

at the human population level. The suitability maps that 
have been generated here are also potentially important 
covariates for use in spatio-temporal mapping of malaria 
prevalence at global and national levels. These preva-
lence maps, and by extension the ones generated here, 
are particularly important for countries that are targeting 
malaria control and elimination, in that they can guide 
the allocation of scarce resources to where they are most 
needed.
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